1
|
Belhadj Z, Akther T, Wang Z, Xie J. Characterization of a deazaflavin analog as a potent inhibitor of multidrug resistance-associated protein 1. Biomed Pharmacother 2024; 178:117167. [PMID: 39032285 DOI: 10.1016/j.biopha.2024.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Selective inhibition of overexpressed ATP binding cassette (ABC) transporters is an attractive approach to enhancing the efficacy of chemotherapeutics in multidrug resistant cancers. Previously, we reported that the cancer sensitizing effect of deazaflavin analogs, an important chemotype for developing combination treatments with topoisomerase II (TOP2) poisons, is associated with increased intracellular drug accumulation. Here we report the characterization of ZW-1226, a deazaflavin analog, as a potent inhibitor of multidrug resistance-associated protein 1 (MRP1). Specifically, ZW-1226 inhibited MRP1 with a 16-fold higher potency than the most widely used positive control MK-571 in vesicular transport assay and displayed excellent selectivity indices exceeding 100 over other major ABC transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), MRP2 and MRP3. Mechanistically, we revealed that its MRP1 inhibitory action requires the participation of GSH. In chemo-sensitization test, ZW-1226 fully reversed the MRP1-mediated drug resistance to TOP2 poisons etoposide (ETP) and doxorubicin (DOX) in H69AR cells and conferred CC50s comparable to those in the sensitive parental NCI-H69 cells. The sensitization was associated with boosted intracellular accumulation of ETP and DOX and elevated endogenous GSH. Moreover, ZW-1226 showed potential to occupy the leukotriene C4 binding site in molecular docking with bovine MRP1, presumably with the help of GSH. Lastly, ZW-1226 exhibited high tissue to plasma partitions in mice but did not alter ETP distribution to normal tissues, suggesting it could be a viable lead with desirable pharmacokinetic properties to warrant further investigation.
Collapse
Affiliation(s)
- Zakia Belhadj
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thamina Akther
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Anticevic I, Otten C, Popovic M. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) repairs DNA-protein crosslinks and protects against double strand breaks in vivo. Front Cell Dev Biol 2024; 12:1394531. [PMID: 39228401 PMCID: PMC11369425 DOI: 10.3389/fcell.2024.1394531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 09/05/2024] Open
Abstract
DNA-protein crosslinks pose a significant challenge to genome stability and cell viability. Efficient repair of DPCs is crucial for preserving genomic integrity and preventing the accumulation of DNA damage. Despite recent advances in our understanding of DPC repair, many aspects of this process, especially at the organismal level, remain elusive. In this study, we used zebrafish as a model organism to investigate the role of TDP2 (Tyrosyl-DNA phosphodiesterase 2) in DPC repair. We characterized the two tdp2 orthologs in zebrafish using phylogenetic, syntenic and expression analysis and investigated the phenotypic consequences of tdp2 silencing in zebrafish embryos. We then quantified the effects of tdp2a and tdp2b silencing on cellular DPC levels and DSB accumulation in zebrafish embryos. Our findings revealed that tdp2b is the main ortholog during embryonic development, while both orthologs are ubiquitously present in adult tissues. Notably, the tdp2b ortholog is phylogenetically closer to human TDP2. Silencing of tdp2b, but not tdp2a, resulted in the loss of Tdp2 activity in zebrafish embryos, accompanied by the accumulation of DPCs and DSBs. Our findings contribute to a more comprehensive understanding of DPC repair at the organismal level and underscore the significance of TDP2 in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Marta Popovic
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruder Boskovic, Zagreb, Croatia
| |
Collapse
|
3
|
Belhadj Z, Offei S, Jacobson BA, Cambron D, Kratzke RA, Wang Z, Xie J. Cancer sensitizing effect of deazaflavin analogs is associated with increased intracellular drug accumulation. Eur J Pharm Sci 2024; 193:106686. [PMID: 38159687 DOI: 10.1016/j.ejps.2023.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
As part of our efforts geared towards developing mechanism-based cancer sensitizing agents, we have previously synthesized and characterized novel deazaflavin analogs as potent tyrosyl DNA phosphodiesterase 2 (TDP2) inhibitors for combination treatments with topoisomerase II (TOP2) poisons. Interestingly, the sensitizing effect of a few analogs toward TOP2 poison etoposide (ETP) was associated with a significant increase in intracellular drug accumulation, which could be an alternative mechanism to boost the clinical efficacy of ETP in cancer chemotherapies. Hence, we evaluated more deazaflavin TDP2 inhibitors for their impact on drug retention in cancer cells. We found that all but one tested TDP2 inhibitors substantially increased the ETP retention in DT40 cells. Particularly, we identified an exceptionally potent analog, ZW-1226, which at 3 nM increased the intracellular ETP by 13-fold. Significantly, ZW-1226 also stimulated cellular accumulation of two other anticancer drugs, TOP2 poison teniposide and antifolate pemetrexed, and produced an effect more pronounced than those of ABC transporter inhibitors verapamil and elacridar in human leukemic CCRF-CEM cells toward ETP. Lastly, ZW-1226 potentiated the action of ETP in the sensitive human CCRF-CEM cells and a few resistant non-small-cell lung cancer (NSCLC) cells, including H460 and H838 cells. Collectively, the results of this study strongly suggest that deazaflavin analog ZW-1226 could be an effective cancer sensitizing agent which warrants further investigation.
Collapse
Affiliation(s)
- Zakia Belhadj
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel Offei
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Blake A Jacobson
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daniel Cambron
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Robert A Kratzke
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Abdelkhalek AS, Attia MS, Kamal MA. Triazolopyrimidine Derivatives: An Updated Review on Recent Advances in Synthesis, Biological Activities and Drug Delivery Aspects. Curr Med Chem 2024; 31:1896-1919. [PMID: 36852819 DOI: 10.2174/0929867330666230228120416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 03/01/2023]
Abstract
Molecules containing triazolopyrimidine core showed diverse biological activities, including anti-Alzheimer's, anti-diabetes, anti-cancer, anti-microbial, anti-tuberculosis, anti-viral, anti-malarial, anti-inflammatory, anti-parkinsonism, and anti-glaucoma activities. Triazolopyrimidines have 8 isomeric structures, including the most stable 1,2,4-triazolo[1,5- a] pyrimidine ones. Triazolopyrimidines were obtained by using various chemical reactions, including a) 1,2,4-triazole nucleus annulation to pyrimidine, b) pyrimidines annulation to 1,2,4-triazole structure, c) 1,2,4-triazolo[l,5-a] pyrimidines rearrangement, and d) pyrimidotetrazine rearrangement. This review discusses synthetic methods, recent pharmacological actions and drug delivery perspectives of triazolopyrimidines.
Collapse
Affiliation(s)
- Ahmed S Abdelkhalek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Novel Global Community Educational Foundation, Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| |
Collapse
|
5
|
Zakharenko AL, Dyrkheeva NS, Luzina OA, Filimonov AS, Mozhaitsev ES, Malakhova AA, Medvedev SP, Zakian SM, Salakhutdinov NF, Lavrik OI. Usnic Acid Derivatives Inhibit DNA Repair Enzymes Tyrosyl-DNA Phosphodiesterases 1 and 2 and Act as Potential Anticancer Agents. Genes (Basel) 2023; 14:1931. [PMID: 37895279 PMCID: PMC10606488 DOI: 10.3390/genes14101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 and 2 (Tdp1 and Tdp2) are DNA repair enzymes that repair DNA damage caused by various agents, including anticancer drugs. Thus, these enzymes resist anticancer therapy and could be the reason for resistance to such widely used drugs such as topotecan and etoposide. In the present work, we found compounds capable of inhibiting both enzymes among derivatives of (-)-usnic acid. Both (+)- and (-)-enantiomers of compounds act equally effectively against Tdp1 with IC50 values in the range of 0.02-0.2 μM; only (-)-enantiomers inhibited Tdp2 with IC50 values in the range of 6-9 μM. Surprisingly, the compounds protect HEK293FT wild type cells from the cytotoxic effect of etoposide (CC50 3.0-3.9 μM in the presence of compounds and 2.4 μM the presence of DMSO) but potentiate it against Tdp2 knockout cells (CC50 1.2-1.6 μM in the presence of compounds against 2.3 μM in the presence of DMSO). We assume that the sensitizing effect of the compounds in the absence of Tdp2 is associated with the effective inhibition of Tdp1, which could take over the functions of Tdp2.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Aleksandr S. Filimonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Evgenii S. Mozhaitsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Anastasia A. Malakhova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Sergey P. Medvedev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Suren M. Zakian
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| |
Collapse
|
6
|
Shimizu N, Hamada Y, Morozumi R, Yamamoto J, Iwai S, Sugiyama KI, Ide H, Tsuda M. Repair of topoisomerase 1-induced DNA damage by tyrosyl-DNA phosphodiesterase 2 (TDP2) is dependent on its magnesium binding. J Biol Chem 2023; 299:104988. [PMID: 37392847 PMCID: PMC10407441 DOI: 10.1016/j.jbc.2023.104988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Topoisomerases are enzymes that relax DNA supercoiling during replication and transcription. Camptothecin, a topoisomerase 1 (TOP1) inhibitor, and its analogs trap TOP1 at the 3'-end of DNA as a DNA-bound intermediate, resulting in DNA damage that can kill cells. Drugs with this mechanism of action are widely used to treat cancers. It has previously been shown that tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs TOP1-induced DNA damage generated by camptothecin. In addition, tyrosyl-DNA phosphodiesterase 2 (TDP2) plays critical roles in repairing topoisomerase 2 (TOP2)-induced DNA damage at the 5'-end of DNA and in promoting the repair of TOP1-induced DNA damage in the absence of TDP1. However, the catalytic mechanism by which TDP2 processes TOP1-induced DNA damage has not been elucidated. In this study, we found that a similar catalytic mechanism underlies the repair of TOP1- and TOP2-induced DNA damage by TDP2, with Mg2+-TDP2 binding playing a role in both repair mechanisms. We show chain-terminating nucleoside analogs are incorporated into DNA at the 3'-end and abort DNA replication to kill cells. Furthermore, we found that Mg2+-TDP2 binding also contributes to the repair of incorporated chain-terminating nucleoside analogs. Overall, these findings reveal the role played by Mg2+-TDP2 binding in the repair of both 3'- and 5'-blocking DNA damage.
Collapse
Affiliation(s)
- Naoto Shimizu
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yusaku Hamada
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ryosuke Morozumi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
7
|
Discovery, enantioselective synthesis of myrtucommulone E analogues as tyrosyl-DNA phosphodiesterase 2 inhibitors and their biological activities. Eur J Med Chem 2022; 238:114445. [DOI: 10.1016/j.ejmech.2022.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
|
8
|
Zhang Y, He XZ, Yang H, Liu HY, An LK. Robustadial A and B from Eucalyptus globulus Labill. and their anticancer activity as selective tyrosyl-DNA phosphodiesterase 2 inhibitors. Phytother Res 2021; 35:5282-5289. [PMID: 34314073 DOI: 10.1002/ptr.7207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a recently discovered DNA repair enzyme that can repair topoisomerase 2-mediated DNA damage, resulting in cancer cell resistance. In this study, two compounds, robustadial A and B, were isolated from a fraction of the ethyl acetate extract of Eucalyptus globulus Labill. fruits based on TDP2 inhibition screening. The biological experiments indicated that robustadial A and B have TDP2 inhibitory activity with EC50 values of 17 and 42 μM, respectively, but no tyrosyl-DNA phosphodiesterase 1 inhibition at 100 μM. Robustadial A showed significant synergistic effects with the anticancer drug etoposide in four human cancer cell lines, non-small cell lung cancer cell line (A549), prostate cancer cell line (DU145), breast cancer cell line (MCF-7), colorectal adenocarcinoma cell line (HCT-116), and chicken lymphoma cell line (DT40), and chicken lymphoma cell line complementation with human TDP2 (DT40 hTDP2) with combination index values ranging from 0.21 to 0.74. This work will facilitate future efforts for the development of robustadial A-based TDP2 selective inhibitors.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Zhi He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| |
Collapse
|
9
|
The synthesis of furoquinolinedione and isoxazoloquinolinedione derivatives as selective Tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. Bioorg Chem 2021; 111:104881. [PMID: 33839584 PMCID: PMC9893515 DOI: 10.1016/j.bioorg.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/04/2023]
Abstract
Based on our previous study on the development of the furoquinolinedione and isoxazoloquinolinedione TDP2 inhibitors, the further structure-activity relationship (SAR) was studied in this work. A series of furoquinolinedione and isoxazoloquinolinedione derivatives were synthesized and tested for enzyme inhibitions. Enzyme-based assays indicated that isoxazoloquinolinedione derivatives selectively showed high TDP2 inhibitory activity at sub-micromolar range, as well as furoquinolinedione derivatives at low micromolar range. The most potent 3-(3,4-dimethoxyphenyl)isoxazolo[4,5-g]quinoline-4,9-dione (70) showed TDP2 inhibitory activity with IC50 of 0.46 ± 0.15 μM. This work will facilitate future efforts for the discovery of isoxazoloquinolinedione TDP2 selective inhibitors.
Collapse
|
10
|
4-Benzylideneisoquinoline-1,3( 2H, 4H)-diones as tyrosyl DNA phosphodiesterase 2 (TDP2) inhibitors. Med Chem Res 2021; 30:371-386. [PMID: 33776385 DOI: 10.1007/s00044-020-02662-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase II (Top2) mediated DNA damages, including double-strand breaks (DSBs) that underpin the anticancer mechanism of clinical TOP2 poisons such as etoposide (ETP). Inhibition of TDP2 could sensitize cancer cells toward TOP2 poisons by increasing Top2 cleavage complex. We have previously identified isoquinoline-1,3-dione as a selective inhibitor type of TDP2. However, the reported structure-activity relationship (SAR) was limited to simple substitutions on the isoquinoline-1,3-dione core. Herein, we report the extended SAR consisting of the synthesis and testing of a total of 50 analogs featuring N-2 and C-4 modifications. Major SAR observations include the loss of potency upon N-2 substitution, the lack of inhibition with C-4 enamine analogs (subtype 11), or any other C-4 modifications (subtypes 13-15) except for the benzylidene substitution (subtype 12), where eight analogs showed low micromolar potency. The best analog, 12q, inhibited TDP2 with an IC50 of 4.8 μM. Molecular modeling was performed to help understand the observed SAR trends. Overall, these SAR observations which could significantly benefit future work on the design of improved TDP2 inhibitors.
Collapse
|
11
|
Oshima K, Zhao J, Pérez-Durán P, Brown JA, Patiño-Galindo JA, Chu T, Quinn A, Gunning T, Belver L, Ambesi-Impiombato A, Tosello V, Wang Z, Sulis ML, Kato M, Koh K, Paganin M, Basso G, Balbin M, Nicolas C, Gastier-Foster JM, Devidas M, Loh ML, Paietta E, Tallman MS, Rowe JM, Litzow M, Minden MD, Meijerink J, Rabadan R, Ferrando A. Mutational and functional genetics mapping of chemotherapy resistance mechanisms in relapsed acute lymphoblastic leukemia. NATURE CANCER 2020; 1:1113-1127. [PMID: 33796864 PMCID: PMC8011577 DOI: 10.1038/s43018-020-00124-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
Multi-agent combination chemotherapy can be curative in acute lymphoblastic leukemia (ALL). Still, patients with primary refractory disease or with relapsed leukemia have a very poor prognosis. Here we integrate an in-depth dissection of the mutational landscape across diagnostic and relapsed pediatric and adult ALL samples with genome-wide CRISPR screen analysis of gene-drug interactions across seven ALL chemotherapy drugs. By combining these analyses, we uncover diagnostic and relapse-specific mutational mechanisms as well as genetic drivers of chemoresistance. Functionally, our data identifies common and drug-specific pathways modulating chemotherapy response and underscores the effect of drug combinations in restricting the selection of resistance-driving genetic lesions. In addition, by identifying actionable targets for the reversal of chemotherapy resistance, these analyses open novel therapeutic opportunities for the treatment of relapse and refractory disease.
Collapse
Affiliation(s)
- Koichi Oshima
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Pablo Pérez-Durán
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Juan Angel Patiño-Galindo
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Timothy Chu
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Thomas Gunning
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | | | | | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Maria Luisa Sulis
- Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Motohiro Kato
- Department of Hematology-Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Katsuyoshi Koh
- Department of Hematology-Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Maddalena Paganin
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padova, Italy
- Haematology-Oncology Division, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
| | - Giuseppe Basso
- Haematology-Oncology Division, Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
- IIGM Italian Institute of Genomic Medicine, Turin, Italy
| | - Milagros Balbin
- Molecular Oncology Laboratory, Instituto Universitario de Oncologia del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Concepcion Nicolas
- Hematology Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Julie M Gastier-Foster
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Departments of Pathology and Pediatrics, Ohio State University School of Medicine, Columbus, OH, USA
- Children's Oncology Group, Arcadia, CA, USA
| | - Meenakshi Devidas
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon L Loh
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | - Martin S Tallman
- Department of Hematologic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Mark D Minden
- Department of Oncology/Hematology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Jules Meijerink
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Department of Pediatrics, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Dang X, Ogbu SC, Zhao J, Nguyen LNT, Cao D, Nguyen LN, Khanal S, Schank M, Thakuri BKC, Wu XY, Morrison ZD, Zhang J, Li Z, El Gazzar M, Ning S, Wang L, Wang Z, Moorman JP, Yao ZQ. Inhibition of topoisomerase IIA (Top2α) induces telomeric DNA damage and T cell dysfunction during chronic viral infection. Cell Death Dis 2020; 11:196. [PMID: 32193368 PMCID: PMC7081277 DOI: 10.1038/s41419-020-2395-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/02/2023]
Abstract
T cells play a critical role in controlling viral infection; however, the mechanisms regulating their responses remain incompletely understood. Here, we investigated the role of topoisomerase IIA (Top2α, an enzyme that is essential in resolving entangled DNA strands during replication) in telomeric DNA damage and T cell dysfunction during viral infection. We demonstrated that T cells derived from patients with chronic viral (HBV, HCV, and HIV) infection had lower Top2α protein levels and enzymatic activity, along with an accumulation of the Top2α cleavage complex (Top2cc) in genomic DNA. In addition, T cells from virally infected subjects with lower Top2α levels were vulnerable to Top2α inhibitor-induced cell apoptosis, indicating an important role for Top2α in preventing DNA topological disruption and cell death. Using Top2α inhibitor (ICRF193 or Etoposide)-treated primary T cells as a model, we demonstrated that disrupting the DNA topology promoted DNA damage and T cell apoptosis via Top2cc accumulation that is associated with protein-DNA breaks (PDB) at genomic DNA. Disruption of the DNA topology was likely due to diminished expression of tyrosyl-DNA phosphodiesterase 2 (TDP2), which was inhibited in T cells in vitro by Top2α inhibitor and in vivo by chronic viral infection. These results suggest that immune-evasive viruses (HBV, HCV, and HIV) can disrupt T cell DNA topology as a mechanism of dysregulating host immunity and establishing chronic infection. Thus, restoring the DNA topologic machinery may serve as a novel strategy to protect T cells from unwanted DNA damage and to maintain immune competence.
Collapse
Affiliation(s)
- Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Stella C Ogbu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zheng D Morrison
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zhengke Li
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, 37614, USA
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN, 37614, USA.
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, 37614, USA.
| |
Collapse
|
13
|
Novel deazaflavin tyrosyl-DNA phosphodiesterase 2 (TDP2) inhibitors. DNA Repair (Amst) 2019; 85:102747. [PMID: 31775111 DOI: 10.1016/j.dnarep.2019.102747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a DNA repair enzyme that removes 5'-phosphotyrosyl blockages resulting from topoisomerase II (TOP2)-DNA cleavage complexes trapped by TOP2 inhibitors. TDP2 is a logical target for the development of therapeutics to complement existing treatments based on inhibition of TOP2. There is, however, no TDP2 inhibitor in clinical development at present. Of the reported TDP2 inhibitors, the deazaflavins are the most promising chemical class centered around the lead compound SV-5-153. Recently we reported new subtypes derived within the deazaflavin family with improved membrane permeability properties. In this work we characterize two representative analogues from two new deazaflavin subtypes based on their biochemical TDP2 inhibitory potency and drug-likeness. We demonstrate that the ZW-1288 derivative represents a promising direction for the development of deazaflavins as therapeutic agents. ZW-1288 exhibits potent inhibitory activity at low nanomolar concentrations against recombinant and cellular human TDP2 with profile similar to that of the parent analog SV-5-153 based on high resistance against murine TDP2 and human TDP2 mutated at residue L313H. While expressing weak cytotoxicity on its own, ZW-1288 potentiates the clinical TOP2 inhibitors etoposide (ETP) and mitoxantrone in human prostate DU145 and CCRF-CEM leukemia and chicken lymphoma DT40 cells while not impacting the activity of the topoisomerase I (TOP1) inhibitor camptothecin or the PARP inhibitor olaparib. ZW-1288 increases the uptake of ETP to a lesser extent than SV-5-153 and remained active in TDP2 knockout cells indicating that the deazaflavin TDP2 inhibitors have additional cellular effects that will have to be taken into account for their further development as TDP2 inhibitors.
Collapse
|
14
|
Kuriappan JA, Osheroff N, De Vivo M. Smoothed Potential MD Simulations for Dissociation Kinetics of Etoposide To Unravel Isoform Specificity in Targeting Human Topoisomerase II. J Chem Inf Model 2019; 59:4007-4017. [PMID: 31449404 PMCID: PMC6800198 DOI: 10.1021/acs.jcim.9b00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Human
type II topoisomerases (TopoII) are essential for controlling
DNA topology within the cell. For this reason, there are a number
of TopoII-targeted anticancer drugs that act by inducing DNA cleavage
mediated by both TopoII isoforms (TopoIIα and TopoIIβ)
in cells. However, recent studies suggest that specific poisoning
of TopoIIα may be a safer strategy for treating cancer. This
is because poisoning of TopoIIβ appears to be linked to the
generation of secondary leukemia in patients. We recently reported
that enzyme-mediated DNA cleavage complexes (in which TopoII is covalently
linked to the cleaved DNA during catalysis) formed in the presence
of the anticancer drug etoposide persisted approximately 3-fold longer
with TopoIIα than TopoIIβ. Notably, enhanced drug-target
residence time may reduce the adverse effects of specific TopoIIα
poisons. However, it is still not clear how to design drugs that are
specific for the α isoform. In this study, we report the results
of classical molecular dynamics (MD) simulations to comparatively
analyze the molecular interactions formed within the TopoII/DNA/etoposide
complex with both isoforms. We also used smoothed potential MD to
estimate etoposide dissociation kinetics from the two isoform complexes.
These extensive classical and enhanced sampling simulations revealed
stabilizing interactions of etoposide with two serine residues (Ser763
and Ser800) in TopoIIα. These interactions are missing in TopoIIβ,
where both amino acids are alanine residues. This may explain the
greater persistence of etoposide-stabilized cleavage complexes formed
with Topo TopoIIα. These findings could be useful for the rational
design of specific TopoIIα poisons.
Collapse
Affiliation(s)
- Jissy A Kuriappan
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Neil Osheroff
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Medicine (Hematology/Oncology) , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-6307 , United States.,VA Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|