1
|
Guo T, Xu L, Dong J. Intramolecular Friedel-Crafts Reactions of Sulfamoyl Fluorides, Fluorosulfates, and Sulfuramidimidoyl Fluorides. Org Lett 2025. [PMID: 39884750 DOI: 10.1021/acs.orglett.4c04464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Sultams are valuable heterocycles with numerous applications, particularly as pharmacophores. Previous syntheses of these compounds usually require metal-catalyzed cyclization or multiple-step processes. Here, we report a straightforward strategy for accessing these important motifs by developing the intramolecular Friedel-Crafts cyclization of sulfamoyl fluorides under mild conditions. Our protocol also accommodates fluorosulfates and sulfuramidimidoyl fluorides, which are rarely utilized in Friedel-Crafts reactions.
Collapse
Affiliation(s)
- Taijie Guo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Xu
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajia Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Translational Medicine, National Facility for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Rodríguez-Gimeno A, Galdeano C. Drug Discovery Approaches to Target E3 Ligases. Chembiochem 2025; 26:e202400656. [PMID: 39686906 DOI: 10.1002/cbic.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Targeting E3 ligases is a challenging area in drug discovery. Despite the human genome encoding for more than 600 E3 ubiquitin ligases, only a handful of E3 ligases have been pharmacologically modulated or exploited for targeted protein degradation (TPD) strategies. The main obstacle for hijacking these E3 ligases is the lack of small-molecule ligands. As research into this field advances, the identification of new small molecules capable of binding to E3 ligases has become an essential pursuit. These ligases not only expand the repertoire of druggable targets but also offer the potential for increased specificity and selectivity in protein degradation. The synergy between academia and industry is key, as it combines academic expertise in fundamental research with the industrial capabilities of translating these findings into novel therapeutics. In this review, we provide an overview of the different strategies employed in academia and industry to the discovery of new E3 ligases ligands, showing them with illustrative cases.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Gimeno
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Carles Galdeano
- Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
- Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Liu X, Huang Y, Zhao X, Guan Y, Li Y, Yuan L, Wang C, Ma C, Ma E. Sodium cromoglycate exerts anti-pulmonary fibrosis effects by targeting the Keap1 protein to activate Nrf2 signaling. Bioorg Chem 2024; 153:107961. [PMID: 39556932 DOI: 10.1016/j.bioorg.2024.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Oxidative stress has been confirmed to be closely related to the occurrence and development of pulmonary fibrosis (PF). The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2 related factor 2 (Nrf2) pathway plays a key role in maintaining cellular redox homeostasis. Targeting the Keap1 protein to activate Nrf2 could be a promising strategy for treating PF. Virtual screening via a pharmacophore model was used to screen candidate compounds with potential Keap1 binding ability from the U.S. Food and Drug Administration (FDA) database. The results revealed that sodium cromoglycate (Cro) has the highest fit value and absolute docking score and could improve the thermal stability of the Keap1 protein in a CETSA, confirming that Cro could bind to the Keap1 protein directly. Further studies revealed that Cro promoted Nrf2 translocation into the nucleus, relieved oxidative stress, prevented the epithelial-mesenchymal transition (EMT) process and upregulated fibrosis markers in TGF-β1-induced A549 cells, indicating that Cro has anti-pulmonary fibrosis activity in an in vitro lung fibrosis model. Moreover, in a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, Cro administration improved pulmonary fibrosis, activated Nrf2 signaling, and blocked the EMT process. In summary, these results demonstrated that Cro could activate Nrf2 signaling to clear reactive oxygen species (ROS) by directly binding to Keap1 and alleviate pulmonary fibrosis by blocking the progression of EMT both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuwei Huang
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianchen Zhao
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingjun Guan
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanchun Li
- GLP Center, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Yuan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chuncheng Wang
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Enlong Ma
- Department of Pharmacology, School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Shi Z, Zhang Y, Wang X, Tang J, Kang Y, Hu J, Li L, Yang B, Chen S, Xiao Q, Lan J, Hu J, Peng Y, Yin D. Discovery of Propionic Acid Derivatives with a 5-THIQ Core as Potent and Orally Bioavailable Keap1-Nrf2 Protein-Protein Interaction Inhibitors for Acute Kidney Injury. J Med Chem 2024; 67:19247-19266. [PMID: 39388678 DOI: 10.1021/acs.jmedchem.4c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Keap1 plays a crucial role in regulating the Nrf2-mediated cytoprotective response and is increasingly targeted for oxidative stress-related diseases. Using small molecules to disrupt the Keap1-Nrf2 protein-protein interaction (PPI) has emerged as a new strategy for developing Nrf2 activators. Through extensive structure-activity relationship studies, we identified compound 56, which features a unique 5-tetrahydroisoquinoline scaffold and acts as a potent inhibitor of the Keap1-Nrf2 PPI. Compound 56 exhibited significant inhibitory activity (IC50 = 16.0 nM) and tight Keap1 binding affinity (Kd = 3.07 nM), along with acceptable oral bioavailability (F = 20%). Notably, 56 enhanced antioxidant defenses in HK-2 renal tubular epithelial cells and significantly reduced plasma creatinine and blood urea nitrogen levels in acute kidney injury (AKI) mice. These findings collectively position compound 56 as a promising candidate for the treatment of AKI.
Collapse
Affiliation(s)
- Zeyu Shi
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yong Zhang
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xinyu Wang
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jingshu Tang
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yuying Kang
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jiahuan Hu
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Li Li
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Beibei Yang
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Si Chen
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Qiong Xiao
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jiaqi Lan
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jinping Hu
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ying Peng
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Dali Yin
- Department of Medicinal Chemistry, State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
5
|
Qin Y, Poulsen C, Narayanan D, Chan CB, Chen X, Montes BR, Tran KT, Mukminova E, Lin C, Gajhede M, Bullock AN, Olagnier D, Bach A. Structure-Guided Conformational Restriction Leading to High-Affinity, Selective, and Cell-Active Tetrahydroisoquinoline-Based Noncovalent Keap1-Nrf2 Inhibitors. J Med Chem 2024; 67:18828-18864. [PMID: 39418396 DOI: 10.1021/acs.jmedchem.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Inhibition of the protein-protein interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) has been recognized as an attractive approach for treating oxidative stress-related diseases. Here, we present a new series of noncovalent Keap1-Nrf2 inhibitors developed by a conformational restriction strategy of our fluorenone-based compounds previously identified by fragment-based drug discovery. The design was guided by X-ray cocrystal structures, and the subsequent optimization process aimed at improving affinity, cellular activity, and metabolic stability. From the noncyclic compound 7 (Ki = 2.9 μM), a new series of tetrahydroisoquinoline-based Keap1 inhibitors with up to 223-fold improvement in binding affinity (57, Ki = 13 nM), better metabolic stability, and enhanced cellular activity was obtained. In addition, the compounds showed selectivity for the Keap1 Kelch domain across a panel of 15 homologous proteins. We thereby demonstrate the utility of cyclic rigidification in the design of potent and more drug-like Keap1-Nrf2 inhibitors.
Collapse
Affiliation(s)
- Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Cecilie Poulsen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Camilla B Chan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Xiangrong Chen
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Beatriz Ralsi Montes
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Kim T Tran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Elina Mukminova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Chunyu Lin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - David Olagnier
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Chovatia P, Sanzone A, Hofman GJ, Dooley R, Pezzati B, Trist IML, Ouvry G. Harnessing conformational drivers in drug design. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:1-60. [PMID: 39370240 DOI: 10.1016/bs.pmch.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This review article explores the pivotal role of conformational drivers in the discovery of drug-like molecules and illustrates their significance through real-life examples. Understanding molecular conformation is paramount to drug hunting as it can impact on- and off-target potency, metabolism, permeability, and solubility. Each conformational driver or effector is described and exemplified in a separate section. The final section is dedicated to NMR spectroscopy and illustrates its utility as an essential tool for conformational design.
Collapse
Affiliation(s)
| | | | | | - Ruth Dooley
- Evotec (UK) Ltd, Milton Park, Abingdon, United Kingdom
| | | | | | - Gilles Ouvry
- NRG Therapeutics, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| |
Collapse
|
7
|
Lloyd MD, Gregory KS, Acharya KR. Functional implications of unusual NOS and SONOS covalent linkages found in proteins. Chem Commun (Camb) 2024; 60:9463-9471. [PMID: 39109843 DOI: 10.1039/d4cc03191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The tertiary and quaternary structures of many proteins are stabilized by strong covalent forces, of which disulfide bonds are the most well known. A new type of intramolecular and intermolecular covalent bond has been recently reported, consisting of the Lys and Cys side-chains linked by an oxygen atom (NOS). These post-translational modifications are widely distributed amongst proteins, and are formed under oxidative conditions. Similar linkages are observed during antibiotic biosynthesis, where hydroxylamine intermediates are tethered to the sulfur of enzyme active site Cys residues. These linkages open the way to understanding protein structure and function, give new insights into enzyme catalysis and natural product biosynthesis, and offer new strategies for drug design.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Kyle S Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
8
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Gunter NV, Teh SS, Jantan I, Law KP, Morita H, Mah SH. Natural xanthones as modulators of the Nrf2/ARE signaling pathway and potential gastroprotective agents. Phytother Res 2024. [PMID: 38372084 DOI: 10.1002/ptr.8160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Oxidative stress is implicated in the initiation, pathogenesis, and progression of various gastric inflammatory diseases (GID). The prevalence of these diseases remains a concern along with the increasing risks of adverse effects in current clinical interventions. Hence, new gastroprotective agents capable of inhibiting oxidative stress by modulating cellular defense systems such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway are critically needed to address these issues. A candidate to solve the present issue is xanthone, a natural compound that reportedly exerts gastroprotective effects via antioxidant, anti-inflammatory, and cytoprotective mechanisms. Moreover, xanthone derivatives were shown to modulate the Nrf2/ARE signaling pathway to counter oxidative stress in both in vitro and in vivo models. Thirteen natural xanthones have demonstrated the ability to modulate the Nrf2/ARE signaling pathway and have high potential as lead compounds for GID as indicated by their in vivo gastroprotective action-particularly mangiferin (2), α-mangostin (3), and γ-mangostin (4). Further studies on these compounds are recommended to validate the Nrf2 modulatory ability in relation to their gastroprotective action.
Collapse
Affiliation(s)
- Natalie Vivien Gunter
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Kung Pui Law
- School of Pre-University Studies, Taylor's College, Subang Jaya, Malaysia
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Siau Hui Mah
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
10
|
Barreca M, Qin Y, Cadot MEH, Barraja P, Bach A. Advances in developing noncovalent small molecules targeting Keap1. Drug Discov Today 2023; 28:103800. [PMID: 37852355 DOI: 10.1016/j.drudis.2023.103800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Kelch-like ECH-associated protein 1 (Keap1) is a drug target for diseases involving oxidative stress and inflammation. There are three covalent Keap1-binding drugs on the market, but noncovalent compounds that inhibit the interaction between Keap1 and nuclear factor erythroid 2-related factor 2 (Nrf2) represent an attractive alternative. Both compound types prevent degradation of Nrf2, leading to the expression of antioxidant and antiinflammatory proteins. However, their off-target profiles differ as do their exact pharmacodynamic effects. Here, we discuss the opportunities and challenges of targeting Keap1 with covalent versus noncovalent inhibitors. We then provide a comprehensive overview of current noncovalent Keap1-Nrf2 inhibitors, with a focus on their pharmacological effects, to examine the therapeutic potential for this compound class.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Marie Elodie Hélène Cadot
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
12
|
Miao Q, Kadam VD, Mukherjee A, Tan Z, Teng M. Unlocking DCAFs To Catalyze Degrader Development: An Arena for Innovative Approaches. J Med Chem 2023; 66:13369-13383. [PMID: 37738232 DOI: 10.1021/acs.jmedchem.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Chemically induced proximity-based targeted protein degradation (TPD) has become a prominent paradigm in drug discovery. With the clinical benefit demonstrated by certain small-molecule protein degraders that target the cullin-RING E3 ubiquitin ligases (CRLs), the field has proactively strategized to tackle anticipated drug resistance by harnessing additional E3 ubiquitin ligases to enrich the arsenal of this therapeutic approach. Here, we endeavor to explore the collaborative efforts involved in unlocking a broad range of CRL4DCAF for degrader drug development. Throughout the discussion, we also highlight how both conventional and innovative approaches in drug discovery can be taken to realize this objective. Moving ahead, we expect a greater allocation of resources in TPD to pursue these high-hanging fruits.
Collapse
Affiliation(s)
- Qi Miao
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Vilas D Kadam
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Ayan Mukherjee
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
13
|
Ramachandran S, Makukhin N, Haubrich K, Nagala M, Forrester B, Lynch DM, Casement R, Testa A, Bruno E, Gitto R, Ciulli A. Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2. Nat Commun 2023; 14:6345. [PMID: 37816714 PMCID: PMC10564737 DOI: 10.1038/s41467-023-41894-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.
Collapse
Affiliation(s)
- Sarath Ramachandran
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Nikolai Makukhin
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
- Amphista Therapeutics Ltd, Cory Building, Granta Park, Great Abington, Cambridge, CB21 6GQ, United Kingdom
| | - Kevin Haubrich
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Manjula Nagala
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Beth Forrester
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Dylan M Lynch
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Ryan Casement
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Andrea Testa
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
- Amphista Therapeutics Ltd, Cory Building, Granta Park, Great Abington, Cambridge, CB21 6GQ, United Kingdom
| | - Elvira Bruno
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno D'Alcontres 31, Pole Papardo, 98166, Messina, Italy
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom.
| |
Collapse
|
14
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
16
|
Michaelides IN, Collie GW. E3 Ligases Meet Their Match: Fragment-Based Approaches to Discover New E3 Ligands and to Unravel E3 Biology. J Med Chem 2023; 66:3173-3194. [PMID: 36821822 PMCID: PMC10009759 DOI: 10.1021/acs.jmedchem.2c01882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 02/25/2023]
Abstract
Ubiquitination is a key post-translational modification of proteins, affecting the regulation of multiple cellular processes. Cells are equipped with over 600 ubiquitin orchestrators, called E3 ubiquitin ligases, responsible for directing the covalent attachment of ubiquitin to substrate proteins. Due to their regulatory role in cells, significant efforts have been made to discover ligands for E3 ligases. The recent emergence of the proteolysis targeting chimera (PROTAC) and molecular glue degrader (MGD) modalities has further increased interest in E3 ligases as drug targets. This perspective focuses on how fragment based lead discovery (FBLD) methods have been used to discover new ligands for this important target class. In some cases these efforts have led to clinical candidates; in others, they have provided tools for deepening our understanding of E3 ligase biology. Recently, FBLD-derived ligands have inspired the design of PROTACs that are able to artificially modulate protein levels in cells.
Collapse
Affiliation(s)
- Iacovos N. Michaelides
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| | - Gavin W. Collie
- Discovery Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge, CB4 0WG, United
Kingdom
| |
Collapse
|
17
|
Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Antioxidant and Anti-inflammatory Activity of Sea Cucumber ( Holothuria scabra) Active Compounds against KEAP1 and iNOS Protein. Bioinform Biol Insights 2023; 17:11779322221149613. [PMID: 36688185 PMCID: PMC9850421 DOI: 10.1177/11779322221149613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress and inflammation have a role in the development of various diseases. Oxidative stress and inflammation are associated with many proteins, including Kelch ECH associating protein 1 (KEAP1) and inducible nitric oxide synthase (iNOS) proteins. The active compounds contained in Holothuria scabra have antioxidant and anti-inflammatory properties. This study aimed to evaluate the antioxidant and anti-inflammatory activity of sea cucumber's active compounds by targeting KEAP1 and iNOS proteins. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activity of H. scabra extract were measured spectrophotometrically. The 3-dimensional (3D) structures of sea cucumber's active compounds and proteins were obtained from the PubChem and Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) databases. Molecular docking was performed using AutoDock Vina software. Molecular dynamics simulations were carried out using Yet Another Scientific Artificial Reality Application (YASARA) software with environmental parameters according to the cell's physiological conditions. The membrane permeability test was performed using the PerMM web server. The methanol extract of H. scabra had a weak antioxidant activity against DPPH and strong activity against NO radical. Scabraside and holothurinoside G had the most negative binding affinity values when interacting with the active site of KEAP1 and iNOS proteins. Molecular dynamics simulations also showed that both compounds were stable when interacting with KEAP1 and iNOS. However, scabraside and holothurinoside G were difficult to penetrate the cell plasma membrane, which is seen from the high energy transfer value in the lipid acyl chain region of phospholipids. Scabraside and holothurinoside G are predicted to act as antioxidants and anti-inflammations, but in their implementation to in vitro and in vivo study, it is necessary to have liposomes or nanoparticles, or other delivery methods to help these 2 compounds enter the cell.
Collapse
Affiliation(s)
- Teresa Liliana Wargasetia
- Faculty of Medicine, Universitas
Kristen Maranatha (Maranatha Christian University), Bandung, Indonesia,Teresa Liliana Wargasetia, Faculty of
Medicine, Universitas Kristen Maranatha (Maranatha Christian University),
Bandung, Indonesia.
| | - Hana Ratnawati
- Faculty of Medicine, Universitas
Kristen Maranatha (Maranatha Christian University), Bandung, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of
Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia
| | | |
Collapse
|
18
|
Crisman E, Duarte P, Dauden E, Cuadrado A, Rodríguez-Franco MI, López MG, León R. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential. Med Res Rev 2023; 43:237-287. [PMID: 36086898 PMCID: PMC10087726 DOI: 10.1002/med.21925] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is considered the master regulator of the phase II antioxidant response. It controls a plethora of cytoprotective genes related to oxidative stress, inflammation, and protein homeostasis, among other processes. Activation of these pathways has been described in numerous pathologies including cancer, cardiovascular, respiratory, renal, digestive, metabolic, autoimmune, and neurodegenerative diseases. Considering the increasing interest of discovering novel NRF2 activators due to its clinical application, initial efforts were devoted to the development of electrophilic drugs able to induce NRF2 nuclear accumulation by targeting its natural repressor protein Kelch-like ECH-associated protein 1 (KEAP1) through covalent modifications on cysteine residues. However, off-target effects of these drugs prompted the development of an innovative strategy, the search of KEAP1-NRF2 protein-protein interaction (PPI) inhibitors. These innovative activators are proposed to target NRF2 in a more selective way, leading to potentially improved drugs with the application for a variety of diseases that are currently under investigation. In this review, we summarize known KEAP1-NRF2 PPI inhibitors to date and the bases of their design highlighting the most important features of their respective interactions. We also discuss the preclinical pharmacological properties described for the most promising compounds.
Collapse
Affiliation(s)
- Enrique Crisman
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Duarte
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esteban Dauden
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuela G López
- Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain.,Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid, Spain
| |
Collapse
|
19
|
Narayanan D, Tran KT, Pallesen JS, Solbak SMØ, Qin Y, Mukminova E, Luchini M, Vasilyeva KO, González Chichón D, Goutsiou G, Poulsen C, Haapanen N, Popowicz GM, Sattler M, Olagnier D, Gajhede M, Bach A. Development of Noncovalent Small-Molecule Keap1-Nrf2 Inhibitors by Fragment-Based Drug Discovery. J Med Chem 2022; 65:14481-14526. [PMID: 36263945 DOI: 10.1021/acs.jmedchem.2c00830] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting the protein-protein interaction (PPI) between the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its repressor, Kelch-like ECH-associated protein 1 (Keap1), constitutes a promising strategy for treating diseases involving oxidative stress and inflammation. Here, a fragment-based drug discovery (FBDD) campaign resulted in novel, high-affinity (Ki = 280 nM), and cell-active noncovalent small-molecule Keap1-Nrf2 PPI inhibitors. We screened 2500 fragments using orthogonal assays─fluorescence polarization (FP), thermal shift assay (TSA), and surface plasmon resonance (SPR)─and validated the hits by saturation transfer difference (STD) NMR, leading to 28 high-priority hits. Thirteen co-structures showed fragments binding mainly in the P4 and P5 subpockets of Keap1's Kelch domain, and three fluorenone-based fragments featuring a novel binding mode were optimized by structure-based drug discovery. We thereby disclose several fragment hits, including their binding modes, and show how FBDD can be performed to find new small-molecule Keap1-Nrf2 PPI inhibitors.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kim T Tran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jakob S Pallesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sara M Ø Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elina Mukminova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Martina Luchini
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Kristina O Vasilyeva
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Dorleta González Chichón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Georgia Goutsiou
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Cecilie Poulsen
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Nanna Haapanen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - David Olagnier
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Kennedy C, McPhie K, Rittinger K. Targeting the ubiquitin system by fragment-based drug discovery. Front Mol Biosci 2022; 9:1019636. [PMID: 36275626 PMCID: PMC9580268 DOI: 10.3389/fmolb.2022.1019636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
The ubiquitin system contains a wealth of potential drug targets for many diseases and conditions, including neurodegenerative, immune, metabolic and developmental diseases, as well as multiple cancers. Despite years of research, relatively few clinical inhibitors or specific chemical probes for proteins within the ubiquitin system exist, with many interesting target proteins yet to be explored. Fragment-based drug discovery (FBDD) offers efficient and broad coverage of chemical space with small libraries, using covalent and non-covalent approaches. Coupled with advances in structural biology and proteomics, FBDD now provides a thorough screening platform for inhibitor discovery within the ubiquitin system. In this mini review, we summarise the current scope of FBDD and how it has been applied to ubiquitin-activating (E1), ubiquitin-conjugating (E2), ubiquitin ligase (E3) and deubiquitinating (DUB) enzymes. We also discuss the newest frontiers of FBDD and how they could be applied to enable inhibitor and novel chemical probe discovery and provide functional insight into the ubiquitin system.
Collapse
Affiliation(s)
| | | | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
21
|
A Comprehensive Review of BET-targeting PROTACs for Cancer Therapy. Bioorg Med Chem 2022; 73:117033. [DOI: 10.1016/j.bmc.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
22
|
Tan SH, Karuppasamy M, Lan P, Zhang Y, Hu J, Lai X, Lim BSC, Liu W, Chen J, Chew EH, Banwell M. Ribisins and Certain AnaloguesExert Neuroprotective Effects Through Activation of the Keap‐Nrf2‐ARE Pathway. ChemMedChem 2022; 17:e202200292. [DOI: 10.1002/cmdc.202200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Muthukumar Karuppasamy
- National University of Singapore - Kent Ridge Campus: National University of Singapore Pharmacy SINGAPORE
| | | | - Yaochun Zhang
- National University of Singapore - Kent Ridge Campus: National University of Singapore Medicine SINGAPORE
| | - Jiayi Hu
- National University of Singapore - Kent Ridge Campus: National University of Singapore Pharmacy SINGAPORE
| | - Xingchen Lai
- National University of Singapore - Kent Ridge Campus: National University of Singapore Pharmacy SINGAPORE
| | - Belinda Siok-Cheng Lim
- National University of Singapore - Kent Ridge Campus: National University of Singapore Pharmacy SINGAPORE
| | | | | | - Eng-Hui Chew
- National University of Singapore Pharmacy SINGAPORE
| | | |
Collapse
|
23
|
Liu G, Hou R, Xu L, Zhang X, Yan J, Xing C, Xu K, Zhuang C. Crystallography-Guided Optimizations of the Keap1-Nrf2 Inhibitors on the Solvent Exposed Region: From Symmetric to Asymmetric Naphthalenesulfonamides. J Med Chem 2022; 65:8289-8302. [PMID: 35687391 DOI: 10.1021/acs.jmedchem.2c00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directly inhibiting the Keap1-Nrf2 protein-protein interaction has been investigated as a promising strategy to activate Nrf2 for anti-inflammation. We previously reported a naphthalensulfonamide Keap1-Nrf2 inhibitor NXPZ-2, but have not determined the exact binding mode with Keap1. This symmetric naphthalenesulfonamide compound has relatively low solubility. Herein, we first determined a crystal complex (resolution: 2.3 Å) of human Keap1 Kelch domain with NXPZ-2. Further optimizations on the solvent exposed region obtained asymmetric naphthalenesulfonamides and three crystal structures of Keap1 in complex with designed compounds. Among them, the asymmetric piperazinyl-naphthalenesulfonamide 6k with better aqueous solubility showed the best KD2 value of 0.21 μM to block the interaction. The productions of ROS and NO and the expression of TNF-α were inhibited by 6k in the in vitro model. This compound could relieve inflammations by significantly increasing the Nrf2 nuclear translocation in the LPS-induced ALI model with promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Guodong Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruilin Hou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lijuan Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xinqi Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianyu Yan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Ke Xu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Unni S, Deshmukh P, Krishnappa G, Bharath MMS, Padmanabhan B. Chlorhexidine as a Keap1-Nrf2 inhibitor: a new target for an old drug for Parkinson's disease therapy. J Biomol Struct Dyn 2022:1-15. [PMID: 35713597 DOI: 10.1080/07391102.2022.2086175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oxidative stress plays a vital role in the pathophysiology of most neurodegenerative diseases such as Parkinson's disease (PD). The Keap1-Nrf2-ARE pathway, one of the internal defense mechanisms, curbs the reactive oxygen species (ROS) generated in the cellular environment. The pathway leads to the expression of antioxidant genes such as HO-1, GCLC, and NQO1, which act as cellular redox switches and protect the cellular environment. Keap1, the negative regulator of Nrf2, is a potential therapeutic target for treating age-related neurodegenerative diseases. Tecfidera (Dimethyl fumarate), used in the intervention for relapsing multiple sclerosis, is the only commercial drug known to regulate the Nrf2 function. Here, we have identified a repurposing drug, chlorhexidine (LBP125), through ligand-based pharmacophore development and screening against the DrugBank, as a potential inhibitor of the β-propeller domain of Keap1 (Keap1-DC). Chlorhexidine, an antimicrobial agent, is widely used as a mouthwash, skin cleanser, and intervening bacterial infection during childbirth. The biochemical assay confirmed a significant binding affinity of 30 µM and competitively inhibited the Nrf2 peptide interaction. Moreover, chlorhexidine also exerts cytoprotection in a neurotoxic cell model of PD through Keap1-Nrf2 disruption leading to nuclear translocation of Nrf2 and expression of downstream genes, HO-1, and NQO1. Hence, the chemical scaffold of chlorhexidine is a potential lead to develop new chemical libraries with drug-like properties for treating PD. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Prashant Deshmukh
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gopinatha Krishnappa
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
25
|
Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022; 51:3487-3534. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, proteolysis-targeting chimeras (PROTACs), capable of achieving targeted protein degradation, have proven their great therapeutic potential and usefulness as molecular biology tools. These heterobifunctional compounds are comprised of a protein-targeting ligand, an appropriate linker, and a ligand binding to the E3 ligase of choice. A successful PROTAC induces the formation of a ternary complex, leading to the E3 ligase-mediated ubiquitination of the targeted protein and its proteasomal degradation. In over 20 years since the concept was first demonstrated, the field has grown substantially, mainly due to the advancements in the discovery of non-peptidic E3 ligase ligands. Development of small-molecule E3 binders with favourable physicochemical profiles aided the design of PROTACs, which are known for breaking the rules of established guidelines for discovering small molecules. Synthetic accessibility of the ligands and numerous successful applications led to the prevalent use of cereblon and von Hippel-Lindau as the hijacked E3 ligase. However, the pool of over 600 human E3 ligases is full of untapped potential, which is why expanding the artillery of E3 ligands could contribute to broadening the scope of targeted protein degradation. In this comprehensive review, we focus on the chemistry aspect of the PROTAC design process by providing an overview of liganded E3 ligases, their chemistries, appropriate derivatisation, and synthetic approaches towards their incorporation into heterobifunctional degraders. By covering syntheses of both established and underexploited E3 ligases, this review can serve as a chemistry blueprint for PROTAC researchers during their future ventures into the complex field of targeted protein degradation.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
26
|
Ouvry G. Recent applications of seven-membered rings in drug design. Bioorg Med Chem 2022; 57:116650. [PMID: 35123178 DOI: 10.1016/j.bmc.2022.116650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/28/2023]
Abstract
This short review aims at highlighting recent design strategies hinged on using seven-membered rings. Analyses of the different selected examples coupled with torsion profiles derived from the CCDC suggest some of these strategies could have broad applications.
Collapse
Affiliation(s)
- Gilles Ouvry
- Evotec (U.K.) Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| |
Collapse
|
27
|
Norton D, Bonnette WG, Callahan JF, Carr MG, Griffiths-Jones CM, Heightman TD, Kerns JK, Nie H, Rich SJ, Richardson C, Rumsey W, Sanchez Y, Verdonk ML, Willems HMG, Wixted WE, Wolfe L, Woolford AJA, Wu Z, Davies TG. Fragment-Guided Discovery of Pyrazole Carboxylic Acid Inhibitors of the Kelch-like ECH-Associated Protein 1: Nuclear Factor Erythroid 2 Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction. J Med Chem 2021; 64:15949-15972. [PMID: 34705450 DOI: 10.1021/acs.jmedchem.1c01351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NRF2-mediated cytoprotective response is central to cellular homoeostasis, and there is increasing interest in developing small-molecule activators of this pathway as therapeutics for diseases involving chronic oxidative stress. The protein KEAP1, which regulates NRF2, is a key point for pharmacological intervention, and we recently described the use of fragment-based drug discovery to develop a tool compound that directly disrupts the protein-protein interaction between NRF2 and KEAP1. We now present the identification of a second, chemically distinct series of KEAP1 inhibitors, which provided an alternative chemotype for lead optimization. Pharmacophoric information from our original fragment screen was used to identify new hit matter through database searching and to evolve this into a new lead with high target affinity and cell-based activity. We highlight how knowledge obtained from fragment-based approaches can be used to focus additional screening campaigns in order to de-risk projects through the rapid identification of novel chemical series.
Collapse
Affiliation(s)
- David Norton
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - William G Bonnette
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - James F Callahan
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Maria G Carr
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - Tom D Heightman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Jeffrey K Kerns
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Hong Nie
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Sharna J Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - William Rumsey
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Yolanda Sanchez
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Marcel L Verdonk
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - William E Wixted
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Lawrence Wolfe
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | | | - Zining Wu
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Thomas G Davies
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| |
Collapse
|
28
|
Wei J, Meng F, Park KS, Yim H, Velez J, Kumar P, Wang L, Xie L, Chen H, Shen Y, Teichman E, Li D, Wang GG, Chen X, Kaniskan HÜ, Jin J. Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation. J Am Chem Soc 2021; 143:15073-15083. [PMID: 34520194 PMCID: PMC8480205 DOI: 10.1021/jacs.1c04841] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a new class of promising therapeutic modalities. PROTACs hijack E3 ligases and the ubiquitin-proteasome system (UPS), leading to selective degradation of the target proteins. However, only a very limited number of E3 ligases have been leveraged to generate effective PROTACs. Herein, we report that the KEAP1 E3 ligase can be harnessed for targeted protein degradation utilizing a highly selective, noncovalent small-molecule KEAP1 binder. We generated a proof-of-concept PROTAC, MS83, by linking the KEAP1 ligand to a BRD4/3/2 binder. MS83 effectively reduces protein levels of BRD4 and BRD3, but not BRD2, in cells in a concentration-, time-, KEAP1- and UPS-dependent manner. Interestingly, MS83 degrades BRD4/3 more durably than the CRBN-recruiting PROTAC dBET1 in MDA-MB-468 cells and selectively degrades BRD4 short isoform over long isoform in MDA-MB-231 cells. It also displays improved antiproliferative activity than dBET1. Overall, our study expands the limited toolbox for targeted protein degradation.
Collapse
Affiliation(s)
- Jieli Wei
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Prashasti Kumar
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Li Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Emily Teichman
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dongxu Li
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
29
|
Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021; 12:1281-1311. [PMID: 34458736 PMCID: PMC8372206 DOI: 10.1039/d1md00113b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.
Collapse
Affiliation(s)
| | - William Mahy
- MSD The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | | |
Collapse
|
30
|
Sivinski J, Zhang DD, Chapman E. Targeting NRF2 to treat cancer. Semin Cancer Biol 2021; 76:61-73. [PMID: 34102289 DOI: 10.1016/j.semcancer.2021.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022]
Abstract
NRF2 is a basic leucine zipper (bZip) transcription factor that is the master regulator of redox homeostasis. Under basal conditions, the cellular level of NRF2 is low due to a posttranslational regulation by the ubiquitin proteasome system (UPS). But, when an organism is challenged with oxidative or xenobiotic stress, the NRF2 pathway is activated by inhibition of the E3 ubiquitin ligase complex that normally marks NRF2 for destruction. For several decades, researchers have searched for molecules that can intentionally activate NRF2, as this was shown to be a means to prevent certain diseases, at least in animal models. In the present era, there are many compounds known to activate the NRF2 pathway including natural products and synthetic compounds, covalent and non-covalent compounds, and others. However, it was also revealed that like many protective pathways, the NRF2 pathway has a dark side. Just as NRF2 can protect normal cells from damage, it can protect malignant cells from damage. As cells transform, they are exposed to many stressors and aberrant upregulation of NRF2 can facilitate transformation and it can help cancer cells to grow, to spread, and to resist treatment. For this reason, researchers are also interested in the discovery and development of NRF2 inhibitors. In the present review, we will begin with a general discussion of NRF2 structure and function, we will discuss the latest in NRF2 non-covalent activators, and we will discuss the current state of NRF2 inhibitors.
Collapse
Affiliation(s)
- Jared Sivinski
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
31
|
Kannt A, Đikić I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem Biol 2021; 28:1014-1031. [PMID: 33945791 DOI: 10.1016/j.chembiol.2021.04.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Efficacy and selectivity of molecules inducing protein degradation depend on their affinity to the target protein but also on the type of E3 ubiquitin ligase that is recruited to trigger proteasomal degradation. While tremendous progress has been made on the former, the latter-the arsenal of E3 ligases that can be hijacked for targeted protein degradation-is still largely unexplored. Only about 2% of the more than 600 E3 ligases have been utilized to date. Exploiting additional E3 ligases that are, for example, selectively expressed in specific tissues or cells, or regulated under certain conditions, can considerably broaden the applicability of molecular degraders as a therapeutic modality. Here, we provide an overview of major classes of E3 ligases, review the enzymes that have been exploited for induced protein degradation and approaches used to identify or design E3 ligands, and highlight challenges and opportunities for targeting new E3 ligases.
Collapse
Affiliation(s)
- Aimo Kannt
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Ivan Đikić
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Hys VY, Milokhov DS, Keda TY, Omelchenko IV, Konovalova IS, Shishkina SV, Volovenko YM. Efficient synthesis of seven-membered Aza-sultams: Heterofused amino-1,2,4-thiadiazepine dioxides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Yang GX, Sun JM, Zheng LL, Zhang L, Li J, Gan HX, Huang Y, Huang J, Diao XX, Tang Y, Wang R, Ma L. Twin drug design, synthesis and evaluation of diosgenin derivatives as multitargeted agents for the treatment of vascular dementia. Bioorg Med Chem 2021; 37:116109. [PMID: 33780813 DOI: 10.1016/j.bmc.2021.116109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 12/21/2022]
Abstract
A novel series of multitargeted molecules were designed and synthesized by combining the pharmacological role of cholinesterase inhibitor and antioxidant of steroid as potential ligands for the treatment of Vascular Dementia (VD). The oxygen-glucose deprivation (OGD) model was used to evaluate these molecules, among which the most potent compound ML5 showed the highest activity. Firstly, ML5 showed appropriate inhibition of cholinesterases (ChEs) at orally 15 mg/kg in vivo. The further test revealed that ML5 promoted the nuclear translocation of Nrf2. Furthermore, ML5 has significant neuroprotective effect in vivo model of bilateral common carotid artery occlusion (BCCAO), significantly increasing the expression of Nrf2 protein in the cerebral cortex. In the molecular docking research, we predicted the ML5 combined with hAChE and Keap1. Finally, compound ML5 displayed normal oral absorption and it was nontoxic at 500 mg/kg, po, dose. We can draw the conclusion that ML5 could be considered as a new potential compound for VD treatment.
Collapse
Affiliation(s)
- Gui-Xiang Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jia-Min Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lu-Lu Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hai-Xian Gan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xing-Xing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
34
|
Pallesen JS, Narayanan D, Tran KT, Solbak SMØ, Marseglia G, Sørensen LME, Høj LJ, Munafò F, Carmona RMC, Garcia AD, Desu HL, Brambilla R, Johansen TN, Popowicz GM, Sattler M, Gajhede M, Bach A. Deconstructing Noncovalent Kelch-like ECH-Associated Protein 1 (Keap1) Inhibitors into Fragments to Reconstruct New Potent Compounds. J Med Chem 2021; 64:4623-4661. [PMID: 33818106 DOI: 10.1021/acs.jmedchem.0c02094] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting the protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) is a potential therapeutic strategy to control diseases involving oxidative stress. Here, six classes of known small-molecule Keap1-Nrf2 PPI inhibitors were dissected into 77 fragments in a fragment-based deconstruction reconstruction (FBDR) study and tested in four orthogonal assays. This gave 17 fragment hits of which six were shown by X-ray crystallography to bind in the Keap1 Kelch binding pocket. Two hits were merged into compound 8 with a 220-380-fold stronger affinity (Ki = 16 μM) relative to the parent fragments. Systematic optimization resulted in several novel analogues with Ki values of 0.04-0.5 μM, binding modes determined by X-ray crystallography, and enhanced microsomal stability. This demonstrates how FBDR can be used to find new fragment hits, elucidate important ligand-protein interactions, and identify new potent inhibitors of the Keap1-Nrf2 PPI.
Collapse
Affiliation(s)
- Jakob S Pallesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kim T Tran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Sara M Ø Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Giuseppe Marseglia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.,Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Louis M E Sørensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lars J Høj
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Federico Munafò
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Rosa M C Carmona
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anthony D Garcia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.,École Nationale Supérieure de Chimie de Rennes, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France
| | - Haritha L Desu
- The Miami Project to Cure Paralysis, Dept. Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Dept. Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States.,Department of Neurobiology Research, Institute of Molecular Medicine, and BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Tommy N Johansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
35
|
Ishida T, Ciulli A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:484-502. [PMID: 33143537 PMCID: PMC8013866 DOI: 10.1177/2472555220965528] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Bifunctional degrader molecules, also called proteolysis-targeting chimeras (PROTACs), are a new modality of chemical tools and potential therapeutics to understand and treat human disease. A required PROTAC component is a ligand binding to an E3 ubiquitin ligase, which is then joined to another ligand binding to a protein to be degraded via the ubiquitin-proteasome system. The advent of nonpeptidic small-molecule E3 ligase ligands, notably for von Hippel-Lindau (VHL) and cereblon (CRBN), revolutionized the field and ushered in the design of drug-like PROTACs with potent and selective degradation activity. A first wave of PROTAC drugs are now undergoing clinical development in cancer, and the field is seeking to extend the repertoire of chemistries that allow hijacking new E3 ligases to improve the scope of targeted protein degradation.Here, we briefly review how traditional E3 ligase ligands were discovered, and then outline approaches and ligands that have been recently used to discover new E3 ligases for PROTACs. We will then take an outlook at current and future strategies undertaken that invoke either target-based screening or phenotypic-based approaches, including the use of DNA-encoded libraries (DELs), display technologies and cyclic peptides, smaller molecular glue degraders, and covalent warhead ligands. These approaches are ripe for expanding the chemical space of PROTACs and usher in the advent of other emerging bifunctional modalities of proximity-based pharmacology.
Collapse
Affiliation(s)
- Tasuku Ishida
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
36
|
Celis S, Hobor F, James T, Bartlett GJ, Ibarra AA, Shoemark DK, Hegedüs Z, Hetherington K, Woolfson DN, Sessions RB, Edwards TA, Andrews DM, Nelson A, Wilson AJ. Query-guided protein-protein interaction inhibitor discovery. Chem Sci 2021; 12:4753-4762. [PMID: 34163731 PMCID: PMC8179539 DOI: 10.1039/d1sc00023c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/19/2021] [Indexed: 12/04/2022] Open
Abstract
Protein-protein interactions (PPIs) are central to biological mechanisms, and can serve as compelling targets for drug discovery. Yet, the discovery of small molecule inhibitors of PPIs remains challenging given the large and typically shallow topography of the interacting protein surfaces. Here, we describe a general approach to the discovery of orthosteric PPI inhibitors that mimic specific secondary protein structures. Initially, hot residues at protein-protein interfaces are identified in silico or from experimental data, and incorporated into secondary structure-based queries. Virtual libraries of small molecules are then shape-matched against the queries, and promising ligands docked to target proteins. The approach is exemplified experimentally using two unrelated PPIs that are mediated by an α-helix (p53/hDM2) and a β-strand (GKAP/SHANK1-PDZ). In each case, selective PPI inhibitors are discovered with low μM activity as determined by a combination of fluorescence anisotropy and 1H-15N HSQC experiments. In addition, hit expansion yields a series of PPI inhibitors with defined structure-activity relationships. It is envisaged that the generality of the approach will enable discovery of inhibitors of a wide range of unrelated secondary structure-mediated PPIs.
Collapse
Affiliation(s)
- Sergio Celis
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Fruzsina Hobor
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas James
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Gail J Bartlett
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Amaurys A Ibarra
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Zsófia Hegedüs
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Kristina Hetherington
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - David M Andrews
- Early Oncology, AstraZeneca Hodgkin Building, Chesterford Research Campus, Saffron Walden Cambridge CB10 1XL UK
| | - Adam Nelson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
37
|
Glogowski MP, Matthews JM, Lawhorn BG, Minbiole KPC. Diastereoselective Copper-Mediated Conjugate Addition of Functionalized Magnesiates for the Preparation of Bisaryl Nrf2 Activators. J Org Chem 2021; 86:3120-3137. [PMID: 33555189 DOI: 10.1021/acs.joc.0c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A two-step metal-halogen exchange and diastereoselective copper-mediated Michael addition onto a complex α,β-unsaturated system has been developed and applied toward the synthesis of bisaryl Nrf2 activators. Optimization of metal-halogen exchange using (n-Bu)3MgLi allowed for the preparation of custom aryl-functionalized magnesiate reagents at noncryogenic temperatures. Following transmetalation, these reagents were used in highly diastereoselective Michael addition reactions.
Collapse
Affiliation(s)
- Michal P Glogowski
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jay M Matthews
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Brian G Lawhorn
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Kevin P C Minbiole
- Department of Chemistry, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
38
|
Abstract
INTRODUCTION PROTACs represent a novel class of heterobifunctional molecules that simultaneously bind to a target protein and to an E3 ligase complex, resulting in the transfer of ubiquitin and initiating a process ultimately causing the proteasomal degradation of the target protein. This mechanism of action imbues PROTACs with the ability to modulate target biology in unique ways compared to inhibitors, and the development of PROTACs as therapeutic agents is expected to result in new medicines to treat multiple diseases. AREAS COVERED This review includes published PCT (WO) patent applications covering January 2013 through June 2020. Only English-language patent applications with exemplified PROTACs reported to degrade a target protein(s) were deemed in scope, and the definition of 'PROTAC' was restricted to a bifunctional molecule which contains a discrete binding element for a specific degradation target(s), as well as a separate discrete E3 ligase-binding moiety. EXPERT OPINION Delivering on the enormous potential of PROTACs will require the development of PROTAC medicines that are differentiated from traditional small-molecule inhibitors. The modular composition of PROTACs affords both opportunities and challenges in securing robust intellectual property, and we envision that requirements for novelty are likely to evolve as this area matures.
Collapse
|
39
|
Jo J, Ibrahim L, Iaconelli J, Kwak J, Kumar M, Jung Y, Lairson LL, Chatterjee AK, Schultz PG, Bollong MJ, Yun H. Discovery and SAR studies of 3-amino-4-(phenylsulfonyl)tetrahydrothiophene 1,1-dioxides as non-electrophilic antioxidant response element (ARE) activators. Bioorg Chem 2021; 108:104614. [PMID: 33508678 DOI: 10.1016/j.bioorg.2020.104614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
The transcription factor NRF2 controls resistance to oxidative insult and is thus a key therapeutic target for treating a number of disease states associated with oxidative stress and aging. We previously reported CBR-470-1, a bis-sulfone which activates NRF2 by increasing the levels of methylglyoxal, a metabolite that covalently modifies NRF2 repressor KEAP1. Here, we report the design, synthesis, and structure activity relationship of a series of bis-sulfones derived from this unexplored chemical template. We identify analogs with sub-micromolar potencies, 7f and 7g, as well as establish that efficacious NRF2 activation can be achieved by non-toxic analogs 7c, 7e, and 9, a key limitation with CBR-470-1. Further efforts to identify non-covalent NRF2 activators of this kind will likely provide new insight into revealing the role of central metabolism in cellular signaling.
Collapse
Affiliation(s)
- Jeyun Jo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Lara Ibrahim
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines, La Jolla, CA 92037, United States
| | - Jonathan Iaconelli
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines, La Jolla, CA 92037, United States
| | - Jinsook Kwak
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Manoj Kumar
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, United States
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines, La Jolla, CA 92037, United States
| | - Arnab K Chatterjee
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, United States
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines, La Jolla, CA 92037, United States; California Institute for Biomedical Research, 11119 North Torrey Pines Road, Suite 100, La Jolla, CA 92037, United States
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines, La Jolla, CA 92037, United States.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; Department of Chemistry, The Scripps Research Institute, 10550, North Torrey Pines, La Jolla, CA 92037, United States.
| |
Collapse
|
40
|
Ohuchi S, Koyama H, Shigehisa H. Catalytic Synthesis of Cyclic Guanidines via Hydrogen Atom Transfer and Radical-Polar Crossover. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shunya Ohuchi
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Hiroki Koyama
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Hiroki Shigehisa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
41
|
Cheng Y, Cheng L, Gao X, Chen S, Wu P, Wang C, Liu Z. Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3 inflammasome activation in myocardial ischemia-reperfusion injury. Am J Cancer Res 2021; 11:861-877. [PMID: 33391509 PMCID: PMC7738871 DOI: 10.7150/thno.48436] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose: Kelch ECH-associating protein 1 (Keap1) is a crucial chaperonin for E3 ubiquitin ligases. Modification of the key reactive cysteine residues in Keap1 affects the interaction between Keap1 and its substrate nuclear factor erythroid 2-related factor 2 (Nrf2), subsequently regulating oxidative stress and NLPR3 inflammasome activation, which are important factors for myocardial ischemia-reperfusion injury (MI/RI). Pubescenoside A (PBA), an active compound from Ilex pubescens, has antithrombotic and anti-inflammatory effects. However, the effect of PBA on MI/RI is still unknown. In the present study, we aimed to determine whether PBA can protect the heart against MI/RI and clarify the direct target and the underlying mechanism of PBA. Methods: The left anterior descending artery (LAD) ligation-induced MI/RI mice model or oxygen and glucose deprivation/reperfusion (OGD/R) were used to evaluate the cardioprotective effect of PBA. Pull-down assays, co-immunoprecipitation (Co-IP) assays, LC/MS/MS, isothermal calorimetry (ITC) experiments and covalent docking were used to identify the target of PBA. Results: PBA protected cardiomyocytes against OGD/R in vitro and LAD-induced MI/RI in vivo. PBA suppressed NLRP3 inflammation activation and induced the Nrf2 signaling pathway. Interestingly, PBA targeted Keap1 by selectively covalently binding to conserved cysteine residues, cysteine 77 (Cys77) in the BTB domain and cysteine 434 (Cys434) in the Kelch domain of Keap1, subsequently inhibiting ubiquitination of Nrf2 and activating antioxidant enzymes. Additionally, the cysteines of Keap1 has different degree of activation by PBA as follows: Cys77 > Cys434 > Cys23 > Cys38 > Cys226 > Cys273, which further elucidates the cysteine sensitivity of Keap1. Conclusions: Our results indicated that PBA might be a new Nrf2 activator that covalently binds to two critical domains of Keap1, and shows cardioprotective activities against ischemia-reperfusion injury.
Collapse
|
42
|
Begnini F, Poongavanam V, Over B, Castaldo M, Geschwindner S, Johansson P, Tyagi M, Tyrchan C, Wissler L, Sjö P, Schiesser S, Kihlberg J. Mining Natural Products for Macrocycles to Drug Difficult Targets. J Med Chem 2020; 64:1054-1072. [PMID: 33337880 PMCID: PMC7872424 DOI: 10.1021/acs.jmedchem.0c01569] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Lead
generation for difficult-to-drug targets that have large,
featureless, and highly lipophilic or highly polar and/or flexible
binding sites is highly challenging. Here, we describe how cores of
macrocyclic natural products can serve as a high-quality in
silico screening library that provides leads for difficult-to-drug
targets. Two iterative rounds of docking of a carefully selected set
of natural-product-derived cores led to the discovery of an uncharged
macrocyclic inhibitor of the Keap1-Nrf2 protein–protein interaction,
a particularly challenging target due to its highly polar binding
site. The inhibitor displays cellular efficacy and is well-positioned
for further optimization based on the structure of its complex with
Keap1 and synthetic access. We believe that our work will spur interest
in using macrocyclic cores for in silico-based lead
generation and also inspire the design of future macrocycle screening
collections.
Collapse
Affiliation(s)
- Fabio Begnini
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | | | - Björn Over
- Department of Medicinal Chemistry, Research and Early Development, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Marie Castaldo
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Stefan Geschwindner
- Structure, Biophysics & Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Patrik Johansson
- Structure, Biophysics & Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Mohit Tyagi
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Christian Tyrchan
- Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Lisa Wissler
- Structure, Biophysics & Fragment-Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Peter Sjö
- Drugs for Neglected Diseases initiative (DNDi), 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| |
Collapse
|
43
|
Keiffer S, Carneiro MG, Hollander J, Kobayashi M, Pogoryelev D, Ab E, Theisgen S, Müller G, Siegal G. NMR in target driven drug discovery: why not? JOURNAL OF BIOMOLECULAR NMR 2020; 74:521-529. [PMID: 32901320 PMCID: PMC7683447 DOI: 10.1007/s10858-020-00343-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/17/2020] [Indexed: 05/09/2023]
Abstract
No matter the source of compounds, drug discovery campaigns focused directly on the target are entirely dependent on a consistent stream of reliable data that reports on how a putative ligand interacts with the protein of interest. The data will derive from many sources including enzyme assays and many types of biophysical binding assays such as TR-FRET, SPR, thermophoresis and many others. Each method has its strengths and weaknesses, but none is as information rich and broadly applicable as NMR. Here we provide a number of examples of the utility of NMR for enabling and providing ongoing support for the early pre-clinical phase of small molecule drug discovery efforts. The examples have been selected for their usefulness in a commercial setting, with full understanding of the need for speed, cost-effectiveness and ease of implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Eiso Ab
- ZoBio, JH Oortweg 19, 2333CH, Leiden, Netherlands
| | | | - Gerhard Müller
- Gotham GmbH, Am Klopferspitz 19a, 82152, Martinsried, Germany
| | - Gregg Siegal
- ZoBio, JH Oortweg 19, 2333CH, Leiden, Netherlands.
- Amsterdam Institute of Molecular and Life Sciences, Free University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions. Eur J Med Chem 2020; 207:112734. [PMID: 32866756 DOI: 10.1016/j.ejmech.2020.112734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor which regulates the constitutive and inducible transcription of a wide array of genes and confers protection against a variety of pathologies. Directly disrupting Kelch-like ECH-associated protein 1 (KEAP1)-NRF2 protein-protein interaction (PPI) has been explored as a promising strategy to activate NRF2. We reported here the first identification of a series of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 inhibitors. Our efforts led to the potent small molecule KEAP1-NRF2 inhibitor, 20c, which exhibited a Kd of 24 nM to KEAP1 and an IC50 of 75 nM in disrupting KEAP1-NRF2 interaction. Subsequent biological studies provided consistent evidence across mouse macrophage cell-based and in vivo models that 20c induced NRF2 target gene expression and enhanced downstream antioxidant and anti-inflammatory activities. Our study not only demonstrated that small molecule KEAP1-NRF2 PPI inhibitors can be potential preventive and therapeutic agents for diseases and conditions involving oxidative stress and inflammation but also enriched the chemical diversity of the KEAP1-NRF2 inhibitors.
Collapse
|
45
|
Mou Y, Wen S, Li YX, Gao XX, Zhang X, Jiang ZY. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. Eur J Med Chem 2020; 202:112532. [PMID: 32668381 DOI: 10.1016/j.ejmech.2020.112532] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 12/16/2022]
Abstract
Therapeutic targeting the protein-protein interaction (PPI) of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its main regulator, Kelch-like ECH-Associating protein 1 (Keap1) has been emerged as a feasible way to combat oxidative stress related diseases, due to the key role of Nrf2 in oxidative stress regulation. In recent years, many efforts have been made to develop potent Keap1-Nrf2 inhibitors with new chemical structures. Various molecules with diverse chemical structures have been reported and some compounds exhibit high potency. This review summarizes peptide and small molecule Keap1-Nrf2 inhibitors reported recently. We also highlight the pharmacological effects and discuss the possible therapeutic application of Keap1-Nrf2 inhibitors.
Collapse
Affiliation(s)
- Yi Mou
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Shuai Wen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Yu-Xiu Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Xin-Xing Gao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Xin Zhang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, 225300, China
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
46
|
Malik I, Shah FA, Ali T, Tan Z, Alattar A, Ullah N, Khan AU, Alshaman R, Li S. Potent Natural Antioxidant Carveol Attenuates MCAO-Stress Induced Oxidative, Neurodegeneration by Regulating the Nrf-2 Pathway. Front Neurosci 2020; 14:659. [PMID: 32714135 PMCID: PMC7344277 DOI: 10.3389/fnins.2020.00659] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is a severe neurological disorder with a high prevalence rate in developed countries. It is characterized by permanent or transient cerebral ischemia and it activates syndrome of pathological events such as membrane depolarization, glutamate excitotoxicity, and intracellular calcium buildup. Carveol is widely employed as anti-inflammatory and antioxidant in traditional Chinese medicine. In the present study, the neuroprotective effects of post-treated carveol were demonstrated against transient middle cerebral artery occlusion (MCAO) induced focal ischemic cerebral injury. Male Sprague Dawley (SD) rats were subjected to two different experimental protocols to determine the dose and effects of carveol, and to demonstrate the underlying role of the nuclear factor E2-related factor (Nrf2) pathway. Our results showed that MCAO induced marked neuronal injury in the ipsilateral cortex and striatum associated with higher inflammatory cytokines expression, along with apoptotic markers such as caspase-3 and the phosphorylated c-Jun N-terminal kinase (JNK). Furthermore, MCAO induced a marked increase in oxidative stress as evidenced by high lipid peroxidase (LPO) content accompanied by the depressed antioxidant system. Carveol significantly reversed the oxidative stress and downregulated inflammatory cascades by enhancing endogenous antioxidant mechanisms including the Nrf2 gene, which critically regulates the expression of several downstream antioxidants. Further, to determine the possible involvement of Nrf2 in carveol mediated neuroprotection, we antagonized Nrf2 by all-trans retinoic acid (ATRA), and such treatment abrogated the protective effects of carveol accompanied with exaggerated neuronal toxicity as demonstrated by higher infarction area. The target effects of carveol were further supported by molecular docking analysis of drug-protein interactions. Together, our findings suggest that carveol could activate endogenous master anti-oxidant Nrf2, which further regulates the expression of downstream antioxidants, eventually ameliorating MCAO-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Imran Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.,State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Najeeb Ullah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
47
|
Vargas-Mendoza N, Morales-González Á, Morales-Martínez M, Soriano-Ursúa MA, Delgado-Olivares L, Sandoval-Gallegos EM, Madrigal-Bujaidar E, Álvarez-González I, Madrigal-Santillán E, Morales-Gonzalez JA. Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications. Biomedicines 2020; 8:biomedicines8050122. [PMID: 32423098 PMCID: PMC7277158 DOI: 10.3390/biomedicines8050122] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Silymarin (SM) is a mixture of flavolignans extracted from the seeds of species derived from Silybum marianum, commonly known as milk thistle or St. Mary'sthistle. These species have been widely used in the treatment of liver disorders in traditional medicine since ancient times. Several properties had been attributed to the major SM flavolignans components, identified as silybin, isosilybin, silychristin, isosilychristin, and silydianin. Previous research reported antioxidant and protective activities, which are probably related to the activation of the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), known as a master regulator of the cytoprotector response. Nrf2 is a redox-sensitive nuclear transcription factor able to induce the downstream-associated genes. The disruption of Nrf2 signaling has been associated with different pathological conditions. Some identified phytochemicals from SM had shown to participate in the Nrf2 signaling pathway; in particular, they have been suggested as activators that disrupt interactions in the Keap1-Nrf2 system, but also as antioxidants or with additional actions regarding Nrf2 regulation. Thus, the study of these molecules makes them appear attractive as novel targets for the treatment or prevention of several diseases.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico;
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Mexico City CP 14420, Mexico;
| | - Marvin A. Soriano-Ursúa
- Academia de Fisiología Humana, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Luis Delgado-Olivares
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Circuito Actopan-Tilcuauttla, s/n, Ex hacienda La Concepción, San Agustín Tlaxiaca, Hidalgo CP 42160, Mexico; (L.D.-O.); (E.M.S.-G.)
| | - Eli Mireya Sandoval-Gallegos
- Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Circuito Actopan-Tilcuauttla, s/n, Ex hacienda La Concepción, San Agustín Tlaxiaca, Hidalgo CP 42160, Mexico; (L.D.-O.); (E.M.S.-G.)
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (E.M.-S. & J.A.M.-G.)
| | - José A. Morales-Gonzalez
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (E.M.-S. & J.A.M.-G.)
| |
Collapse
|
48
|
Lu M, Zhang X, Zhao J, You Q, Jiang Z. A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions. Redox Biol 2020; 34:101565. [PMID: 32422540 PMCID: PMC7231841 DOI: 10.1016/j.redox.2020.101565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) and its negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (Keap1), control the redox and metabolic homeostasis and oxidative stress. Inhibitors of Keap1-Nrf2 interaction are promising in oxidative stress related inflammatory diseases but now hit hurdles. By utilizing thiazolidinone moiety to shield the key carboxyl pharmacophore in Keap1-Nrf2 inhibitor, a hydrogen peroxide (H2O2)-responsive prodrug pro2 was developed. The prodrug modification improved the physicochemical properties and cell membrane permeability of the parent drug. Pro2 was stable and stayed inactive under various physiological conditions, while became active by stimulation of H2O2 or inflammation derived reactive oxygen species. Moreover, pro2 exhibited proper pharmacokinetic profile suitable for oral administration and enhanced anti-inflammatory efficiency in vivo. Thus, this novel prodrug approach may not only provide an important advance in the therapy of chronic inflammatory diseases with high level of H2O2, but also offer a fresh solution to improve the drug-like and selectivity issues of Keap1-Nrf2 inhibitors. Pro2 was developed by utilizing H2O2-responsive thiazolidinone moiety to shield carboxyl group in Keap1-Nrf2 inhibitor. Pro2 was stable and inactive under various physiological conditions, while became active under inflammatory conditions. Pro2 exhibited proper pharmacokinetic profile for oral administration and enhanced anti-inflammatory efficiency in vivo.
Collapse
Affiliation(s)
- Mengchen Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
49
|
Willems H, De Cesco S, Svensson F. Computational Chemistry on a Budget: Supporting Drug Discovery with Limited Resources. J Med Chem 2020; 63:10158-10169. [DOI: 10.1021/acs.jmedchem.9b02126] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Henriëtte Willems
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, U.K
| | - Stephane De Cesco
- Alzheimer’s Research UK Oxford Drug Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Fredrik Svensson
- Alzheimer’s Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
50
|
Abstract
Activation of the transcription factor Nrf2 via the Keap1-Nrf2-ARE signaling system regulates the transcription and subsequent expression of cellular cytoprotective proteins and plays a crucial role in preventing pathological conditions exacerbated by the overproduction of oxidative stress. In addition to electrophilic modulators, direct non-covalent inhibitors that interrupt the Keap1-Nrf2 protein-protein interaction (PPI) leading to Nrf2 activation have attracted a great deal of attention as potential preventive and therapeutic agents for oxidative stress-related diseases. Structural studies of Keap1-binding ligands, development of biochemical and cellular assays, and new structure-based design approaches have facilitated the discovery of small molecule PPI inhibitors. This perspective reviews the Keap1-Nrf2-ARE system, its physiological functions, and the recent progress in the discovery and the potential applications of direct inhibitors of Keap1-Nrf2 PPI.
Collapse
|