1
|
Rivero-Barbarroja G, Carmen Padilla-Pérez M, Maisonneuve S, Isabel García-Moreno M, Tiet B, Vocadlo DJ, Xie J, García Fernández JM, Ortiz Mellet C. sp 2-Iminosugar azobenzene O-glycosides: Light-sensitive glycosidase inhibitors with unprecedented tunability and switching factors. Bioorg Chem 2024; 150:107555. [PMID: 38885548 DOI: 10.1016/j.bioorg.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The conventional approach to developing light-sensitive glycosidase activity regulators, involving the combination of a glycomimetic moiety and a photoactive azobenzene module, results in conjugates with differences in glycosidase inhibitory activity between the interchangeable E and Z-isomers at the azo group that are generally below one-order of magnitude. In this study, we have exploited the chemical mimic character of sp2-iminosugars to access photoswitchable p- and o-azobenzene α-O-glycosides based on the gluco-configured representative ONJ. Notably, we achieved remarkably high switching factors for glycosidase inhibition, favoring either the E- or Z-isomer depending on the aglycone structure. Our data also indicate a correlation between the isomeric state of the azobenzene module and the selectivity towards α- and β-glucosidase isoenzymes. The most effective derivative reached over a 103-fold higher inhibitory potency towards human β-glucocerebrosidase in the Z as compared with the E isomeric form. This sharp contrast is compatible with ex-vivo activation and programmed self-deactivation at physiological temperatures, positioning it as a prime candidate for pharmacological chaperone therapy in Gaucher disease. Additionally, our results illustrate that chemical tailoring enables the engineering of photocommutators with the ability to toggle inhibition between α- and β-glucosidase enzymes in a reversible manner, thus expanding the versatility and potential therapeutic applications of this approach.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - M Carmen Padilla-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - Ben Tiet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Juan Xie
- ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, Université Paris-Saclay, Gif-sur-Yvette 91190, France.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain.
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/ Profesor García González 1, 41012 Sevilla, Spain.
| |
Collapse
|
2
|
Borie-Guichot M, Lan Tran M, Garcia V, Oukhrib A, Rodriguez F, Turrin CO, Levade T, Génisson Y, Ballereau S, Dehoux C. Multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease. Bioorg Chem 2024; 146:107295. [PMID: 38513326 DOI: 10.1016/j.bioorg.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as β-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in β-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.
Collapse
Affiliation(s)
- Marc Borie-Guichot
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - My Lan Tran
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France
| | | | - Frédéric Rodriguez
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cédric-Olivier Turrin
- IMD-Pharma, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France; Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, BP 44099 31077 Toulouse CEDEX 4, France; LCC-CNRS, Université de Toulouse, CNRS 31013 Toulouse CEDEX 6, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université Paul Sabatier, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, F-31059 Toulouse, France
| | - Yves Génisson
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Stéphanie Ballereau
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Cécile Dehoux
- Université Paul Sabatier-Toulouse III CNRS SPCMIB, UMR5068, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
3
|
Herrera-González I, González-Cuesta M, Thépaut M, Laigre E, Goyard D, Rojo J, García Fernández JM, Fieschi F, Renaudet O, Nieto PM, Ortiz Mellet C. High-Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC-SIGN and Langerin. Chemistry 2024; 30:e202303041. [PMID: 37828571 DOI: 10.1002/chem.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
- Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| | - Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
| | - Eugénie Laigre
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - David Goyard
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olivier Renaudet
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Pedro M Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| |
Collapse
|
4
|
González-Cuesta M, Lai ACY, Chi PY, Hsu IL, Liu NT, Wu KC, García Fernández JM, Chang YJ, Ortiz Mellet C. Serine-/Cysteine-Based sp 2-Iminoglycolipids as Novel TLR4 Agonists: Evaluation of Their Adjuvancy and Immunotherapeutic Properties in a Murine Model of Asthma. J Med Chem 2023; 66:4768-4783. [PMID: 36958376 PMCID: PMC10108363 DOI: 10.1021/acs.jmedchem.2c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Glycolipids with TLR4 agonistic properties can serve either as therapeutic agents or as vaccine adjuvants by stimulating the development of proinflammatory responses. Translating them to the clinical setting is hampered by synthetic difficulties, the lack of stability in biological media, and/or a suboptimal profile of balanced immune mediator secretion. Here, we show that replacement of the sugar fragment by an sp2-iminosugar moiety in a prototypic TLR4 agonist, CCL-34, yields iminoglycolipid analogues that retain or improve their biological activity in vitro and in vivo and can be accessed through scalable protocols with total stereoselectivity. Their adjuvant potential is manifested in their ability to induce the secretion of proinflammatory cytokines, prime the maturation of dendritic cells, and promote the proliferation of CD8+ T cells, pertaining to a Th1-biased profile. Additionally, their therapeutic potential for the treatment of asthma, a Th2-dominated inflammatory pathology, has been confirmed in an ovalbumin-induced airway hyperreactivity mouse model.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville E-41012, Spain
| | - Alan Chuan-Ying Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Po-Yu Chi
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - I-Ling Hsu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Nien-Tzu Liu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ko-Chien Wu
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, Américo Vespucio 49, Sevilla E-41092, Spain
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville E-41012, Spain
| |
Collapse
|
5
|
Santana AG, Robinson K, Vickers C, Deen MC, Chen H, Zhou S, Dai B, Fuller M, Boraston AB, Vocadlo DJ, Clarke LA, Withers SG. Pharmacological Chaperones for GCase that Switch Conformation with pH Enhance Enzyme Levels in Gaucher Animal Models. Angew Chem Int Ed Engl 2022; 61:e202207974. [DOI: 10.1002/anie.202207974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Andrés G. Santana
- Dept. of Chemistry University of British Columbia Vancouver BC, V6T 1Z1 Canada
| | - Kyle Robinson
- Dept. of Chemistry University of British Columbia Vancouver BC, V6T 1Z1 Canada
| | - Chelsea Vickers
- Dept. of Biochemistry and Microbiology University of Victoria Victoria BC, V8W 3P6 Canada
| | - Matthew C. Deen
- Dept. of Chemistry and Dept. of Mol. Biology and Biochemistry Simon Fraser University Burnaby BC, V5A 1S6 Canada
| | - Hong‐Ming Chen
- Dept. of Chemistry University of British Columbia Vancouver BC, V6T 1Z1 Canada
| | - Stephen Zhou
- Dept. of Medical Genetics University of British Columbia Women's Hospital & Health Centre Vancouver BC, V6H 3N1 Canada
| | - Ben Dai
- Dept. of Medical Genetics University of British Columbia Women's Hospital & Health Centre Vancouver BC, V6H 3N1 Canada
| | - Maria Fuller
- Genetics and Molecular Pathology SA Pathology at Women's and Children's Hospital N. Adelaide South Australia 5006 Australia
| | - Alisdair B. Boraston
- Dept. of Biochemistry and Microbiology University of Victoria Victoria BC, V8W 3P6 Canada
| | - David J. Vocadlo
- Dept. of Chemistry and Dept. of Mol. Biology and Biochemistry Simon Fraser University Burnaby BC, V5A 1S6 Canada
| | - Lorne A. Clarke
- Dept. of Medical Genetics University of British Columbia Women's Hospital & Health Centre Vancouver BC, V6H 3N1 Canada
| | - Stephen G. Withers
- Dept. of Chemistry University of British Columbia Vancouver BC, V6T 1Z1 Canada
| |
Collapse
|
6
|
Santana A, Robinson K, Vickers C, Deen M, Chen HM, Zhou S, Dai B, Fuller M, Boraston A, Vocadlo D, Clarke L, Withers S. Pharmacological Chaperones for GCase That Switch Conformation with pH Enhance Enzyme Levels in Gaucher Animal Models. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Chelsea Vickers
- University of Victoria Faculty of Science Biochemistry and Microbiology CANADA
| | | | | | - Stephen Zhou
- The University of British Columbia Dept. of Medical Genetics, CANADA
| | - Ben Dai
- The University of British Columbia Dept of Medical genetics CANADA
| | - Maria Fuller
- Womens and Childrens Hospital, Adelaide Genetics and Molecular Pathology AUSTRALIA
| | | | | | - Lorne Clarke
- The University of British Columbia Dept. of Medical Genetics CANADA
| | - Stephen Withers
- University of British Columbia Chemistry 2036 Main Mall V6T 1Z1 Vancouver CANADA
| |
Collapse
|
7
|
González-Cuesta M, Herrera-González I, García-Moreno MI, Ashmus RA, Vocadlo DJ, García Fernández JM, Nanba E, Higaki K, Ortiz Mellet C. sp 2-Iminosugars targeting human lysosomal β-hexosaminidase as pharmacological chaperone candidates for late-onset Tay-Sachs disease. J Enzyme Inhib Med Chem 2022; 37:1364-1374. [PMID: 35575117 PMCID: PMC9126592 DOI: 10.1080/14756366.2022.2073444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The late-onset form of Tay-Sachs disease displays when the activity levels of human β-hexosaminidase A (HexA) fall below 10% of normal, due to mutations that destabilise the native folded form of the enzyme and impair its trafficking to the lysosome. Competitive inhibitors of HexA can rescue disease-causative mutant HexA, bearing potential as pharmacological chaperones, but often also inhibit the enzyme O-glucosaminidase (GlcNAcase; OGA), a serious drawback for translation into the clinic. We have designed sp2-iminosugar glycomimetics related to GalNAc that feature a neutral piperidine-derived thiourea or a basic piperidine-thiazolidine bicyclic core and behave as selective nanomolar competitive inhibitors of human Hex A at pH 7 with a ten-fold lower inhibitory potency at pH 5, a good indication for pharmacological chaperoning. They increased the levels of lysosomal HexA activity in Tay-Sachs patient fibroblasts having the G269S mutation, the highest prevalent in late-onset Tay-Sachs disease.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Roger A Ashmus
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David J Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, Sevilla, Spain
| | - Eiji Nanba
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| |
Collapse
|
8
|
González-Cuesta M, Sidhu P, Ashmus RA, Males A, Proceviat C, Madden Z, Rogalski JC, Busmann JA, Foster LJ, García Fernández JM, Davies GJ, Ortiz Mellet C, Vocadlo DJ. Bicyclic Picomolar OGA Inhibitors Enable Chemoproteomic Mapping of Its Endogenous Post-translational Modifications. J Am Chem Soc 2022; 144:832-844. [PMID: 34985906 DOI: 10.1021/jacs.1c10504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated. Chemical tools to control OGA are emerging as essential resources for helping to decode the biochemical and cellular functions of the O-GlcNAc pathway. Here we describe rationally designed bicyclic thiazolidine inhibitors that exhibit superb selectivity and picomolar inhibition of human OGA. Structures of these inhibitors in complex with human OGA reveal the basis for their exceptional potency and show that they extend out of the enzyme active site cleft. Leveraging this structure, we create a high affinity chemoproteomic probe that enables simple one-step purification of endogenous OGA from brain and targeted proteomic mapping of its post-translational modifications. These data uncover a range of new modifications, including some that are less-known, such as O-ubiquitination and N-formylation. We expect that these inhibitors and chemoproteomics probes will prove useful as fundamental tools to decipher the mechanisms by which OGA is regulated and directed to its diverse cellular substrates. Moreover, the inhibitors and structures described here lay out a blueprint that will enable the creation of chemical probes and tools to interrogate OGA and other carbohydrate active enzymes.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Peter Sidhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Roger A Ashmus
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Alexandra Males
- Department of Chemistry. University of York, York YO10 5DD, United Kingdom
| | - Cameron Proceviat
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Zarina Madden
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jason C Rogalski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jil A Busmann
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain
| | - Gideon J Davies
- Department of Chemistry. University of York, York YO10 5DD, United Kingdom
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
9
|
Herrera-González I, Thépaut M, Sánchez-Fernández EM, di Maio A, Vivès C, Rojo J, García Fernández JM, Fieschi F, Nieto PM, Ortiz Mellet C. Mannobioside biomimetics that trigger DC-SIGN binding selectivity. Chem Commun (Camb) 2022; 58:12086-12089. [DOI: 10.1039/d2cc04478a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligosaccharide biomimetics featuring sp2-iminosugar motifs enable selective C-type lectin recognition, as exemplified here for DC-SIGN vs langerin, offering new opportunities for immunomodulation.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Michel Thépaut
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Elena M. Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Antonio di Maio
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Corinne Vivès
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - José M. García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Pedro M. Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| |
Collapse
|
10
|
Sánchez-Fernández EM, García-Hernández R, Gamarro F, Arroba AI, Aguilar-Diosdado M, Padrón JM, García Fernández JM, Ortiz Mellet C. Synthesis of sp 2-Iminosugar Selenoglycolipids as Multitarget Drug Candidates with Antiproliferative, Leishmanicidal and Anti-Inflammatory Properties. Molecules 2021; 26:molecules26247501. [PMID: 34946583 PMCID: PMC8705409 DOI: 10.3390/molecules26247501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
sp2-Iminosugar glycolipids (sp2-IGLs) represent a consolidated family of glycoconjugate mimetics encompassing a monosaccharide-like glycone moiety with a pseudoamide-type nitrogen replacing the endocyclic oxygen atom of carbohydrates and an axially-oriented lipid chain anchored at the pseudoanomeric position. The combination of these structural features makes them promising candidates for the treatment of a variety of conditions, spanning from cancer and inflammatory disorders to parasite infections. The exacerbated anomeric effect associated to the putative sp2-hybridized N-atom imparts chemical and enzymatic stability to sp2-IGLs and warrants total α-anomeric stereoselectivity in the key glycoconjugation step. A variety of O-, N-, C- and S-pseudoglycosides, differing in glycone configurational patterns and lipid nature, have been previously prepared and evaluated. Here we expand the chemical space of sp2-IGLs by reporting the synthesis of α-d-gluco-configured analogs with a bicyclic (5N,6O-oxomethylidene)nojirimycin (ONJ) core incorporating selenium at the glycosidic position. Structure-activity relationship studies in three different scenarios, namely cancer, Leishmaniasis and inflammation, convey that the therapeutic potential of the sp2-IGLs is highly dependent, not only on the length of the lipid chain (linear aliphatic C12 vs. C8), but also on the nature of the glycosidic atom (nitrogen vs. sulfur vs. selenium). The ensemble of results highlights the α-dodecylseleno-ONJ-glycoside as a promising multitarget drug candidate.
Collapse
Affiliation(s)
- Elena M. Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
- Correspondence: ; Tel.: +34-954-559-997
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina “López-Neyra”, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (R.G.-H.); (F.G.)
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (R.G.-H.); (F.G.)
| | - Ana I. Arroba
- Research Unit, Biomedical Research and Innovation Institute of Cádiz, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009 Cádiz, Spain; (A.I.A.); (M.A.-D.)
| | - Manuel Aguilar-Diosdado
- Research Unit, Biomedical Research and Innovation Institute of Cádiz, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009 Cádiz, Spain; (A.I.A.); (M.A.-D.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain;
| | - José M. García Fernández
- Instituto de Investigaciones Químicas, CSIC-University of Seville, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
| |
Collapse
|
11
|
Sharma R, Srivastava T, Pandey AR, Mishra T, Gupta B, Reddy SS, Singh SP, Narender T, Tripathi A, Chandramouli B, Sashidhara KV, Priya S, Kumar N. Identification of Natural Products as Potential Pharmacological Chaperones for Protein Misfolding Diseases. ChemMedChem 2021; 16:2146-2156. [PMID: 33760394 DOI: 10.1002/cmdc.202100147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/12/2023]
Abstract
Defective protein folding and accumulation of misfolded proteins is associated with neurodegenerative, cardiovascular, secretory, and metabolic disorders. Efforts are being made to identify small-molecule modulators or structural-correctors for conformationally destabilized proteins implicated in various protein aggregation diseases. Using a metastable-reporter-based primary screen, we evaluated pharmacological chaperone activity of a diverse class of natural products. We found that a flavonoid glycoside (C-10, chrysoeriol-7-O-β-D-glucopyranoside) stabilizes metastable proteins, prevents its aggregation, and remodels the oligomers into protease-sensitive species. Data was corroborated with additional secondary screen with disease-specific pathogenic protein. In vitro and cell-based experiments showed that C-10 inhibits α-synuclein aggregation which is implicated in synucleinopathies-related neurodegeneration. C-10 interferes in its structural transition into β-sheeted fibrils and mitigates α-synuclein aggregation-associated cytotoxic effects. Computational modeling suggests that C-10 binds to unique sites in α-synuclein which may interfere in its aggregation amplification. These findings open an avenue for comprehensive SAR development for flavonoid glycosides as pharmacological chaperones for metastable and aggregation-prone proteins implicated in protein conformational diseases.
Collapse
Affiliation(s)
- Richa Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tulika Srivastava
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Alka Raj Pandey
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Tripti Mishra
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Bhagyashri Gupta
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Suriya P Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tadigoppula Narender
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aradhya Tripathi
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Koneni V Sashidhara
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Smriti Priya
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
12
|
Cano-Cano F, Alcalde-Estévez E, Gómez-Jaramillo L, Iturregui M, Sánchez-Fernández EM, García Fernández JM, Ortiz Mellet C, Campos-Caro A, López-Tinoco C, Aguilar-Diosdado M, Valverde ÁM, Arroba AI. Anti-Inflammatory (M2) Response Is Induced by a sp 2-Iminosugar Glycolipid Sulfoxide in Diabetic Retinopathy. Front Immunol 2021; 12:632132. [PMID: 33815384 PMCID: PMC8013727 DOI: 10.3389/fimmu.2021.632132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of Diabetes Mellitus (DM) and is directly associated with inflammatory processes. Currently, neuro-inflammation is considered an early event in DR and proceeds via microglia polarization. A hallmark of DR is the presence of retinal reactive gliosis. Here we report the beneficial effect of (SS,1R)-1-docecylsulfiny-5N,6O-oxomethylidenenojirimycin ((Ss)-DS-ONJ), a member of the sp2-iminosugar glycolipid (sp2-IGL) family, by decreasing iNOS and inflammasome activation in Bv.2 microglial cells exposed to pro-inflammatory stimuli. Moreover, pretreatment with (Ss)-DS-ONJ increased Heme-oxygenase (HO)-1 as well as interleukin 10 (IL10) expression in LPS-stimulated microglial cells, thereby promoting M2 (anti-inflammatory) response by the induction of Arginase-1. The results strongly suggest that this is the likely molecular mechanism involved in the anti-inflammatory effects of (SS)-DS-ONJ in microglia. (SS)-DS-ONJ further reduced gliosis in retinal explants from type 1 diabetic BB rats, which is consistent with the enhanced M2 response. In conclusion, targeting microglia polarization dynamics in M2 status by compounds with anti-inflammatory activities offers promising therapeutic interventions at early stages of DR.
Collapse
Affiliation(s)
- Fátima Cano-Cano
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain.,Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, Cádiz, Spain
| | - Elena Alcalde-Estévez
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), Madrid, Spain
| | - Laura Gómez-Jaramillo
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain.,Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, Cádiz, Spain
| | - Marta Iturregui
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain.,Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, Cádiz, Spain
| | | | | | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Campos-Caro
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain.,Área Genética, Dpto. Biomedicina Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Cristina López-Tinoco
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain.,Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, Cádiz, Spain
| | - Ángela M Valverde
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain
| | - Ana I Arroba
- Research Unit, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain.,Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, Cádiz, Spain
| |
Collapse
|
13
|
Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2517. [PMID: 33333914 PMCID: PMC7765426 DOI: 10.3390/nano10122517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrins (CDs) have long occupied a prominent position in most pharmaceutical laboratories as "off-the-shelve" tools to manipulate the pharmacokinetics of a broad range of active principles, due to their unique combination of biocompatibility and inclusion abilities. The development of precision chemical methods for their selective functionalization, in combination with "click" multiconjugation procedures, have further leveraged the nanoscaffold nature of these oligosaccharides, creating a direct link between the glyco and the nano worlds. CDs have greatly contributed to understand and exploit the interactions between multivalent glycodisplays and carbohydrate-binding proteins (lectins) and to improve the drug-loading and functional properties of nanomaterials through host-guest strategies. The whole range of capabilities can be enabled through self-assembly, template-assisted assembly or covalent connection of CD/glycan building blocks. This review discusses the advancements made in this field during the last decade and the amazing variety of functional glyconanomaterials empowered by the versatility of the CD component.
Collapse
Affiliation(s)
- Gonzalo Rivero-Barbarroja
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | - Juan Manuel Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC, Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (G.R.-B.); (C.O.M.)
| | | |
Collapse
|
14
|
Castellan T, Garcia V, Rodriguez F, Fabing I, Shchukin Y, Tran ML, Ballereau S, Levade T, Génisson Y, Dehoux C. Concise asymmetric synthesis of new enantiomeric C-alkyl pyrrolidines acting as pharmacological chaperones against Gaucher disease. Org Biomol Chem 2020; 18:7852-7861. [PMID: 32975266 DOI: 10.1039/d0ob01522a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A concise and asymmetric synthesis of the enantiomeric pyrrolidines 2 and ent-2 are herein reported. Both enantiomers were assessed as β-GCase inhibitors. While compound ent-2 acted as a poor competitive inhibitor, its enantiomer 2 proved to be a potent non-competitive inhibitor. Docking studies were carried out to substantiate their respective protein binding mode. Both pyrrolidines were also able to enhance lysosomal β-GCase residual activity in N370S homozygous Gaucher fibroblasts. Notably, the non-competitive inhibitor 2 displayed an enzyme activity enhancement comparable to that of reference compounds IFG and NN-DNJ. This work highlights the impact of inhibitors chirality on their protein binding mode and shows that, beyond competitive inhibitors, the study of non-competitive ones can lead to the identification of new relevant parmacological chaperones.
Collapse
Affiliation(s)
- Tessa Castellan
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 Route de Narbonne, F-31062 Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bermejo IA, Navo CD, Castro-López J, Guerreiro A, Jiménez-Moreno E, Sánchez Fernández EM, García-Martín F, Hinou H, Nishimura SI, García Fernández JM, Mellet CO, Avenoza A, Busto JH, Bernardes GJL, Hurtado-Guerrero R, Peregrina JM, Corzana F. Synthesis, conformational analysis and in vivo assays of an anti-cancer vaccine that features an unnatural antigen based on an sp 2-iminosugar fragment. Chem Sci 2020; 11:3996-4006. [PMID: 34122869 PMCID: PMC8152572 DOI: 10.1039/c9sc06334j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Tn antigen (GalNAc-α-1-O-Thr/Ser) is a well-known tumor-associated carbohydrate determinant. The use of glycopeptides that incorporate this structure has become a significant and promising niche of research owing to their potential use as anticancer vaccines. Herein, the conformational preferences of a glycopeptide with an unnatural Tn antigen, characterized by a threonine decorated with an sp2-iminosugar-type α-GalNAc mimic, have been studied both in solution, by combining NMR spectroscopy and molecular dynamics simulations, and in the solid state bound to an anti-mucin-1 (MUC1) antibody, by X-ray crystallography. The Tn surrogate can mimic the main conformer sampled by the natural antigen in solution and exhibits high affinity towards anti-MUC1 antibodies. Encouraged by these data, a cancer vaccine candidate based on this unnatural glycopeptide and conjugated to the carrier protein Keyhole Limpet Hemocyanin (KLH) has been prepared and tested in mice. Significantly, the experiments in vivo have proved that this vaccine elicits higher levels of specific anti-MUC1 IgG antibodies than the analog that bears the natural Tn antigen and that the elicited antibodies recognize human breast cancer cells with high selectivity. Altogether, we compile evidence to confirm that the presentation of the antigen, both in solution and in the bound state, plays a critical role in the efficacy of the designed cancer vaccines. Moreover, the outcomes derived from this vaccine prove that there is room for exploring further adjustments at the carbohydrate level that could contribute to designing more efficient cancer vaccines. An anti-cancer vaccine based on an unnatural antigen with an sp2-iminosugar fragment.![]()
Collapse
Affiliation(s)
- Iris A Bermejo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química E-26006 Logroño Spain
| | - Claudio D Navo
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química E-26006 Logroño Spain .,CIC BioGUNE, Bizkaia Technology Park Building 800 48170 Derio Spain
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza Zaragoza Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| | - Ester Jiménez-Moreno
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química E-26006 Logroño Spain
| | | | - Fayna García-Martín
- Graduate School and Faculty of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University N21 W11 Sapporo 001-0021 Japan
| | - Hiroshi Hinou
- Graduate School and Faculty of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University N21 W11 Sapporo 001-0021 Japan
| | - Shin-Ichiro Nishimura
- Graduate School and Faculty of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University N21 W11 Sapporo 001-0021 Japan
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla E-41092 Sevilla Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla E-41012 Sevilla Spain
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química E-26006 Logroño Spain
| | - Jesús H Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química E-26006 Logroño Spain
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal.,Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza Zaragoza Spain.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen Copenhagen Denmark.,Fundación ARAID Zaragoza Spain
| | - Jesús M Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química E-26006 Logroño Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química E-26006 Logroño Spain
| |
Collapse
|
16
|
Herrera-González I, Sánchez-Fernández EM, Sau A, Nativi C, García Fernández JM, Galán MC, Ortiz Mellet C. Stereoselective Synthesis of Iminosugar 2-Deoxy(thio)glycosides from Bicyclic Iminoglycal Carbamates Promoted by Cerium(IV) Ammonium Nitrate and Cooperative Brønsted Acid-Type Organocatalysis. J Org Chem 2020; 85:5038-5047. [PMID: 32159355 DOI: 10.1021/acs.joc.0c00324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first examples of iminosugar-type 2-deoxy(thio)glycoside mimetics are reported. The key step is the activation of a bicyclic iminoglycal carbamate to generate a highly reactive acyliminium cation. Cerium(IV) ammonium nitrate efficiently promoted the formation of 2-deoxy S-glycosides in the presence of thiols, probably by in situ generation of catalytic HNO3, with complete α-stereoselectivity. Cooperative phosphoric acid/Schreiner's thiourea organocatalysis proved better suited for generating 2-deoxy O-glycosides, significantly broadening the scope of the approach.
Collapse
Affiliation(s)
- Irene Herrera-González
- Deptartment of Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, E-41012 Sevilla, Spain
| | - Elena M Sánchez-Fernández
- Deptartment of Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, E-41012 Sevilla, Spain
| | - Abhijit Sau
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 13, 50019 Sesto Fiorentino, Florence, Italy
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - M Carmen Galán
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Carmen Ortiz Mellet
- Deptartment of Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Profesor García González 1, E-41012 Sevilla, Spain
| |
Collapse
|
17
|
González-Cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun (Camb) 2020; 56:5207-5222. [DOI: 10.1039/d0cc01135e] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Hetero)multivalency acts as a multichannel switch that shapes the supramolecular properties of carbohydrates in an intrinsically multifactorial biological context.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | | |
Collapse
|
18
|
Zelli R, Dumy P, Marra A. Metal-free synthesis of imino-disaccharides and calix-iminosugars by photoinduced radical thiol–ene coupling (TEC). Org Biomol Chem 2020; 18:2392-2397. [DOI: 10.1039/d0ob00198h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deprotected iminosugar alkenes were subjected to thiol–ene coupling with deprotected sugar thiols to afford new imino-disaccharides. Two thiol–ene couplings converted these alkenes into iminosugar thiols and then multivalent iminosugars.
Collapse
Affiliation(s)
- Renaud Zelli
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université de Montpellier
- Ecole Nationale Supérieure de Chimie de Montpellier
| |
Collapse
|
19
|
Losada Díaz JC, Cepeda del Castillo J, Rodriguez-López EA, Alméciga-Díaz CJ. Advances in the Development of Pharmacological Chaperones for the Mucopolysaccharidoses. Int J Mol Sci 2019; 21:ijms21010232. [PMID: 31905715 PMCID: PMC6981736 DOI: 10.3390/ijms21010232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The mucopolysaccharidoses (MPS) are a group of 11 lysosomal storage diseases (LSDs) produced by mutations in the enzymes involved in the lysosomal catabolism of glycosaminoglycans. Most of the mutations affecting these enzymes may lead to changes in processing, folding, glycosylation, pH stability, protein aggregation, and defective transport to the lysosomes. It this sense, it has been proposed that the use of small molecules, called pharmacological chaperones (PCs), can restore the folding, trafficking, and biological activity of mutated enzymes. PCs have the advantages of wide tissue distribution, potential oral administration, lower production cost, and fewer issues of immunogenicity than enzyme replacement therapy. In this paper, we will review the advances in the identification and characterization of PCs for the MPS. These molecules have been described for MPS II, IVA, and IVB, showing a mutation-dependent enhancement of the mutated enzymes. Although the results show the potential of this strategy, further studies should focus in the development of disease-specific cellular models that allow a proper screening and evaluation of PCs. In addition, in vivo evaluation, both pre-clinical and clinical, should be performed, before they can become a real therapeutic strategy for the treatment of MPS patients.
Collapse
Affiliation(s)
- Juan Camilo Losada Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Jacobo Cepeda del Castillo
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
| | - Edwin Alexander Rodriguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Chemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C. 110231, Colombia; (J.C.L.D.); (J.C.d.C.); (E.A.R.-L.)
- Correspondence: ; Tel.: +57-1-3208320 (ext. 4140); Fax: +57-1-3208320 (ext. 4099)
| |
Collapse
|
20
|
Synthesis of tricyclic benzimidazole-iminosugars as potential glycosidase inhibitors via a Mitsunobu reaction. Carbohydr Res 2019; 485:107807. [DOI: 10.1016/j.carres.2019.107807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/04/2023]
|
21
|
González-Cuesta M, Goyard D, Nanba E, Higaki K, García Fernández JM, Renaudet O, Ortiz Mellet C. Multivalent glycoligands with lectin/enzyme dual specificity: self-deliverable glycosidase regulators. Chem Commun (Camb) 2019; 55:12845-12848. [PMID: 31596280 DOI: 10.1039/c9cc06376e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multivalent mannosides with inherent macrophage recognition abilities, built on β-cyclodextrin, RAFT cyclopeptide or peptide dendrimer cores, trigger selective inhibition of lysosomal β-glucocerebrosidase or α-mannosidase depending on valency and topology, offering new opportunities in multitargeted drug design.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| | - David Goyard
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 3800 Grenoble, France.
| | - Eiji Nanba
- Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain.
| | - Olivier Renaudet
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 3800 Grenoble, France. and Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| |
Collapse
|
22
|
Sánchez-Fernández EM, García-Moreno MI, Arroba AI, Aguilar-Diosdado M, Padrón JM, García-Hernández R, Gamarro F, Fustero S, Sánchez-Aparicio JE, Masgrau L, García Fernández JM, Ortiz Mellet C. Synthesis of polyfluoroalkyl sp 2-iminosugar glycolipids and evaluation of their immunomodulatory properties towards anti-tumor, anti-leishmanial and anti-inflammatory therapies. Eur J Med Chem 2019; 182:111604. [PMID: 31425910 DOI: 10.1016/j.ejmech.2019.111604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022]
Abstract
Immunomodulatory glycolipids, among which α-galactosylceramide (KRN7000) is an iconic example, have shown strong therapeutic potential in a variety of conditions ranging from cancer and infection to autoimmune or neurodegenerative diseases. A main difficulty for those channels is that they often provoke a cytokine storm comprising both pro- and anti-inflammatory mediators that antagonize each other and negatively affect the immune response. The synthesis of analogues with narrower cytokine secretion-inducing capabilities is hampered by the intrinsic difficulty at controlling the stereochemical outcome in glycosidation reactions, particularly if targeting the α-anomer, which seriously hampers drug optimization strategies. Here we show that replacing the monosaccharide glycone by a sp2-iminosugar glycomimetic moiety allows accessing N-linked sp2-iminosugar glycolipids (sp2-IGLs) with total α-stereocontrol in a single step with no need of protecting groups or glycosidation promotors. The lipid tail has been then readily tailored by incorporating polyfluoroalkyl segments of varied lengths in view of favouring binding to the lipid binding site of the master p38 mitogen activated protein kinase (p38 MAPK), thereby polarizing the immune response in a cell-context dependent manner. The compounds have been evaluated for their antiproliferative, anti-leishmanial and anti-inflammatory activities in different cell assays. The size of the fluorous segment was found to be critical for the biological activity, probably by regulating the aggregation and membrane-crossing properties, whereas the hydroxylation profile (gluco or galacto-like) was less relevant. Biochemical and computational data further support a mechanism of action implying binding to the allosteric lipid binding site of p38 MAPK and subsequent activation of the noncanonical autophosphorylation route. The ensemble of results provide a proof of concept of the potential of sp2-IGLs as immunoregulators.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Seville, Spain.
| | - Ma Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Seville, Spain
| | - Ana I Arroba
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Av/ Ana de Viya 21, 11009, Cádiz, Spain; Research Unit, Jerez University Hospital, Carretera Circunvalación s/n, 11407, Jerez de la Frontera, Spain.
| | - Manuel Aguilar-Diosdado
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Av/ Ana de Viya 21, 11009, Cádiz, Spain; Research Unit, Jerez University Hospital, Carretera Circunvalación s/n, 11407, Jerez de la Frontera, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de la Laguna, PO BOX 456, 38200, La Laguna, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain
| | - Santos Fustero
- Department of Organic Chemistry, Universidad de Valencia, 46100, Burjassot, Spain
| | | | - Laura Masgrau
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, C/ Américo Vespucio 49, Isla de la Cartuja, 41092, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Seville, Spain.
| |
Collapse
|
23
|
Sánchez-Fernández EM, García-Moreno MI, García-Hernández R, Padrón JM, García Fernández JM, Gamarro F, Ortiz Mellet C. Thiol-ene "Click" Synthesis and Pharmacological Evaluation of C-Glycoside sp 2-Iminosugar Glycolipids. Molecules 2019; 24:E2882. [PMID: 31398901 PMCID: PMC6720825 DOI: 10.3390/molecules24162882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
The unique stereoelectronic properties of sp2-iminosugars enable their participation in glycosylation reactions, thereby behaving as true carbohydrate chemical mimics. Among sp2-iminosugar conjugates, the sp2-iminosugar glycolipids (sp2-IGLs) have shown a variety of interesting pharmacological properties ranging from glycosidase inhibition to antiproliferative, antiparasitic, and anti-inflammatory activities. Developing strategies compatible with molecular diversity-oriented strategies for structure-activity relationship studies was therefore highly wanted. Here we show that a reaction sequence consisting in stereoselective C-allylation followed by thiol-ene "click" coupling provides a very convenient access to α-C-glycoside sp2-IGLs. Both the glycone moiety and the aglycone tail can be modified by using sp2-iminosugar precursors with different configurational profiles (d-gluco or d-galacto in this work) and varied thiols, as well as by oxidation of the sulfide adducts (to the corresponding sulfones in this work). A series of derivatives was prepared in this manner and their glycosidase inhibitory, antiproliferative and antileishmanial activities were evaluated in different settings. The results confirm that the inhibition of glycosidases, particularly α-glucosidase, and the antitumor/leishmanicidal activities are unrelated. The data are also consistent with the two later activities arising from the ability of the sp2-IGLs to interfere in the immune system response in a cell line and cell context dependent manner.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBCAN), Universidad de La Laguna, 38206 La Laguna, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| |
Collapse
|