1
|
Domin H, Burnat G. mGlu4R, mGlu7R, and mGlu8R allosteric modulation for treating acute and chronic neurodegenerative disorders. Pharmacol Rep 2024; 76:1219-1241. [PMID: 39348087 PMCID: PMC11582148 DOI: 10.1007/s43440-024-00657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Neuroprotection, defined as safeguarding neurons from damage and death by inhibiting diverse pathological mechanisms, continues to be a promising approach for managing a range of central nervous system (CNS) disorders, including acute conditions such as ischemic stroke and traumatic brain injury (TBI) and chronic neurodegenerative diseases like Parkinson's disease (PD), Alzheimer's disease (AD), and multiple sclerosis (MS). These pathophysiological conditions involve excessive glutamatergic (Glu) transmission activity, which can lead to excitotoxicity. Inhibiting this excessive Glu transmission has been proposed as a potential therapeutic strategy for treating the CNS disorders mentioned. In particular, ligands of G protein-coupled receptors (GPCRs), including metabotropic glutamatergic receptors (mGluRs), have been recognized as promising options for inhibiting excessive Glu transmission. This review discusses the complex interactions of mGlu receptors with their subtypes, including the formation of homo- and heterodimers, which may vary in function and pharmacology depending on their protomer composition. Understanding these intricate details of mGlu receptor structure and function enhances researchers' ability to develop targeted pharmacological interventions, potentially offering new therapeutic avenues for neurological and psychiatric disorders. This review also summarizes the current knowledge of the neuroprotective potential of ligands targeting group III mGluRs in preclinical cellular (in vitro) and animal (in vivo) models of ischemic stroke, TBI, PD, AD, and MS. In recent years, experiments have shown that compounds, especially those activating mGlu4 or mGlu7 receptors, exhibit protective effects in experimental ischemia models. The discovery of allosteric ligands for specific mGluR subtypes has led to reports suggesting that group III mGluRs may be promising targets for neuroprotective therapy in PD (mGlu4R), TBI (mGlu7R), and MS (mGlu8R).
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| | - Grzegorz Burnat
- Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| |
Collapse
|
2
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
3
|
Yuan S, Li X, Zhang YL, Zhou WJ, Du YB, He ZX, Liu HM, Bai YR. Functional Hexafluoroisopropyl Group Used in the Construction of Biologically Important Pyrimidine Derivatives. J Org Chem 2024; 89:16485-16492. [PMID: 39480993 DOI: 10.1021/acs.joc.4c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A series of versatile 4-((1,1,1,3,3,3-hexafluoropropan-2-yl)oxy)pyridine intermediates have been developed to efficiently produce biaryls, amines, ethers, and thioethers. These hydrolysis-stable ether intermediates exhibit reactivity toward electron-donating groups and nucleophiles in cross-coupling and nucleophilic substitution reactions while surpassing the stability of corresponding aryl halides. In comparison to conventional coupling methods, this protocol offers an alternative pathway for accessing natural product and drug-like compounds without the need for metal catalysts. With assistance of this approach, we successfully obtained a potent P-glycoprotein inhibitor 4k (YS-370), a potent epidermal growth factor receptor inhibitor 4l (YS-363), and a promising lysine-specific demethylase 1 inhibitor 5g.
Collapse
Affiliation(s)
- Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Li
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue-Lin Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Juan Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Yuan-Bing Du
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhang-Xu He
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Parent HH, Niswender CM. Therapeutic Potential for Metabotropic Glutamate Receptor 7 Modulators in Cognitive Disorders. Mol Pharmacol 2024; 105:348-358. [PMID: 38423750 PMCID: PMC11026152 DOI: 10.1124/molpharm.124.000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is the most highly conserved and abundantly expressed mGlu receptor in the human brain. The presynaptic localization of mGlu7, coupled with its low affinity for its endogenous agonist, glutamate, are features that contribute to the receptor's role in modulating neuronal excitation and inhibition patterns, including long-term potentiation, in various brain regions. These characteristics suggest that mGlu7 modulation may serve as a novel therapeutic strategy in disorders of cognitive dysfunction, including neurodevelopmental disorders that cause impairments in learning, memory, and attention. Primary mutations in the GRM7 gene have recently been identified as novel causes of neurodevelopmental disorders, and these patients exhibit profound intellectual and cognitive disability. Pharmacological tools, such as agonists, antagonists, and allosteric modulators, have been the mainstay for targeting mGlu7 in its endogenous homodimeric form to probe effects of its function and modulation in disease models. However, recent research has identified diversity in dimerization, as well as trans-synaptic interacting proteins, that also play a role in mGlu7 signaling and pharmacological properties. These novel findings represent exciting opportunities in the field of mGlu receptor drug discovery and highlight the importance of further understanding the functions of mGlu7 in complex neurologic conditions at both the molecular and physiologic levels. SIGNIFICANCE STATEMENT: Proper expression and function of mGlu7 is essential for learning, attention, and memory formation at the molecular level within neural circuits. The pharmacological targeting of mGlu7 is undergoing a paradigm shift by incorporating an understanding of receptor interaction with other cis- and trans- acting synaptic proteins, as well as various intracellular signaling pathways. Based upon these new findings, mGlu7's potential as a drug target in the treatment of cognitive disorders and learning impairments is primed for exploration.
Collapse
Affiliation(s)
- Harrison H Parent
- Department of Pharmacology (H.H.P., C.M.N.), Warren Center for Neuroscience Drug Discovery (H.H.P., C.M.N.), Vanderbilt Brain Institute (C.M.N.), and Vanderbilt Institute for Chemical Biology (C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Colleen M Niswender
- Department of Pharmacology (H.H.P., C.M.N.), Warren Center for Neuroscience Drug Discovery (H.H.P., C.M.N.), Vanderbilt Brain Institute (C.M.N.), and Vanderbilt Institute for Chemical Biology (C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| |
Collapse
|
5
|
Addis P, Bali U, Baron F, Campbell A, Harborne S, Jagger L, Milne G, Pearce M, Rosethorne EM, Satchell R, Swift D, Young B, Unitt JF. Key aspects of modern GPCR drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:1-22. [PMID: 37625784 DOI: 10.1016/j.slasd.2023.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most versatile cell surface receptor family with a broad repertoire of ligands and functions. We've learned an enormous amount about discovering drugs of this receptor class since the first GPCR was cloned and expressed in 1986, such that it's now well-recognized that GPCRs are the most successful target class for approved drugs. Here we take the reader through a GPCR drug discovery journey from target to the clinic, highlighting the key learnings, best practices, challenges, trends and insights on discovering drugs that ultimately modulate GPCR function therapeutically in patients. The future of GPCR drug discovery is inspiring, with more desirable drug mechanisms and new technologies enabling the delivery of better and more successful drugs.
Collapse
Affiliation(s)
- Phil Addis
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Utsav Bali
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Frank Baron
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Adrian Campbell
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Steven Harborne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Liz Jagger
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Gavin Milne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Martin Pearce
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Elizabeth M Rosethorne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Rupert Satchell
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Denise Swift
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Barbara Young
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - John F Unitt
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK.
| |
Collapse
|
6
|
Lei X, Hofmann CS, Rodriguez AL, Niswender CM. Differential Activity of Orthosteric Agonists and Allosteric Modulators at Metabotropic Glutamate Receptor 7. Mol Pharmacol 2023; 104:17-27. [PMID: 37105671 PMCID: PMC10289241 DOI: 10.1124/molpharm.123.000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is a G protein coupled receptor that has demonstrated promise as a therapeutic target across a number of neurologic and psychiatric diseases. Compounds that modulate the activity of mGlu7, such as positive and negative allosteric modulators, may represent new therapeutic strategies to modulate receptor activity. The endogenous neurotransmitter associated with the mGlu receptor family, glutamate, exhibits low efficacy and potency in activating mGlu7, and surrogate agonists, such as the compound L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4), are often used for receptor activation and compound profiling. To understand the implications of the use of such agonists in the development of positive allosteric modulators (PAMs), we performed a systematic evaluation of receptor activation using a system in which mutations can be made in either protomer of the mGlu7 dimer; we employed mutations that prevent interaction with the orthosteric site as well as the G-protein coupling site of the receptor. We then measured increases in calcium levels downstream of a promiscuous G protein to assess the effects of mutations in one of the two protomers in the presence of two different agonists and three positive allosteric modulators. Our results reveal that distinct PAMs, for example N-[3-Chloro-4-[(5-chloro-2-pyridinyl)oxy]phenyl]-2-pyridinecarboxamide (VU0422288) and 3-(2,3-Difluoro-4-methoxyphenyl)-2,5-dimethyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (VU6005649), do exhibit different maximal levels of potentiation with L-AP4 versus glutamate, but there appear to be common stable receptor conformations that are shared among all of the compounds examined here. SIGNIFICANCE STATEMENT: This manuscript describes the systematic evaluation of the mGlu7 agonists glutamate and L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4) in the presence and absence of three distinct potentiators examining possible mechanistic differences. These findings demonstrate that mGlu7 potentiators display subtle variances in response to glutamate versus L-AP4.
Collapse
Affiliation(s)
- Xia Lei
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Christopher S Hofmann
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Alice L Rodriguez
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Colleen M Niswender
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| |
Collapse
|
7
|
Freitas GA, Niswender CM. GRM7 gene mutations and consequences for neurodevelopment. Pharmacol Biochem Behav 2023; 225:173546. [PMID: 37003303 PMCID: PMC10192299 DOI: 10.1016/j.pbb.2023.173546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The metabotropic glutamate receptor 7 (mGlu7), encoded by the GRM7 gene in humans, is a presynaptic, G protein-coupled glutamate receptor that is essential for modulating neurotransmission. Mutations in or reduced expression of GRM7 have been identified in different genetic neurodevelopmental disorders (NDDs), and rare biallelic missense variants have been proposed to underlie a subset of NDDs. Clinical GRM7 variants have been associated with a range of symptoms consistent with neurodevelopmental molecular features, including hypomyelination, brain atrophy and defects in axon outgrowth. Here, we review the newest findings regarding the cellular and molecular defects caused by GRM7 variants in NDD patients.
Collapse
Affiliation(s)
- Geanne A Freitas
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37212, United States of America
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America.
| |
Collapse
|
8
|
Design and Synthesis of New Quinazolin-4-one Derivatives with Negative mGlu 7 Receptor Modulation Activity and Antipsychotic-Like Properties. Int J Mol Sci 2023; 24:ijms24031981. [PMID: 36768302 PMCID: PMC9916658 DOI: 10.3390/ijms24031981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023] Open
Abstract
Following the glutamatergic theory of schizophrenia and based on our previous study regarding the antipsychotic-like activity of mGlu7 NAMs, we synthesized a new compound library containing 103 members, which were examined for NAM mGlu7 activity in the T-REx 293 cell line expressing a recombinant human mGlu7 receptor. Out of the twenty-two scaffolds examined, active compounds were found only within the quinazolinone chemotype. 2-(2-Chlorophenyl)-6-(2,3-dimethoxyphenyl)-3-methylquinazolin-4(3H)-one (A9-7, ALX-171, mGlu7 IC50 = 6.14 µM) was selective over other group III mGlu receptors (mGlu4 and mGlu8), exhibited satisfactory drug-like properties in preliminary DMPK profiling, and was further tested in animal models of antipsychotic-like activity, assessing the positive, negative, and cognitive symptoms. ALX-171 reversed DOI-induced head twitches and MK-801-induced disruptions of social interactions or cognition in the novel object recognition test and spatial delayed alternation test. On the other hand, the efficacy of the compound was not observed in the MK-801-induced hyperactivity test or prepulse inhibition. In summary, the observed antipsychotic activity profile of ALX-171 justifies the further development of the group of quinazolin-4-one derivatives in the search for a new drug candidate for schizophrenia treatment.
Collapse
|
9
|
Reed CW, Rodriguez AL, Kalbfleisch JJ, Seto M, Jenkins MT, Blobaum AL, Chang S, Lindsley CW, Niswender CM. Development and profiling of mGlu 7 NAMs with a range of saturable inhibition of agonist responses in vitro. Bioorg Med Chem Lett 2022; 74:128923. [PMID: 35944850 PMCID: PMC10015594 DOI: 10.1016/j.bmcl.2022.128923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
We describe here a series of metabotropic glutamate receptor 7 (mGlu7) negative allosteric modulators (NAMs) with a saturable range of activity in inhibiting responses to an orthosteric agonist in two distinct in vitro pharmacological assays. The range of inhibition among compounds in this scaffold provides highly structurally related ligands with differential degrees of receptor blockade that can be used to understand inhibitory efficacy profiles in native tissue or in vivo.
Collapse
Affiliation(s)
- Carson W Reed
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Alice L Rodriguez
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Jacob J Kalbfleisch
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Mabel Seto
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Matthew T Jenkins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Anna L Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Sichen Chang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt Department of Chemistry, Vanderbilt University, Nashville, TN 37232, United States
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
10
|
Lin X, Fisher NM, Dogra S, Senter RK, Reed CW, Kalbfleisch JJ, Lindsley CW, Asher WB, Xiang Z, Niswender CM, Javitch JA. Differential activity of mGlu 7 allosteric modulators provides evidence for mGlu 7/8 heterodimers at hippocampal Schaffer collateral-CA1 synapses. J Biol Chem 2022; 298:102458. [PMID: 36063995 PMCID: PMC9531177 DOI: 10.1016/j.jbc.2022.102458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Glutamate acts at eight metabotropic glutamate (mGlu) receptor subtypes expressed in a partially overlapping fashion in distinct brain circuits. Recent evidence indicates that specific mGlu receptor protomers can heterodimerize and that these heterodimers can exhibit different pharmacology when compared to their homodimeric counterparts. Group III mGlu agonist-induced suppression of evoked excitatory potentials and induction of long-term potentiation at Schaffer collateral-CA1 (SC-CA1) synapses in the rodent hippocampus can be blocked by the selective mGlu7 negative allosteric modulator (NAM), ADX71743. Curiously, a different mGlu7 NAM, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one, failed to block these responses in brain slices despite its robust activity at mGlu7 homodimers in vitro. We hypothesized that this might result from heterodimerization of mGlu7 with another mGlu receptor protomer and focused on mGlu8 as a candidate given the reported effects of mGlu8-targeted compounds in the hippocampus. Here, we used complemented donor acceptor-resonance energy transfer to study mGlu7/8 heterodimer activation in vitro and observed that ADX71743 blocked responses of both mGlu7/7 homodimers and mGlu7/8 heterodimers, whereas 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one only antagonized responses of mGlu7/7 homodimers. Taken together with our electrophysiology observations, these results suggest that a receptor with pharmacology consistent with an mGlu7/8 heterodimer modulates the activity of SC-CA1 synapses. Building on this hypothesis, we identified two additional structurally related mGlu7 NAMs that also differ in their activity at mGlu7/8 heterodimers, in a manner consistent with their ability to inhibit synaptic transmission and plasticity at SC-CA1. Thus, we propose that mGlu7/8 heterodimers are a key molecular target for modulating the activity of hippocampal SC-CA1 synapses.
Collapse
Affiliation(s)
- Xin Lin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Shalini Dogra
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Rebecca K Senter
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Carson W Reed
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob J Kalbfleisch
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Wesley B Asher
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Jonathan A Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| |
Collapse
|
11
|
Peng X, Pan W, Jiang F, Chen W, Qi Z, Peng W, Chen J. Selective PARP1 Inhibitors, PARP1-based Dual-Target Inhibitors, PROTAC PARP1 Degraders, and Prodrugs of PARP1 Inhibitors for Cancer Therapy. Pharmacol Res 2022; 186:106529. [DOI: 10.1016/j.phrs.2022.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
12
|
Blocking Metabotropic Glutamate Receptor Subtype 7 via the Venus Flytrap Domain Promotes a Chronic Stress-Resilient Phenotype in Mice. Cells 2022; 11:cells11111817. [PMID: 35681512 PMCID: PMC9180111 DOI: 10.3390/cells11111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic psychosocial stress participates prominently in the etiology of various psychiatric conditions and comorbid somatic pathologies; however, suitable pharmacotherapy of these disorders is still of high medical need. During the last few decades, research on mGlu receptors advanced remarkably and much attention was given to the mGlu7 subtype. Here, genetic mGlu7 ablation, short-term pharmacological mGlu7 blockade, as well as siRNA-mediated knockdown of mGlu7 were shown to result in an acute anti-stress, antidepressant- and anxiolytic-like phenotype in mice. Moreover, we recently revealed a prominent stress-protective effect of genetic mGlu7 ablation also with respect to chronic psychosocial stress. In addition, we are able to demonstrate in the present study that the chronic pharmacological blockade of mGlu7 interferes with various chronic stress-induced alterations. For this, we used the chronic subordinate colony housing (CSC), a mouse model of chronic male subordination, in combination with chronic treatment with the mGlu7-selective orthosteric-like antagonist XAP044 (7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one). Interestingly, XAP044 dose-dependently ameliorates hypothalamic–pituitary–adrenal axis dysfunctions, thymus atrophy, as well as the CSC-induced increase in innate anxiety. Taken together, our findings provide further evidence for the role of mGlu7 in chronic psychosocial stress-induced alterations and suggests the pharmacological blockade of mGlu7 as a promising therapeutic approach for the treatment of chronic stress-related pathologies in men.
Collapse
|
13
|
Terashima K, Kawasaki-Takasuka T, Minami I, Yamazaki T. Synthesis and synthetic applications of (4-hydroxyphenyl)perfluoroalkylmethanols. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Liu Y, Wang Y, Yang J, Xu T, Tan C, Zhang P, Liu Q, Chen Y. G-alpha interacting protein interacting protein, C terminus 1 regulates epileptogenesis by increasing the expression of metabotropic glutamate receptor 7. CNS Neurosci Ther 2021; 28:126-138. [PMID: 34676980 PMCID: PMC8673704 DOI: 10.1111/cns.13746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
Aims It has been reported that the G‐alpha interacting protein (GAIP) interacting protein, C terminus 1 (GIPC1/GIPC) engages in vesicular trafficking, receptor transport and expression, and endocytosis. However, its role in epilepsy is unclear. Therefore, in this study, we aimed to explore the role of GIPC1 in epilepsy and its possible underlying mechanism. Methods The expression patterns of GIPC1 in patients with temporal lobe epilepsy (TLE) and in mice with kainic acid (KA)‐induced epilepsy were detected. Behavioral video monitoring and hippocampal local field potential (LFP) recordings were carried out to determine the role of GIPC1 in epileptogenesis after overexpression of GIPC1. Coimmunoprecipitation (Co‐IP) assay and high‐resolution immunofluorescence staining were conducted to investigate the relationship between GIPC1 and metabotropic glutamate receptor 7 (mGluR7). In addition, the expression of mGluR7 after overexpression of GIPC1 was measured, and behavioral video monitoring and LFP recordings after antagonism of mGluR7 were performed to explore the possible mechanism mediated by GIPC1. Results GIPC1 was downregulated in the brain tissues of patients with TLE and mice with KA‐induced epilepsy. After overexpression of GIPC1, prolonged latency period, decreased epileptic seizures and reduced seizure severity in behavioral analyses, and fewer and shorter abnormal brain discharges in LFP recordings of KA‐induced epileptic mice were observed. The result of the Co‐IP assay showed the interaction between GIPC1 and mGluR7, and the high‐resolution immunofluorescence staining also showed the colocalization of these two proteins. Additionally, along with GIPC1 overexpression, the total and cell membrane expression levels of mGluR7 were also increased. And after antagonism of mGluR7, increased epileptic seizures and aggravated seizure severity in behavioral analyses and more and longer abnormal brain discharges in LFP recordings were observed. Conclusion GIPC1 regulates epileptogenesis by interacting with mGluR7 and increasing its expression.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - You Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Juan Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China.,Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tao Xu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Qiankun Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chonqing, China
| |
Collapse
|
15
|
Wang H, Qin Z, Yan A. Classification models and SAR analysis on CysLT1 receptor antagonists using machine learning algorithms. Mol Divers 2021; 25:1597-1616. [PMID: 33534023 DOI: 10.1007/s11030-020-10165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
Cysteinyl leukotrienes 1 (CysLT1) receptor is a promising drug target for rhinitis or other allergic diseases. In our study, we built classification models to predict bioactivities of CysLT1 receptor antagonists. We built a dataset with 503 CysLT1 receptor antagonists which were divided into two groups: highly active molecules (IC50 < 1000 nM) and weakly active molecules (IC50 ≥ 1000 nM). The molecules were characterized by several descriptors including CORINA descriptors, MACCS fingerprints, Morgan fingerprint and molecular SMILES. For CORINA descriptors and two types of fingerprints, we used the random forests (RF) and deep neural networks (DNN) to build models. For molecular SMILES, we used recurrent neural networks (RNN) with the self-attention to build models. The accuracies of test sets for all models reached 85%, and the accuracy of the best model (Model 2C) was 93%. In addition, we made structure-activity relationship (SAR) analyses on CysLT1 receptor antagonists, which were based on the output from the random forest models and RNN model. It was found that highly active antagonists usually contained the common substructures such as tetrazoles, indoles and quinolines. These substructures may improve the bioactivity of the CysLT1 receptor antagonists.
Collapse
Affiliation(s)
- Hongzhao Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China
| | - Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Kalbfleisch JJ, Reed CW, Park C, Spearing PK, Quitalig MC, Jenkins MT, Rodriguez AL, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Synthesis and SAR of a series of mGlu 7 NAMs based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinoline carboxylate core. Bioorg Med Chem Lett 2020; 30:127529. [PMID: 32890686 PMCID: PMC7686273 DOI: 10.1016/j.bmcl.2020.127529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
A High-Throughput Screening (HTS) campaign identified a fundamentally new mGlu7 NAM chemotype, based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinolone carboxylate core. The initial hit, VU0226390, was a potent mGlu7 NAM (IC50 = 647 nM, 6% L-AP4 min) with selectivity versus the other group III mGlu receptors (>30 μM vs. mGlu4 and mGlu8). A multi-dimensional optimization effort surveyed all regions of this new chemotype, and found very steep SAR, reminiscent of allosteric modulators, and unexpected piperazine mimetics (whereas classical bioisosteres failed). While mGlu7 NAM potency could be improved (IC50s ~ 350 nM), the necessity of the ethyl ester moiety and poor physiochemical and DMPK properties precluded optimization towards in vivo tool compounds or clinical candidates. Still, this hit-to-lead campaign afforded key medicinal chemistry insights and new opportunities.
Collapse
Affiliation(s)
- Jacob J Kalbfleisch
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Carson W Reed
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Charlotte Park
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paul K Spearing
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marc C Quitalig
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew T Jenkins
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Reed C, Kalbfleisch JJ, Wong MJ, Washecheck JP, Hunter A, Rodriguez AL, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Discovery of VU6027459: A First-in-Class Selective and CNS Penetrant mGlu 7 Positive Allosteric Modulator Tool Compound. ACS Med Chem Lett 2020; 11:1773-1779. [PMID: 32944146 PMCID: PMC7488291 DOI: 10.1021/acsmedchemlett.0c00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Herein, we report the discovery of the first selective and CNS penetrant mGlu7 PAM (VU6027459) derived from a "molecular switch" within a selective mGlu7 NAM chemotype. VU6027459 displayed CNS penetration in both mice (Kp = 2.74) and rats (Kp= 4.78), it was orally bioavailable in rats (%F = 69.5), and undesired activity at DAT was ablated.
Collapse
Affiliation(s)
- Carson
W. Reed
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jacob J. Kalbfleisch
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Madison J. Wong
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jordan P. Washecheck
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ashton Hunter
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
18
|
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J Med Chem 2020; 63:12290-12358. [PMID: 32686940 DOI: 10.1021/acs.jmedchem.0c00530] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
19
|
Dichiara M, Amata B, Turnaturi R, Marrazzo A, Amata E. Tuning Properties for Blood-Brain Barrier Permeation: A Statistics-Based Analysis. ACS Chem Neurosci 2020; 11:34-44. [PMID: 31793759 DOI: 10.1021/acschemneuro.9b00541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the effort to define a set of rules useful in tuning the properties for a successful blood-brain barrier (BBB) permeation, we statistically analyzed a set of 328 compounds and correlated their experimental in vivo logBB with a series of computed descriptors. Contingency tables were constructed, observed and expected distributions were calculated, and chi-square (χ2) distributions were evaluated. This allowed to point out a significant dependence of certain physicochemical properties in influencing the BBB permeation. Of over 15 computed descriptors, 9 resulted to be particularly important showing highly significant χ2 distribution: polar surface area (χ2 = 66.79; p = 1.08 × 10-13), nitrogen and oxygen count (χ2 = 51.17; p = 2.06 × 10-10), logP (χ2 = 47.38; p = 1.27 × 10-9), nitrogen count (χ2 = 38.29; p = 9.77 × 10-8), logD (χ2 = 36.80; p = 36.80), oxygen count (χ2 = 35.83; p = 3.13 × 10-7), ionization state (χ2 = 33.02, p = 3.19 × 10-7), hydrogen bond acceptors (χ2 = 30.80; p = 3.36 × 10-6), and hydrogen bond donors (χ2 = 29.29; p = 6.81 × 10-6). Other parameters describing the mass and size of the molecules (molecular weight: 11.18; p = 2.46 × 10-2) resulted in being not significant since the population within the observed and expected distribution was similar. Depending on the combination of the significant descriptors, we set a three cases probabilistic scenario (BBB+, BBB-, BBB+/BBB-) that would prospectively be used to tune properties for BBB permeation.
Collapse
Affiliation(s)
- Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Benedetto Amata
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
20
|
Yamada Y, Yohn SE, Gilliland K, Loch MT, Schulte ML, Rodriguez AL, Blobaum AL, Niswender CM, Conn PJ, Lindsley CW. Further exploration of an N-aryl phenoxyethoxy pyridinone-based series of mGlu 3 NAMs: Challenging SAR, enantiospecific activity and in vivo efficacy. Bioorg Med Chem Lett 2019; 29:2670-2674. [PMID: 31358468 DOI: 10.1016/j.bmcl.2019.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
This letter describes the further optimization of a series of mGlu3 NAMs based on an N-aryl phenoxyethoxy pyridinone core. A multidimensional optimization campaign, with focused matrix libraries, quickly established challenging SAR, enantiospecific activity, differences in assay read-outs (Ca2+ flux via a promiscuous G protein (Gα15) versus native coupling to GIRK channels), identified both full and partial mGlu3 NAMs and a new in vivo tool compound, VU6017587. This mGlu3 NAM showed efficacy in tail suspension, elevated zero maze and marble burying, suggesting selective inhibition of mGlu3 affords anxiolytic-like and antidepressant-like phenotypes in mice.
Collapse
Affiliation(s)
- Yosuke Yamada
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Samantha E Yohn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Kristen Gilliland
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Mathew T Loch
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Michael L Schulte
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
21
|
The neurobiological basis for novel experimental therapeutics in dystonia. Neurobiol Dis 2019; 130:104526. [PMID: 31279827 DOI: 10.1016/j.nbd.2019.104526] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Dystonia is a movement disorder characterized by involuntary muscle contractions, twisting movements, and abnormal postures that may affect one or multiple body regions. Dystonia is the third most common movement disorder after Parkinson's disease and essential tremor. Despite its relative frequency, small molecule therapeutics for dystonia are limited. Development of new therapeutics is further hampered by the heterogeneity of both clinical symptoms and etiologies in dystonia. Recent advances in both animal and cell-based models have helped clarify divergent etiologies in dystonia and have facilitated the identification of new therapeutic targets. Advances in medicinal chemistry have also made available novel compounds for testing in biochemical, physiological, and behavioral models of dystonia. Here, we briefly review motor circuit anatomy and the anatomical and functional abnormalities in dystonia. We then discuss recently identified therapeutic targets in dystonia based on recent preclinical animal studies and clinical trials investigating novel therapeutics.
Collapse
|
22
|
Llinas Del Torrent C, Pérez-Benito L, Tresadern G. Computational Drug Design Applied to the Study of Metabotropic Glutamate Receptors. Molecules 2019; 24:molecules24061098. [PMID: 30897742 PMCID: PMC6470756 DOI: 10.3390/molecules24061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors are a family of eight GPCRs that are attractive drug discovery targets to modulate glutamate action and response. Here we review the application of computational methods to the study of this family of receptors. X-ray structures of the extracellular and 7-transmembrane domains have played an important role to enable structure-based modeling approaches, whilst we also discuss the successful application of ligand-based methods. We summarize the literature and highlight the areas where modeling and experiment have delivered important understanding for mGlu receptor drug discovery. Finally, we offer suggestions of future areas of opportunity for computational work.
Collapse
Affiliation(s)
- Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain.
| | - Laura Pérez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|