1
|
Panda TR, Patra M. Kinetically Inert Platinum (II) Complexes for Improving Anticancer Therapy: Recent Developments and Road Ahead. ChemMedChem 2024; 19:e202400196. [PMID: 38757478 DOI: 10.1002/cmdc.202400196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The search for better chemotherapeutic drugs to alleviate the deficiencies of existing platinum (Pt) drugs has picked up the pace in the millennium. There has been a disparate effort to design better and safer Pt drugs to deal with the problems of deactivation, Pt resistance and toxic side effects of clinical Pt drugs. In this review, we have discussed the potential of kinetically inert Pt complexes as an emerging class of next-generation Pt drugs. The introduction gives an overview about the development, use, mechanism of action and side effects of clinical Pt drugs as well as the various approaches to improve some of their pharmacological properties. We then describe the impact of kinetic lability on the pharmacology of functional Pt drugs including deactivation, antitumor efficacy, toxicity and resistance. Following a brief overview of numerous pharmacological advantages that a non-functional kinetically inert Pt complex can offer; we discussed structurally different classes of kinetically inert Pt (II) complexes highlighting their unique pharmacological features.
Collapse
Affiliation(s)
- Tushar Ranjan Panda
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| | - Malay Patra
- Laboratory of Medicinal Chemistry and Cell Biology, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, 400005, Mumbai, India
| |
Collapse
|
2
|
Elias MG, Aputen AD, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Chemotherapeutic Potential of Chlorambucil-Platinum(IV) Prodrugs against Cisplatin-Resistant Colorectal Cancer Cells. Int J Mol Sci 2024; 25:8252. [PMID: 39125821 PMCID: PMC11312340 DOI: 10.3390/ijms25158252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Chlorambucil-platinum(IV) prodrugs exhibit multi-mechanistic chemotherapeutic activity with promising anticancer potential. The platinum(II) precursors of the prodrugs have been previously found to induce changes in the microtubule cytoskeleton, specifically actin and tubulin of HT29 colon cells, while chlorambucil alkylates the DNA. These prodrugs demonstrate significant anticancer activity in 2D cell and 3D spheroid viability assays. A notable production of reactive oxygen species has been observed in HT29 cells 72 h post treatment with prodrugs of this type, while the mitochondrial membrane potential was substantially reduced. The cellular uptake of the chlorambucil-platinum(IV) prodrugs, assessed by ICP-MS, confirmed that active transport was the primary uptake mechanism, with platinum localisation identified primarily in the cytoskeletal fraction. Apoptosis and necrosis were observed at 72 h of treatment as demonstrated by Annexin V-FITC/PI assay using flow cytometry. Immunofluorescence measured via confocal microscopy showed significant changes in actin and tubulin intensity and in architecture. Western blot analysis of intrinsic and extrinsic pathway apoptotic markers, microtubule cytoskeleton markers, cell proliferation markers, as well as autophagy markers were studied post 72 h of treatment. The proteomic profile was also studied with a total of 1859 HT29 proteins quantified by mass spectroscopy, with several dysregulated proteins. Network analysis revealed dysregulation in transcription, MAPK markers, microtubule-associated proteins and mitochondrial transport dysfunction. This study confirms that chlorambucil-platinum(IV) prodrugs are candidates with promising anticancer potential that act as multi-mechanistic chemotherapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| | - Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Meena Mikhael
- Mass Spectrometry Facility, Western Sydney University, Sydney, NSW 2751, Australia;
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (A.D.A.); (S.K.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.); (K.F.S.)
| |
Collapse
|
3
|
Elias MG, Fatima S, Mann TJ, Karan S, Mikhael M, de Souza P, Gordon CP, Scott KF, Aldrich-Wright JR. Anticancer Effect of Pt IIPHEN SS, Pt II5ME SS, Pt II56ME SS and Their Platinum(IV)-Dihydroxy Derivatives against Triple-Negative Breast Cancer and Cisplatin-Resistant Colorectal Cancer. Cancers (Basel) 2024; 16:2544. [PMID: 39061185 PMCID: PMC11274883 DOI: 10.3390/cancers16142544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Development of resistance to cisplatin, oxaliplatin and carboplatin remains a challenge for their use as chemotherapies, particularly in breast and colorectal cancer. Here, we compare the anticancer effect of novel complexes [Pt(1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtIIPHENSS), [Pt(5-methyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtII5MESS) and [Pt(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)](NO3)2 (PtII56MESS) and their platinum(IV)-dihydroxy derivatives with cisplatin. Complexes are greater than 11-fold more potent than cisplatin in both 2D and 3D cell line cultures with increased selectivity for cancer cells over genetically stable cells. ICP-MS studies showed cellular uptake occurred through an active transport mechanism with considerably altered platinum concentrations found in the cytoskeleton across all complexes after 24 h. Significant reactive oxygen species generation was observed, with reduced mitochondrial membrane potential at 72 h of treatment. Late apoptosis/necrosis was shown by Annexin V-FITC/PI flow cytometry assay, accompanied by increased sub-G0/G1 cells compared with untreated cells. An increase in S and G2+M cells was seen with all complexes. Treatment resulted in significant changes in actin and tubulin staining. Intrinsic and extrinsic apoptosis markers, MAPK/ERK and PI3K/AKT activation markers, together with autophagy markers showed significant activation of these pathways by Western blot. The proteomic profile investigated post-72 h of treatment identified 1597 MDA-MB-231 and 1859 HT29 proteins quantified by mass spectroscopy, with several differentially expressed proteins relative to no treatment. GO enrichment analysis revealed a statistically significant enrichment of RNA/DNA-associated proteins in both the cell lines and specific additional processes for individual drugs. This study shows that these novel agents function as multi-mechanistic chemotherapeutics, offering promising anticancer potential, and thereby supporting further research into their application as cancer therapeutics.
Collapse
Affiliation(s)
- Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
| | - Shadma Fatima
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Timothy J. Mann
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Meena Mikhael
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Paul de Souza
- Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Kingswood, NSW 2747, Australia;
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
| | - Kieran F. Scott
- Medical Oncology, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.F.); (T.J.M.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (M.G.E.); (S.K.); (M.M.); (C.P.G.)
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| |
Collapse
|
4
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Platinum(IV) Prodrugs Incorporating an Indole-Based Derivative, 5-Benzyloxyindole-3-Acetic Acid in the Axial Position Exhibit Prominent Anticancer Activity. Int J Mol Sci 2024; 25:2181. [PMID: 38396859 PMCID: PMC10888562 DOI: 10.3390/ijms25042181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Kinetically inert platinum(IV) complexes are a chemical strategy to overcome the impediments of standard platinum(II) antineoplastic drugs like cisplatin, oxaliplatin and carboplatin. In this study, we reported the syntheses and structural characterisation of three platinum(IV) complexes that incorporate 5-benzyloxyindole-3-acetic acid, a bioactive ligand that integrates an indole pharmacophore. The purity and chemical structures of the resultant complexes, P-5B3A, 5-5B3A and 56-5B3A were confirmed via spectroscopic means. The complexes were evaluated for anticancer activity against multiple human cell lines. All complexes proved to be considerably more active than cisplatin, oxaliplatin and carboplatin in most cell lines tested. Remarkably, 56-5B3A demonstrated the greatest anticancer activity, displaying GI50 values between 1.2 and 150 nM. Enhanced production of reactive oxygen species paired with the decline in mitochondrial activity as well as inhibition of histone deacetylase were also demonstrated by the complexes in HT29 colon cells.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
- Ingham Institute, Sydney, NSW 2170, Australia;
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Jennette A. Sakoff
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Kieran F. Scott
- Ingham Institute, Sydney, NSW 2170, Australia;
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| |
Collapse
|
5
|
Park SJ, Song IH, Yeom GS, Nimse SB. The microtubule cytoskeleton: A validated target for the development of 2-Aryl-1H-benzo[d]imidazole derivatives as potential anticancer agents. Biomed Pharmacother 2024; 171:116106. [PMID: 38181711 DOI: 10.1016/j.biopha.2023.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
In this study, a series of 2-Aryl-1H-benzo[d]imidazole derivatives were developed to target intra- and extracellular microtubule networks. Compounds O-7 and O-10 showed impressive anti-proliferative activity across various tested cell lines, demonstrating selectivity indexes of 151.7 and 61.9, respectively. O-7 achieved an IC50 value of 0.236 ± 0.096 μM, while O-10 showed an IC50 value of 0.622 ± 0.13 μM against A549 cell lines. The induction of early-stage apoptosis in a dose-dependent manner further underscored the potential of O-7 and O-10 as effective anti-proliferative agents. O-7 and O-10 exhibited substantial inhibition of wound closure, with wound closure percentages decreasing from 23% at 0 μM to 0.43% and 2.62% at 20 μM, respectively. Colony formation reduction rates were impressive, with O-7 at 74.2% and O-10 at 81.2%. These results indicate that the O-7 and O-10 can impede cancer cell migration and have a high potential to curtail colony formation. The mode of action investigations for O-7 and O-10 revealed that O-7 could inhibit in vitro tubulin polymerization and disrupt the intracellular microtubule cytoskeleton. This disruption led to cell cycle arrest in the G2/M phase, indicating that O-7 exerts its anticancer activity through microtubule destabilization. However, O-10 shows a different mode of action than O-7 and requires further investigation. Overall, our study showcases the potential of the synthesized benzimidazole derivatives as novel and selective anticancer agents, motivating further exploration of their pharmacological properties and therapeutic applications.
Collapse
Affiliation(s)
- Su Jeong Park
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - In-Ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Gyu Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea.
| |
Collapse
|
6
|
Baz J, Khoury A, Elias MG, Mansour N, Mehanna S, Hammoud O, Gordon CP, Taleb RI, Aldrich-Wright JR, Daher CF. Enhanced potency of a chloro-substituted polyaromatic platinum(II) complex and its platinum(IV) prodrug against lung cancer. Chem Biol Interact 2024; 388:110834. [PMID: 38103879 DOI: 10.1016/j.cbi.2023.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The present study investigates the anti-neoplastic activity of a platinum (II) complex, Pt(II)5ClSS, and its platinum (IV) di-hydroxido analogue, Pt(IV)5ClSS, against mesenchymal cells (MCs), lung (A549), melanoma (A375) and breast (MDA-MB-231) cancer cells. Both complexes exhibited up to 14-fold improved cytotoxicity compared to cisplatin. NMR was used to determine that ∼25 % of Pt(IV)5ClSS was reduced to Pt(II)5ClSS in the presence of GSH (Glutathione) after 72 h. The complex 1H NMR spectra acquired for Pt(II)5ClSS with GSH shows evidence of degradation and environmental effects (∼30 %). The prominence of the 195Pt peak at ∼ -2800 ppm suggests that a significant amount of Pt(II)5ClSS remained in the mixture. Pt(II)5ClSS and Pt(IV)5ClSS have shown exceptional selectivity to cancer cells in comparison to MCs (IC50 > 150 μM). Western blot analysis of Pt(II)5ClSS and Pt(IV)5ClSS on A549 cells revealed significant upregulation of cleaved PARP-1, BAX/Bcl2 ratio, cleaved caspase 3 and cytochrome thus suggesting apoptosis was induced through the intrinsic pathway. Flow cytometry also revealed significant cell death by apoptosis. Treatment with Pt(II)5ClSS and Pt(IV)5ClSS also showed significant amounts of free radical production while the COMET assay showed that both complexes cause minimal DNA damage. Cellular uptake results via ICP-MS suggest a time-dependent active mode of transport for both complexes with Pt(II)5ClSS being transported at a higher rate compared to Pt(IV)5ClSS. A Dose Escalation Study carried out on BALB/c mice showed that Pt(II)5ClSS and Pt(IV)5ClSS were approximately 8- folds and 12.5-folds, respectively, more tolerated than cisplatin. The present study provides evidence that both complexes may have the characteristics of an efficient and potentially safe anti-tumor drug that could support NSCLC treatment.
Collapse
Affiliation(s)
- Joy Baz
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Aleen Khoury
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, 2751, NSW, Australia
| | - Maria George Elias
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon; School of Science, Western Sydney University, Locked Bag 1797, Penrith South, 2751, NSW, Australia
| | - Najwa Mansour
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Stephanie Mehanna
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Omar Hammoud
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Christopher P Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, 2751, NSW, Australia
| | - Robin I Taleb
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, 2751, NSW, Australia.
| | - Costantine F Daher
- School of Arts and Sciences, Natural Sciences Department, Lebanese American University, Byblos, Mount Lebanon, Lebanon.
| |
Collapse
|
7
|
Liang SM, Liang GB, Wang HL, Jiang H, Ma XL, Wei JH, Huang RZ, Zhang Y. Discovery of 4-(N-dithiobenzyl piperazine)-1,8-naphthalimide as a potent multi-target antitumor agent with good efficacy, limited toxicity, and low resistance. Eur J Med Chem 2024; 263:115937. [PMID: 37972528 DOI: 10.1016/j.ejmech.2023.115937] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
A series of 4-(N-dithiobenzyl piperazine)-1,8-naphthalimide derivatives 4-6 were designed, synthesized, and evaluated as novel multi-target antitumor agents. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) results showed that compounds 5j, 5k, and 6j exhibited superior in vitro antiproliferative activity in MGC-803, HepG-2, SKOV-3, and T24 cancer cell lines and the cisplatin-resistant cell line A549/DDP. HepG-2, SKOV-3, and T24 xenograft assay results revealed that compounds 5j, 5k, and 6j exhibited good antitumor effects compared with amonafide. The pathology results indicated that compound 5j exhibited the least comprehensive toxicity among the three compounds, identifying compound 5j as a good candidate antitumor agent with good efficacy, limited toxicity, and low resistance. Compound 5j was thus chose for further antitumor mechanism investigation. Results from the omics research, confocal immunofluorescence, Western blot, transmission electron microscopy, and flow cytometry indicated that compound 5j exerted antitumor effects through multiple mechanisms, including ferroptosis, autophagy, apoptosis, and cell cycle arrest. These results suggest that screening novel 1,8-naphthalimide-based antitumor agents for good efficacy, limited toxicity, and low resistance based on a multi-target drug strategy is feasible.
Collapse
Affiliation(s)
- Si-Min Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Gui-Bin Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hong Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
8
|
Tao H, Tan J, Zhang H, Ren H, Cai Z, Liu H, Wen B, Du J, Li G, Chen S, Xiao H, Deng Z. cGAS-STING Pathway Activation and Systemic Anti-Tumor Immunity Induction via Photodynamic Nanoparticles with Potent Toxic Platinum DNA Intercalator Against Uveal Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302895. [PMID: 37807827 PMCID: PMC10667795 DOI: 10.1002/advs.202302895] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Indexed: 10/10/2023]
Abstract
The cGAS-STING pathway, as a vital innate immune signaling pathway, has attracted considerable attention in tumor immunotherapy research. However, STING agonists are generally incapable of targeting tumors, thus limiting their clinical applications. Here, a photodynamic polymer (P1) is designed to electrostatically couple with 56MESS-a cationic platinum (II) agent-to form NPPDT -56MESS. The accumulation of NPPDT -56MESS in the tumors increases the efficacy and decreases the systemic toxicity of the drugs. Moreover, NPPDT -56MESS generates reactive oxygen species (ROS) under the excitation with an 808 nm laser, which then results in the disintegration of NPPDT -56MESS. Indeed, the ROS and 56MESS act synergistically to damage DNA and mitochondria, leading to a surge of cytoplasmic double-stranded DNA (dsDNA). This way, the cGAS-STING pathway is activated to induce anti-tumor immune responses and ultimately enhance anti-cancer activity. Additionally, the administration of NPPDT -56MESS to mice induces an immune memory effect, thus improving the survival rate of mice. Collectively, these findings indicate that NPPDT -56MESS functions as a chemotherapeutic agent and cGAS-STING pathway agonist, representing a combination chemotherapy and immunotherapy strategy that provides novel modalities for the treatment of uveal melanoma.
Collapse
Affiliation(s)
- Hui Tao
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Jia Tan
- Eye Center of Xiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- Hunan Key Laboratory of Ophthalmology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunan410008P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hong Ren
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Ziyi Cai
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Hanhan Liu
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Bingyu Wen
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Jiaqi Du
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Gaoyang Li
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Shijie Chen
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhihong Deng
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| |
Collapse
|
9
|
Borutzki Y, Skos L, Gerner C, Meier‐Menches SM. Exploring the Potential of Metal-Based Candidate Drugs as Modulators of the Cytoskeleton. Chembiochem 2023; 24:e202300178. [PMID: 37345897 PMCID: PMC10946712 DOI: 10.1002/cbic.202300178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.
Collapse
Affiliation(s)
- Yasmin Borutzki
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Lukas Skos
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| |
Collapse
|
10
|
Kshetri M, Jogadi W, Alqarni S, Datta P, Cheline M, Sharma A, Betters T, Broyles D, Zheng YR. Exploring the Impact of Head Group Modifications on the Anticancer Activities of Fatty-Acid-like Platinum(IV) Prodrugs: A Structure-Activity Relationship Study. Int J Mol Sci 2023; 24:13301. [PMID: 37686109 PMCID: PMC10487970 DOI: 10.3390/ijms241713301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
We conducted the first comprehensive investigation on the impact of head group modifications on the anticancer activities of fatty-acid-like Pt(IV) prodrugs (FALPs), which are a class of platinum-based metallodrugs that target mitochondria. We created a small library of FALPs (1-9) with diverse head group modifications. The outcomes of our study demonstrate that hydrophilic modifications exclusively enhance the potency of these metallodrugs, whereas hydrophobic modifications significantly decrease their cytotoxicity. To further understand this interesting structure-activity relationship, we chose two representative FALPs (compounds 2 and 7) as model compounds: one (2) with a hydrophilic polyethylene glycol (PEG) head group, and the other (7) with a hydrophobic hydrocarbon modification of the same molecular weight. Using these FALPs, we conducted a targeted investigation on the mechanism of action. Our study revealed that compound 2, with hydrophilic modifications, exhibited remarkable penetration into cancer cells and mitochondria, leading to subsequent mitochondrial and DNA damage, and effectively eradicating cancer cells. In contrast, compound 7, with hydrophobic modifications, displayed a significantly lower uptake and weaker cellular responses. The collective results present a different perspective, indicating that increased hydrophobicity may not necessarily enhance cellular uptake as is conventionally believed. These findings provide valuable new insights into the fundamental principles of developing metallodrugs.
Collapse
Affiliation(s)
- Man Kshetri
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Wjdan Jogadi
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Suha Alqarni
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
- Department of Chemistry, University of Bisha, Bisha 67714, Saudi Arabia
| | - Payel Datta
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - May Cheline
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Arpit Sharma
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Tyler Betters
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Deonya Broyles
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, OH 44242, USA (S.A.); (P.D.); (M.C.)
| |
Collapse
|
11
|
Kostrhunova H, McGhie BS, Markova L, Novakova O, Kasparkova J, Aldrich-Wright JR, Brabec V. Platinum(IV) Derivatives of [Pt(1 S,2 S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)] with Diclofenac Ligands in the Axial Positions: A New Class of Potent Multi-action Agents Exhibiting Selectivity to Cancer Cells. J Med Chem 2023. [PMID: 37285472 DOI: 10.1021/acs.jmedchem.3c00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The platinum(II) complex [Pt(1S,2S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (PtII56MeSS, 1) exhibits high potency across numerous cancer cell lines acting by a multimodal mechanism. However, 1 also displays side toxicity and in vivo activity; all details of its mechanism of action are not entirely clear. Here, we describe the synthesis and biological properties of new platinum(IV) prodrugs that combine 1 with one or two axially coordinated molecules of diclofenac (DCF), a non-steroidal anti-inflammatory cancer-selective drug. The results suggest that these Pt(IV) complexes exhibit mechanisms of action typical for Pt(II) complex 1 and DCF, simultaneously. The presence of DCF ligand(s) in the Pt(IV) complexes promotes the antiproliferative activity and selectivity of 1 by inhibiting lactate transporters, resulting in blockage of the glycolytic process and impairment of mitochondrial potential. Additionally, the investigated Pt(IV) complexes selectively induce cell death in cancer cells, and the Pt(IV) complexes containing DCF ligands induce hallmarks of immunogenic cell death in cancer cells.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Brondwyn S McGhie
- School of Science, Western Sydney University, Penrith South DC 1797, New South Wales, Australia
| | - Lenka Markova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Olga Novakova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Penrith South DC 1797, New South Wales, Australia
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| |
Collapse
|
12
|
Coverdale JPC, Kostrhunova H, Markova L, Song H, Postings M, Bridgewater HE, Brabec V, Rogers NJ, Scott P. Triplex metallohelices have enantiomer-dependent mechanisms of action in colon cancer cells. Dalton Trans 2023; 52:6656-6667. [PMID: 37114730 DOI: 10.1039/d3dt00948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Self-assembled enantiomers of an asymmetric di-iron metallohelix differ in their antiproliferative activities against HCT116 colon cancer cells such that the compound with Λ-helicity at the metals becomes more potent than the Δ compound with increasing exposure time. From concentration- and temperature-dependent 57Fe isotopic labelling studies of cellular accumulation we postulate that while the more potent Λ enantiomer undergoes carrier-mediated efflux, for Δ the process is principally equilibrative. Cell fractionation studies demonstrate that both enantiomers localise in a similar fashion; compound is observed mostly within the cytoskeleton and/or genomic DNA, with significant amounts also found in the nucleus and membrane, but with negligible concentration in the cytosol. Cell cycle analyses using flow cytometry reveal that the Δ enantiomer induces mild arrest in the G1 phase, while Λ causes a very large dose-dependent increase in the G2/M population at a concentration significantly below the relevant IC50. Correspondingly, G2-M checkpoint failure as a result of Λ-metallohelix binding to DNA is shown to be feasible by linear dichroism studies, which indicate, in contrast to the Δ compound, a quite specific mode of binding, probably in the major groove. Further, spindle assembly checkpoint (SAC) failure, which could also be responsible for the observed G2/M arrest, is established as a feasible mechanism for the Λ helix via drug combination (synergy) studies and the discovery of tubulin and actin inhibition. Here, while the Λ compound stabilizes F-actin and induces a distinct change in tubulin architecture of HCT116 cells, Δ promotes depolymerization and more subtle changes in microtubule and actin networks.
Collapse
Affiliation(s)
- J P C Coverdale
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - H Kostrhunova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - L Markova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - H Song
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - M Postings
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - H E Bridgewater
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Centre of Exercise, Sport and Life Science, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
| | - V Brabec
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - N J Rogers
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - P Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
13
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Versatile Platinum(IV) Prodrugs of Naproxen and Acemetacin as Chemo-Anti-Inflammatory Agents. Cancers (Basel) 2023; 15:cancers15092460. [PMID: 37173934 PMCID: PMC10177380 DOI: 10.3390/cancers15092460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Developing new and versatile platinum(IV) complexes that incorporate bioactive moieties is a rapidly evolving research strategy for cancer drug discovery. In this study, six platinum(IV) complexes (1-6) that are mono-substituted in the axial position with a non-steroidal anti-inflammatory molecule, naproxen or acemetacin, were synthesised. A combination of spectroscopic and spectrometric techniques confirmed the composition and homogeneity of 1-6. The antitumour potential of the resultant complexes was assessed on multiple cell lines and proved to be significantly improved compared with cisplatin, oxaliplatin and carboplatin. The platinum(IV) derivatives conjugated with acemetacin (5 and 6) were determined to be the most biologically potent, demonstrating GI50 values ranging between 0.22 and 250 nM. Remarkably, in the Du145 prostate cell line, 6 elicited a GI50 value of 0.22 nM, which is 5450-fold more potent than cisplatin. A progressive decrease in reactive oxygen species and mitochondrial activity was observed for 1-6 in the HT29 colon cell line, up to 72 h. The inhibition of the cyclooxygenase-2 enzyme was also demonstrated by the complexes, confirming that these platinum(IV) complexes may reduce COX-2-dependent inflammation and cancer cell resistance to chemotherapy.
Collapse
Affiliation(s)
- Angelico D Aputen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, Sydney, NSW 2751, Australia
| | - Maria George Elias
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, Sydney, NSW 2751, Australia
- Ingham Institute, Liverpool, Sydney, NSW 2170, Australia
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Waratah, Newcastle, NSW 2298, Australia
| | - Jennette A Sakoff
- Calvary Mater Newcastle Hospital, Waratah, Newcastle, NSW 2298, Australia
| | - Christopher P Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, Sydney, NSW 2751, Australia
| | - Kieran F Scott
- Ingham Institute, Liverpool, Sydney, NSW 2170, Australia
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South, Sydney, NSW 2751, Australia
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, Sydney, NSW 2751, Australia
| |
Collapse
|
14
|
Chang CI, Hsieh CC, Wein YS, Kuo CC, Chang CY, Lung J, Cherng JY, Chu PC, Chang JY, Kuo YH. Synthesis and Structure–Activity Relationship of Salvinal Derivatives as Potent Microtubule Inhibitors. Int J Mol Sci 2023; 24:ijms24076386. [PMID: 37047358 PMCID: PMC10093915 DOI: 10.3390/ijms24076386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Salvinal is a natural lignan isolated from the roots of Salvia mitorrhiza Bunge (Danshen). Previous studies have demonstrated its anti-proliferative activity in both drug-sensitive and -resistant cancer cell lines, with IC50 values ranging from 4–17 µM. In this study, a series of salvinal derivatives was synthesized and evaluated for the structure–activity relationship. Among the twenty-four salvinal derivatives, six compounds showed better anticancer activity than salvinal. Compound 25 displayed excellent anticancer activity, with IC50 values of 0.13–0.14 µM against KB, KB-Vin10 (overexpress MDR/Pgp), and KB-7D (overexpress MRP) human carcinoma cell lines. Based on our in vitro microtubule depolymerization assay, compound 25 showed depolymerization activity in a dose-dependent manner. Our findings indicate that compound 25 is a promising anticancer agent with depolymerization activity that has potential for the management of malignance.
Collapse
Affiliation(s)
- Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Cheng-Chih Hsieh
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- School of Pharmacy and Institute of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Yung-Shung Wein
- Department of Chemistry, National Taiwan University, Taipei 114, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Chi-Yen Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan
| | - Jrhau Lung
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi Branch, Chiayi 613, Taiwan
| | - Jong-Yuh Cherng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 613, Taiwan
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutic, China Medical University, Taichung 404, Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 350, Taiwan
- Taipei Cancer Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: or (J.-Y.C.); (Y.-H.K.); Tel.: +886-3-724-6166 (ext. 30701) (J.-Y.C.); +886-4-2205-3366 (ext. 5701) (Y.-H.K.)
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: or (J.-Y.C.); (Y.-H.K.); Tel.: +886-3-724-6166 (ext. 30701) (J.-Y.C.); +886-4-2205-3366 (ext. 5701) (Y.-H.K.)
| |
Collapse
|
15
|
Marotta C, Giorgi E, Binacchi F, Cirri D, Gabbiani C, Pratesi A. An overview of recent advancements in anticancer Pt(IV) prodrugs: New smart drug combinations, activation and delivery strategies. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Khoury A, Elias E, Mehanna S, Shebaby W, Deo KM, Mansour N, Khalil C, Sayyed K, Sakoff JA, Gilbert J, Daher CF, Gordon CP, Taleb RI, Aldrich-Wright JR. Novel Platinum(II) and Platinum(IV) Antitumor Agents that Exhibit Potent Cytotoxicity and Selectivity. J Med Chem 2022; 65:16481-16493. [PMID: 36480933 DOI: 10.1021/acs.jmedchem.2c01310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel platinum(II) complex 47OMESS(II) and its platinum(IV) derivative 47OMESS(IV) were synthesized and characterized. Cytotoxicity studies against mesenchymal cells (MCs) and lung (A549), breast (MDA-MB-231), and melanoma (A375) cancer cells demonstrated 7-20-fold superior activity for both complexes relative to cisplatin. Remarkably, 47OMESS(IV) demonstrated 17-22-fold greater selectivity toward the cancerous cells compared to the non-cancerous MCs. Western blot analysis on A549 cells showed the involvement of the intrinsic apoptotic pathway. Cellular fractionation and uptake experiments in A549 cells using ICP-mass spectrometry (MS) indicated that 47OMESS(II) and 47OMESS(IV) cross the cellular membrane predominantly via active transport mechanisms. The significant improvement in selectivity that is exhibited by 47OMESS(IV) is reported for the first time for this class of complexes.
Collapse
Affiliation(s)
- Aleen Khoury
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia
| | - Elias Elias
- School of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos Lebanon
| | - Stephanie Mehanna
- School of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos Lebanon
| | - Wassim Shebaby
- School of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos Lebanon
| | - Krishant M Deo
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia
| | - Najwa Mansour
- School of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos Lebanon
| | - Christian Khalil
- School of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos Lebanon
| | - Katia Sayyed
- School of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos Lebanon
| | | | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Costantine F Daher
- School of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos Lebanon
| | - Christopher P Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia
| | - Robin I Taleb
- School of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box 36, Byblos Lebanon
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia
| |
Collapse
|
17
|
Khoury A, Sakoff JA, Gilbert J, Karan S, Gordon CP, Aldrich-Wright JR. Potent Platinum(IV) Prodrugs That Incorporate a Biotin Moiety to Selectively Target Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14122780. [PMID: 36559273 PMCID: PMC9853328 DOI: 10.3390/pharmaceutics14122780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Four platinum(IV) prodrugs incorporating a biotin moiety to selectively target cancer cells were synthesised, characterised, and their biological activity assessed. All complexes exhibited exceptional in vitro cytotoxicity against a panel of cancer cell lines, with [Pt(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (2) exhibiting the lowest GI50 of 4 nM in the prostate Du145 cancer cell line. Each complex displayed significantly enhanced activity compared to cisplatin, with 2 being 1000-fold more active in the HT29 colon cancer cell line. Against the MCF-7 breast cancer cell line, in which high levels of biotin receptors are expressed, 2, [Pt(4,7-dimethoxy-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (3), and [Pt(5-methyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)(biotin)(hydroxido)](NO3)2, (4) exhibited enhanced activity compared to their platinum(II) cores, with 4 being 6-fold more active than its platinum(II) precursor. Furthermore, 3 exhibited 3-fold greater selectivity towards MCF-7 breast cancer cells compared to MCF10A breast healthy cells, and this was further confirmed by platinum uptake studies, which showed 3 to have almost 3-fold greater uptake in MCF-7 cells, compared to MCF10A cells. The results show that lipophilicity and selectivity both contributed to the cellular uptake of 1-4; however, this was not always translated to the observed cytotoxicity.
Collapse
Affiliation(s)
- Aleen Khoury
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia
| | | | - Jayne Gilbert
- Calvary Mater Hospital, Waratah, NSW 2298, Australia
| | - Shawan Karan
- Teaching and Research Technical Services, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia
- Correspondence: ; Tel.: +61-246-203-218
| |
Collapse
|
18
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Potent Chlorambucil-Platinum(IV) Prodrugs. Int J Mol Sci 2022; 23:ijms231810471. [PMID: 36142383 PMCID: PMC9499463 DOI: 10.3390/ijms231810471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The DNA-alkylating derivative chlorambucil was coordinated in the axial position to atypical cytotoxic, heterocyclic, and non-DNA coordinating platinum(IV) complexes of type, [PtIV(HL)(AL)(OH)2](NO3)2 (where HL is 1,10-phenanthroline, 5-methyl-1,10-phenanthroline or 5,6-dimethyl-1,10-phenanthroline, AL is 1S,2S-diaminocyclohexane). The resultant platinum(IV)-chlorambucil prodrugs, PCLB, 5CLB, and 56CLB, were characterized using high-performance liquid chromatography, nuclear magnetic resonance, ultraviolet-visible, circular dichroism spectroscopy, and electrospray ionization mass spectrometry. The prodrugs displayed remarkable antitumor potential across multiple human cancer cell lines compared to chlorambucil, cisplatin, oxaliplatin, and carboplatin, as well as their platinum(II) precursors, PHENSS, 5MESS, and 56MESS. Notably, 56CLB was exceptionally potent in HT29 colon, Du145 prostate, MCF10A breast, MIA pancreas, H460 lung, A2780, and ADDP ovarian cell lines, with GI50 values ranging between 2.7 and 21 nM. Moreover, significant production of reactive oxygen species was detected in HT29 cells after treatment with PCLB, 5CLB, and 56CLB up to 72 h compared to chlorambucil and the platinum(II) and (IV) precursors.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia
| | - Maria George Elias
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia
- Ingham Institute, Liverpool, NSW 2170, Australia
| | - Jayne Gilbert
- Calvary Mater Hospital, Waratah, NSW 2298, Australia
| | | | - Christopher P. Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia
| | | | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Sydney, NSW 2751, Australia
- Correspondence: ; Tel.: +61-246203218
| |
Collapse
|
19
|
Kasparkova J, Kostrhunova H, Novohradsky V, Ma L, Zhu G, Milaeva ER, Shtill AA, Vinck R, Gasser G, Brabec V, Nazarov AA. Is antitumor Pt(IV) complex containing two axial lonidamine ligands a true dual- or multi-action prodrug? METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6618656. [PMID: 35759404 DOI: 10.1093/mtomcs/mfac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
This work studied the mechanism of action of a Pt(IV) complex 2 bearing two axial lonidamine ligands, which are selective inhibitors of aerobic glycolysis. The presence of two lonidamine ligands in 2 compared to the parent Pt(II) complex increased its antiproliferative activity, cellular accumulation, and changed its cell cycle profile and mechanism of cell death. In 3D cell culture, 2 showed exceptional antiproliferative activity with IC50 values as low as 1.6 μM in MCF7 cells. The study on the influence of the lonidamine ligands in the Pt complex on glycolysis showed only low potency of ligands to affect metabolic processes in cancer cells, making the investigated complex, not a dual- or multi-action prodrug. However, the Pt(IV) prodrug effectively delivers the cytotoxic Pt(II) complex into cancer cells.
Collapse
Affiliation(s)
- Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Lili Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Elena R Milaeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Alexender A Shtill
- Blokhin Cancer Center, Russian Academy of Medical Sciences, 115478 Moscow, Russian Federation
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Alexey A Nazarov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
20
|
Sun G, Zheng W, Tan P, Zhou J, Tang W, Cao H, Liu L, Shi X, Li Z, Zhang W. Comprehensive Analysis of VCAN Expression Profiles and Prognostic Values in HCC. Front Genet 2022; 13:900306. [PMID: 35812745 PMCID: PMC9263583 DOI: 10.3389/fgene.2022.900306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the world’s most common cause of cancer death. Therefore, more molecular mechanisms need to be clarified to meet the urgent need to develop new detection and treatment strategies. Methods: We used TCGAportal, Kaplan–Meier Plotter, the Cistrome DB Toolkit Database, MExpress, GEPIA2, and other databases to discuss the expression profiles, possible biological function, and potential prognostic value of versican (VCAN) in HCC. We conducted cell experiments such as Transwell migration and invasion assays, wound healing assay, and CCK8 experiment to explore the function of VCAN in HCC. Result: We selected three HCC transcriptome databases GSE124535, GSE136247, and GSE144269 and analyzed the overexpressed genes contained in them. The overlapping genes were found by the Venn map, and two interacting network modules were found by Mcode. Module 1 was mainly related to mitosis and cell cycle, and module 2 was mainly related to EMT, angiogenesis, glycolysis, and so on. We found that the seed gene in module 2 is VCAN. Data from TCGAportal showed that compared with normal tissues, the expression of VCAN was up-regulated in HCC tissues. The patients with high expression of VCAN had shorter distant recurrence-free survival and overall survival. Multiple possible VCAN interactions had also been identified. These results revealed that the level of VCAN was higher in the subtypes of HCC with higher malignant degree and was connected to the poor prognosis. In addition, the treatment of VCAN with DNA methyltransferase inhibitors and transcription factor inhibitors may improve the prognosis of patients with HCC. Conclusion: Our findings systematically elucidated the expression profile and different prognostic values of VCAN in HCC, which may provide new therapeutic targets and potential prognostic biomarkers for HCC patients.
Collapse
Affiliation(s)
- Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Pengyu Tan
- Department of Food Science and Engineering, Nanjing Xiaozhuang University, Nanjing, China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| | - Li Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| | - Xuesong Shi
- Department of General Surgery, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| | - Wenling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyong Cao, ; Li Liu, ; Xuesong Shi, ; Zhouxiao Li, ; Wenling Zhang,
| |
Collapse
|
21
|
de Oliveira TD, Ribeiro GH, Honorato J, Leite CM, Santos ACDS, Silva ED, Pereira VRA, Plutín AM, Cominetti MR, Castellano EE, Batista AA. Cytotoxic and antiparasitic activities of diphosphine-metal complexes of group 10 containing acylthiourea as ligands. J Inorg Biochem 2022; 234:111906. [PMID: 35759891 DOI: 10.1016/j.jinorgbio.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
In this work, group 10 transition metal complexes bearing dppe [1,2-bis(diphenylphosphino)ethane] and acylthiourea ligands were evaluated for their cytotoxic and antiparasitic activities. Six new complexes with a general formula [M(Ln)(dppe)]BF4 [where M = NiII, PdII or PtII; Ln = N, N'-dimethyl-N-benzoyl thiourea (L1) or N, N'-dimethyl-N-tiofenyl thiourea (L2) were synthesized and characterized by infrared, NMR (31P{1H}, 1H and 13C{1H}) spectroscopies, elemental analysis and molar conductivity. The structures of the complexes were confirmed by X-ray diffraction technique. The biological activity of the complexes was evaluated on breast cancer cells (MDA-MB-231 and MCF-7) and causative agents of chagas disease and leishmaniasis. The complexes presented higher cytotoxicity for breast cancer cell lines compared to non-tumor cells. Nickel complexes stood out when evaluated against the triple-negative breast cancer line (MDA-MB-231), presenting considerably lower IC50 values (about 10 to 22×), when compared to palladium and platinum complexes, and the cisplatin drug. When evaluated on the triple-negative line (MDA-MB-231), the complexes [Ni(L2)(dppe)]BF4(2), [Pd(L2)(dppe)]BF4(4) and [Pt(L2)(dppe)]BF4(6) were able to induce cell morphological changes, influence on the cell colony formation and the size of the cells. The complexes inhibit cell migration and cause changes to the cell cytoskeleton and nuclear arrangement. In the same cell line, the compounds caused cell arrest in the Sub-G1 phase of the cell cycle. The compounds were also tested against the Trypanosom Cruzi (T. cruzi) and Leishmania sp. parasites, which cause Chagas and leishmaniasis disease, respectively. The compounds showed good anti-parasitic activity, mainly for T. cruzi, with lower IC50 values, when compared to the commercial drug, benznidazole. The compounds interact with CT-DNA, indicating that interaction occurs by the minor groove of the biomolecule.
Collapse
Affiliation(s)
- Tamires D de Oliveira
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, 3561-901 São Carlos, SP, Brazil.
| | - Gabriel H Ribeiro
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, 3561-901 São Carlos, SP, Brazil
| | - João Honorato
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, 3561-901 São Carlos, SP, Brazil
| | - Celisnolia M Leite
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, 3561-901 São Carlos, SP, Brazil
| | - Aline Caroline da S Santos
- Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Instituto Aggeu Magalhães, 50670-420 Recife, Pernambuco, Brazil
| | - Elis D Silva
- Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Instituto Aggeu Magalhães, 50670-420 Recife, Pernambuco, Brazil
| | - Valéria Rêgo A Pereira
- Fundação Oswaldo Cruz (Fiocruz-Pernambuco), Instituto Aggeu Magalhães, 50670-420 Recife, Pernambuco, Brazil
| | - Ana M Plutín
- Laboratório de Síntesis Orgánica, Facultad de Química, Universidad de La Habana - UH, 10400 Habana, Cuba
| | - Márcia R Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos - UFSCar, 3561-901 São Carlos, SP, Brazil
| | - Eduardo E Castellano
- Instituto de Física de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos - UFSCar, 3561-901 São Carlos, SP, Brazil.
| |
Collapse
|
22
|
Gallium(III) Complex with Cloxyquin Ligands Induces Ferroptosis in Cancer Cells and Is a Potent Agent against Both Differentiated and Tumorigenic Cancer Stem Rhabdomyosarcoma Cells. Bioinorg Chem Appl 2022; 2022:3095749. [PMID: 35502218 PMCID: PMC9056256 DOI: 10.1155/2022/3095749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
In this work, gallium(III) complex with cloxyquin (5-chloro-8-quinolinol, HClQ) ligands is shown to effectively inhibit proliferation of rhabdomyosarcoma cells, the frequent, aggressive, and poorly treatable cancer of children. It offers striking selectivity to cancer cells compared to noncancerous human fibroblasts. The data reveal that the complex induces ferroptosis in rhabdomyosarcoma cells, likely due to interfering with iron metabolism. Importantly, it can kill both bulk and stem rhabdomyosarcoma cells. To the best of our knowledge, this is the first compound based on metal other than Fe capable of inducing ferroptosis in cancer cells.
Collapse
|
23
|
Khoury A, Sakoff JA, Gilbert J, Scott KF, Karan S, Gordon CP, Aldrich-Wright JR. Cyclooxygenase-Inhibiting Platinum(IV) Prodrugs with Potent Anticancer Activity. Pharmaceutics 2022; 14:787. [PMID: 35456621 PMCID: PMC9029360 DOI: 10.3390/pharmaceutics14040787] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Platinum(IV) prodrugs of the [Pt(PL)(AL)(COXi)(OH)]2+ type scaffold (where PL is 1,10-phenanthroline or 5,6-dimethyl-1,10-phenanthroline, AL is 1S,2S-diaminocyclohexane, and COXi is a COX inhibitor, either indomethacin or aspirin) were synthesised and characterised, and their biological activity was explored. MTT assays showed that these complexes exhibit outstanding activity against a range of cancer cell lines, and nanomolar activities were observed. The most potent complex, 4, exhibited a GI50 of 3 nM in the Du145 prostate cancer cell line and was observed to display a 1614-fold increased activity against the HT29 colon cancer cell line relative to cisplatin. ICP-MS studies showed a linear correlation between increased cellular accumulation of the complexes and increased cytotoxicity, while an enzyme immunoassay showed that 1 and 2 inhibited COX-2 at 14 and 1.4 µM, respectively, which is comparable to the inhibition exhibited by indomethacin. These results suggest that while the cytotoxicity of prodrugs 1-4 was influenced by cellular uptake, it was not entirely dependent on either COX inhibition or lipophilicity.
Collapse
Affiliation(s)
- Aleen Khoury
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia; (A.K.); (S.K.); (C.P.G.)
| | | | - Jayne Gilbert
- Calvary Mater Hospital, Waratah, NSW 2298, Australia; (J.A.S.); (J.G.)
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia;
- Ingham Institute, 1 Campbell Street, Liverpool, NSW 2170, Australia
| | - Shawan Karan
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia; (A.K.); (S.K.); (C.P.G.)
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia; (A.K.); (S.K.); (C.P.G.)
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South, NSW 2751, Australia; (A.K.); (S.K.); (C.P.G.)
| |
Collapse
|
24
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
25
|
Nel J, Siniscalco D, Hognon C, Bouché M, Touche N, Brunner É, Gros PC, Monari A, Grandemange S, Francius G. Structural and morphological changes of breast cancer cells induced by iron(II) complexes. NANOSCALE 2022; 14:2735-2749. [PMID: 35112689 DOI: 10.1039/d1nr08301e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-based complexes are well-established cancer chemotherapeutic drug candidates. Although our knowledge regarding their exact activity vs. toxicity profile is incomplete, changes in cell membrane biophysical properties and cytoskeletal structures have been implicated as part of the mechanism of action. Thus, in this work, we characterised the effects of iron(II)-based complexes on the structural and morphological properties of epithelial non-tumorigenic (MCF 10A) and tumorigenic (MDA-MB-231) breast cell lines using atomic force microscopy (AFM), flow cytometry and immunofluorescence microscopy. At 24 h of exposure, both the MCF 10A and MDA-MB-231 cells experienced a cell softening, and an increase in size followed by a re-stiffening at 96 h. In addition, the triple negative breast cancer cell line, MDA-MB-231, sustained a notable cytoskeletal and mitochondrial reorganization with increased actin stress fibers and cell-to-cell communication structures. An extensive all-atom molecular dynamic simulation suggests a possible direct and unassisted internalization of the metallodrug candidate, and confirmed that the cellular effects could not be ascribed to the simple physical interaction of the iron-based complexes with the biological membrane. These observations provide an insight into a link between the mechanisms of action of such iron-based complexes as anti-cancer treatment and cytoskeletal architecture.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | - David Siniscalco
- Université de Lorraine and CNRS, LPCME UMR 7564, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
| | - Mathilde Bouché
- Université de Lorraine and CNRS, L2CM UMR 7053, F-54000, Nancy, France
| | - Nadége Touche
- Université de Lorraine and CNRS, CRAN UMR 7039, F-54000 Nancy, France.
| | - Émilie Brunner
- Université de Lorraine and CNRS, CRAN UMR 7039, F-54000 Nancy, France.
| | - Philippe C Gros
- Université de Lorraine and CNRS, L2CM UMR 7053, F-54000, Nancy, France
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
- Université de Paris, ITODYS, CNRS, F-75006, Paris, France
| | | | - Grégory Francius
- Université de Lorraine and CNRS, LPCME UMR 7564, F-54000 Nancy, France.
| |
Collapse
|
26
|
Peng K, Liang BB, Liu W, Mao ZW. What blocks more anticancer platinum complexes from experiment to clinic: Major problems and potential strategies from drug design perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214210] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Systematic evaluation of the antitumor activity of three ruthenium polypyridyl complexes. J Inorg Biochem 2021; 225:111616. [PMID: 34555601 DOI: 10.1016/j.jinorgbio.2021.111616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Ruthenium-containing complexes have emerged as good alternative to the currently used platinum-containing drugs for malignant tumor therapy. In this work, cytotoxic effects of recently synthesized ruthenium polypyridyl complexes [Ru(bpy)2(CFPIP)](ClO4)2 (bpy = 2,2'-bipyridine, CFPIP = (E)-2-(4-fluorostyryl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru(II)-1), [Ru(phen)2(CFPIP)](ClO4)2 (phen = 1,10-phenanthroline, Ru(II)-2) and [Ru(dmb)2(CFPIP)](ClO4)2 (dmb = 4,4'-dimethyl-2,2'-bipyridine, Ru(II)-3) toward different tumor cells were investigated in vitro and compared with cisplatin, the most widely used chemotherapeutic drug against hepatocellular carcinoma (HepG-2). The results demonstrate that target complexes show excellent cytotoxicity against HepG-2 cells with low IC50 value of 21.4 ± 1.5, 18.0 ± 2.1 and 22.3 ± 1.7 μM, respectively. It was important noting that target Ru(II) complexes exhibited better antitumor activity than cisplatin (IC50 = 28.5 ± 2.4 μM) against HepG-2 cells, and has no obvious toxicity to normal cell LO2. DNA binding results suggest that Ru(II)-1, Ru(II)-2 and Ru(II)-3 interact with CT DNA (calf thymus DNA) through intercalative mode. Complexes exerted its antitumor activity through increasing anti-migration and inducing cell cycle arrest at the S phase. In addition, the apoptosis was tested by AO (acridine orange)/EB (ethidium bromide) staining and flow cytometry. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and colocalization tests were also evaluated by ImageXpress Micro XLS system. Overall, the results show that the ruthenium polypyridyl complexes induce apoptosis in HepG-2 cells through ROS-mediated mitochondria dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
28
|
Schmidt C, Babu T, Kostrhunova H, Timm A, Basu U, Ott I, Gandin V, Brabec V, Gibson D. Are Pt(IV) Prodrugs That Release Combretastatin A4 True Multi-action Prodrugs? J Med Chem 2021; 64:11364-11378. [PMID: 34342437 DOI: 10.1021/acs.jmedchem.1c00706] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Multi-action" Pt(IV) derivatives of cisplatin with combretastatin A4 (CA4) bioactive ligands that are conjugated to Pt(IV) by carbonate are unique because the ligand (IC50 < 10 nM) is dramatically 1000-folds more cytotoxic than cisplatin in vitro. The Pt(IV)-CA4 prodrugs were as cytotoxic as CA4 itself, indicating that the platinum moiety probably plays an insignificant role in triggering cytotoxicity, suggesting that the Pt(IV)-CA4 complexes act as prodrugs for CA4 rather than as true multi-action prodrugs. In vivo tests (Lewis lung carcinoma) show that ctc-[Pt(NH3)2(PhB)(CA4)Cl2] inhibited tumor growth by 93% compared to CA4 (67%), cisplatin (84%), and 1:1:1 cisplatin/CA4/PhB (85%) while displaying <5% body weight loss compared to cisplatin (20%) or CA4 (10%). In this case, and perhaps with other extremely potent bioactive ligands, platinum(IV) acts merely as a self-immolative carrier triggered by reduction in the cancer cell with only a minor contribution to cytotoxicity.
Collapse
Affiliation(s)
- Claudia Schmidt
- Institute for Drug Research, School of Pharmacy, The Hebrew University, 91120 Jerusalem, Israel
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University, 91120 Jerusalem, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Academy of Sciences, Kralovopolska 135, 61265 Brno, Czech Republic
| | - Annika Timm
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Universita di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Academy of Sciences, Kralovopolska 135, 61265 Brno, Czech Republic.,Department of Biophysics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, 91120 Jerusalem, Israel
| |
Collapse
|
29
|
Strong in vitro and in vivo cytotoxic effects of two platinum(II) complexes with cryptolepine derivatives. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02739-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Synthesis, structures and anticancer potentials of five platinum(II) complexes with benzothiazole-benzopyran targeting mitochondria. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Lin S, Liang Y, Cheng J, Pan F, Wang Y. Novel diaryl-2H-azirines: Antitumor hybrids for dual-targeting tubulin and DNA. Eur J Med Chem 2021; 214:113256. [PMID: 33581556 DOI: 10.1016/j.ejmech.2021.113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/30/2023]
Abstract
Multiple-target drugs may achieve better therapeutic effect via different pathways than single-target ones, especially for complex diseases. Tubulin and DNA are well-characterized molecular targets for anti-cancer drug development. A novel class of diaryl substituted 2H-azirines were designed based on combination of pharmacophores from Combretastatin A-4 (CA-4) and aziridine-type alkylating agents, which are known tubulin polymerization inhibitor and DNA damaging agents, respectively. The antitumor activities of these compounds were evaluated in vitro and 6h showed the most potent activities against four cancer cell lines with IC50 values ranging from 0.16 to 1.40 μM. Further mechanistic studies revealed that 6h worked as a bifunctional agent targeting both tubulin and DNA. In the nude mice xenograft model, 6h significantly inhibited the tumor growth with low toxicity, demonstrating the promising potential for further developing novel cancer therapy with a unique mechanism.
Collapse
Affiliation(s)
- Shibo Lin
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuru Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiayi Cheng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Feng Pan
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
32
|
Bhattacharyya A, Jameei A, Saha R, Garai A, Karande AA, Chakravarty AR. BODIPY-linked cis-dichlorido zinc(ii) conjugates: the strategic design of organelle-specific next-generation theranostic photosensitizers. Dalton Trans 2021; 50:103-115. [DOI: 10.1039/d0dt03342a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cis-dichlorido Zn(ii)–BODIPY-based smart theranostic photosensitizers, as alternatives to Zn-porphyrins/phthalocyanines, show mitochondrion-targeted and imaging guided type-II photodynamic therapeutic activity.
Collapse
Affiliation(s)
- Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Aida Jameei
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Aditya Garai
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Anjali A. Karande
- Department of Biochemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
33
|
Liao LS, Chen Y, Mo ZY, Hou C, Su GF, Liang H, Chen ZF. Ni(ii), Cu(ii) and Zn(ii) complexes with the 1-trifluoroethoxyl-2,9,10-trimethoxy-7-oxoaporphine ligand simultaneously target microtubules and mitochondria for cancer therapy. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01463j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complexes 1–3 display potent anticancer activity against T-24 cell by disrupting mitochondria and microtubules. Furthermore, complex 1 exhibits almost same tumor growth inhibition activity in T-24 xenograft mouse model as cisplatin and paclitaxel.
Collapse
Affiliation(s)
- Lan-Shan Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Yin Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zu-Yu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Cheng Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| |
Collapse
|
34
|
Karmakar S, Kostrhunova H, Ctvrtlikova T, Novohradsky V, Gibson D, Brabec V. Platinum(IV)-Estramustine Multiaction Prodrugs Are Effective Antiproliferative Agents against Prostate Cancer Cells. J Med Chem 2020; 63:13861-13877. [PMID: 33175515 DOI: 10.1021/acs.jmedchem.0c01400] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we describe the synthesis, characterization, and biological properties of Pt(IV) derivatives of cisplatin with estramustine at the first axial position, which is known to disrupt the microtubule assembly and act as an androgen antagonist, and varying the second axial position using an innocent ligand (acetate or hydroxyl) to prepare dual-action and triple-action prodrugs with known inhibitors of histone deacetylase, cyclooxygenase, and pyruvate dehydrogenase kinase. We demonstrate superior antiproliferative activity at submicromolar concentrations of the prodrugs against a panel of cancer cell lines, particularly against prostate cancer cell lines. The results obtained in this study exemplify the complex mode of action of "multiaction" Pt(IV) prodrugs. Interestingly, changing the second axial ligand in the Pt-estramustine complex has a significant effect on the mode of action, suggesting that all three components of the Pt(IV) prodrugs (platinum moiety and axial ligands) contribute to the killing of cells and not just one dominant component.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Tereza Ctvrtlikova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| |
Collapse
|
35
|
Hoeschele JD, Kasparkova J, Kostrhunova H, Novakova O, Pracharova J, Pineau P, Brabec V. Synthesis, antiproliferative activity in cancer cells and DNA interaction studies of [Pt(cis-1,3-diaminocycloalkane)Cl 2] analogs. J Biol Inorg Chem 2020; 25:913-924. [PMID: 32851480 DOI: 10.1007/s00775-020-01809-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
The search for more effective platinum anticancer drugs has led to the design, synthesis, and preclinical testing of hundreds of new platinum complexes. This search resulted in the recognition and subsequent FDA approval of the third-generation Pt(II) anticancer drug, [Pt(1,2-diaminocyclohexane)(oxalate)], oxaliplatin, as an effective agent in treating colorectal and gastrointestinal cancers. Another promising example of the class of anticancer platinum(II) complexes incorporating the Pt(1,n-diaminocycloalkane) moiety is kiteplatin ([Pt(cis-1,4-DACH)Cl2], DACH = diaminocyclohexane). We report here our progress in evaluating the role of the cycloalkyl moiety in these complexes focusing on the synthesis, characterization, evaluation of the antiproliferative activity in tumor cells and studies of the mechanism of action of new [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes wherein the cis-1,3-diaminocycloalkane group contains the cyclobutyl, cyclopentyl, and cyclohexyl moieties. We demonstrate that [Pt(cis-1,3-DACH)Cl2] destroys cancer cells with greater efficacy than the other two investigated 1,3-diamminocycloalkane derivatives, or cisplatin. Moreover, the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes show selectivity toward tumor cells relative to non-tumorigenic normal cells. We also performed several mechanistic studies in cell-free media focused on understanding some early steps in the mechanism of antitumor activity of bifunctional platinum(II) complexes. Our data indicate that reactivities of the investigated [Pt(cis-1,3-diaminocycloalkane)Cl2] complexes and cisplatin with glutathione and DNA binding do not correlate with antiproliferative activity of these platinum(II) complexes in cancer cells. In contrast, we show that the higher antiproliferative activity in cancer cells of [Pt(cis-1,3-DACH)Cl2] originates from its highest hydrophobicity and most efficient cellular uptake.
Collapse
Affiliation(s)
- James D Hoeschele
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jana Kasparkova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Olga Novakova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jitka Pracharova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Paul Pineau
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic.
| |
Collapse
|
36
|
Almotairy ARZ, Montagner D, Morrison L, Devereux M, Howe O, Erxleben A. Pt(IV) pro-drugs with an axial HDAC inhibitor demonstrate multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance in A2780/A2780cis cells. J Inorg Biochem 2020; 210:111125. [PMID: 32521289 DOI: 10.1016/j.jinorgbio.2020.111125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Epigenetic agents such as histone deacetylase (HDAC) inhibitors are widely investigated for use in combined anticancer therapy and the co-administration of Pt drugs with HDAC inhibitors has shown promise for the treatment of resistant cancers. Coordination of an HDAC inhibitor to an axial position of a Pt(IV) derivative of cisplatin allows the combination of the epigenetic drug and the Pt chemotherapeutic into a single molecule. In this work we carry out mechanistic studies on the known Pt(IV) complex cis,cis,trans-[Pt(NH3)2Cl2(PBA)2] (B) with the HDAC inhibitor 4-phenylbutyrate (PBA) and its derivatives cis,cis,trans-[Pt(NH3)2Cl2(PBA)(OH)] (A), cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Bz)] (C), and cis,cis,trans-[Pt(NH3)2Cl2(PBA)(Suc)] (D) (Bz = benzoate, Suc = succinate). The comparison of the cytotoxicity, effect on HDAC activity, reactive oxygen species (ROS) generation, γ-H2AX (histone 2A-family member X) foci generation and induction of apoptosis in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells shows that A - C exhibit multimodal mechanisms involving DNA damage and apoptosis independent of cisplatin resistance.
Collapse
Affiliation(s)
- Awatif Rashed Z Almotairy
- School of Chemistry, National University of Ireland, Galway, Ireland; School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland, Galway, Ireland
| | - Michael Devereux
- School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Orla Howe
- School of Biological & Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland.
| |
Collapse
|
37
|
Crlikova H, Malina J, Novohradsky V, Kostrhunova H, Vasdev RAS, Crowley JD, Kasparkova J, Brabec V. Antiproliferative Activity and Associated DNA Interactions of [Co2L3]6+ Cylinders Derived from Bis(bidentate) 2-Pyridyl-1,2,3-triazole Ligands. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hana Crlikova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783-71 Olomouc, Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Roan A. S. Vasdev
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand
| | - James D. Crowley
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9016, Otago, New Zealand
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, CZ-783-71 Olomouc, Czech Republic
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
38
|
Deo KM, Sakoff J, Gilbert J, Zhang Y, Aldrich Wright JR. Synthesis, characterisation and influence of lipophilicity on cellular accumulation and cytotoxicity of unconventional platinum(iv) prodrugs as potent anticancer agents. Dalton Trans 2020; 48:17228-17240. [PMID: 31728483 DOI: 10.1039/c9dt04049h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipophilic platinum(iv) complexes were synthesised of the type [Pt(HL)(AL)(OH)(R)]2+ and [Pt(HL)(AL)(R)2]2+ (HL = 5,6-dimethyl-1,10-phenanthroline or 1,10-phenanthroline; AL = 1S,2S-diaminocyclohexane and R = increasingly lipophilic carboxylate axial ligands (C10-18)) from hydrophilic platinum(ii) precursors that exhibit exceptional anticancer activity. The increased overall lipophilicity of the complexes suggested the formation of spontaneously self-assembled structures in an aqueous environment. The anti-proliferative properties were assessed against one non-cancerous and a panel of cancerous cell lines. Nanomolar levels of activity were observed against several cell lines, with the lowest GI50 of 3.4 nm against the Du145 prostate cancer cell line and over 1100-fold greater activity than cisplatin against HT29 colon carcinoma. RP-HPLC was utilised to establish the relative lipophilicities of each complex. While there seemed to be an increase in cellular accumulation for the lipophilic derivatives in some instances, ICP-MS studies showed no clear correlation between increasing lipophilicity, cellular accumulation and cytotoxicity.
Collapse
Affiliation(s)
- Krishant M Deo
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | | | | | | | | |
Collapse
|
39
|
Ang DL, Kelso C, Beck JL, Ralph SF, Harman DG, Aldrich-Wright JR. A study of Pt(II)-phenanthroline complex interactions with double-stranded and G-quadruplex DNA by ESI-MS, circular dichroism, and computational docking. J Biol Inorg Chem 2020; 25:429-440. [PMID: 32219553 DOI: 10.1007/s00775-020-01773-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
The binding interactions of a series of square-planar platinum(II)-phenanthroline complexes of the type [Pt(PL)(AL)]2+ [where PL = variously methyl-substituted 1,10-phenanthroline (phen) and AL = ethane-1,2-diamine (en)] were assessed with a G-quadruplex DNA (5'-TTG GGG GT-3', G4DNA) and a double-stranded DNA (5'-CGC GAA TTC GCG-3', dsDNA) sequence by ESI-MS. The results indicate a strong correlation between G4DNA affinity and increasing phenanthroline methyl substitution. Circular dichroism (CD) spectroscopy and molecular docking studies also support the finding that increased substitution of the phenanthroline ligand increased selectivity for G4DNA. ESI-MS was used to probe the interaction of a range of square-planar Pt(II)-phenanthroline complexes with double-stranded and G-quadruplex DNA.
Collapse
Affiliation(s)
- Dale L Ang
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, 2522, Australia
| | - Jennifer L Beck
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, 2522, Australia
| | - Stephen F Ralph
- School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, 2522, Australia
| | - David G Harman
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW, 2751, Australia
| | - Janice R Aldrich-Wright
- Nanoscale Organisation and Dynamics Group, School of Science, Western Sydney University, Penrith, NSW, 2751, Australia. .,School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW, 2751, Australia.
| |
Collapse
|
40
|
Antiproliferative, DNA binding, and cleavage properties of dinuclear Co(III) complexes containing the bioactive quinizarin ligand. J Biol Inorg Chem 2020; 25:339-350. [DOI: 10.1007/s00775-020-01765-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/12/2020] [Indexed: 01/23/2023]
|
41
|
Maji M, Karmakar S, Ruturaj, Gupta A, Mukherjee A. Oxamusplatin: a cytotoxic Pt(ii) complex of a nitrogen mustard with resistance to thiol based sequestration displays enhanced selectivity towards cancer. Dalton Trans 2020; 49:2547-2558. [PMID: 32022814 PMCID: PMC7174022 DOI: 10.1039/c9dt04269e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pt(ii) drugs and nitrogen mustards show severe side effects, poor tumour selectivity and face growing resistance by cancer cells due to sequestration by thiol-containing molecules (viz. glutathione (GSH) and copper ATPases like ATP7A/7B). ATP7A and ATP7B-sequestered Pt(ii) complexes show dose inefficacy and resistance. The incorporation of bulky ligands and chelating leaving groups may prevent deactivation by thiols. In this work, we have synthesised four new Pt(ii) complexes (3-6) of two carrier ligands, bis(2-hydroxyethyl)pyridylmethylamine (L1) and bis(2-chloroethyl)pyridylmethylamine (L2) with oxalato and cyclobutanedicarboxylato leaving groups. Among these four new complexes, the Pt(ii) complex of L2 with the oxalato leaving group (5, termed "oxamusplatin") is cytotoxic. Oxamusplatin is more resistant than cisplatin or oxaliplatin towards hydrolysis, thiol binding and sequestration by ATP7B. It targets cellular DNA and is capable of disrupting the microtubule network in the cytoskeleton. Oxamusplatin demonstrates better selectivity than oxaliplatin towards cancerous cells. It is ca. 4-10 times more cytotoxic towards metastatic prostate carcinoma (DU-145, IC50 = 21 ± 1 μM) and ca. 10-24 times more cytotoxic towards breast adenocarcinoma (MCF-7, IC50 = 8.1 ± 0.8 μM) compared to the three noncancerous cells investigated.
Collapse
Affiliation(s)
- Moumita Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Subhendu Karmakar
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| | - Ruturaj
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
| |
Collapse
|
42
|
Chen CKJ, Gui X, Kappen P, Renfrew AK, Hambley TW. The effect of charge on the uptake and resistance to reduction of platinum(IV) complexes in human serum and whole blood models. Metallomics 2020; 12:1599-1615. [PMID: 33084707 DOI: 10.1039/d0mt00157k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
cis- and trans-Platinum(iv) complexes with diaminetetracarboxylate coordination spheres possess the highly desirable property of exhibiting unusual resistance to reduction by blood serum components and endogenous reductants such as ascorbate. At the same time they are rapidly reduced in the intracellular environment of cancer cells. Consequently, they can potentially be tuned to remain intact in vivo until arrival at the tumour target where they are rapidly reduced to yield the active platinum(ii) species. However, in order to achieve this, uptake must be largely restricted to tumour cells and therefore uptake by healthy cells including red blood cells must be prevented. In this proof of concept study, we report on the effect of net charge as a means of controlling the uptake by red blood cells. Using 1H NMR spectroscopy we found that modifying the net charge of the complex does not influence the rate of reduction of the complexes by an excess of ascorbate. Using XANES spectroscopy we found that modifying the net charge of the platinum(iv) complexes decreased the extent of reduction in whole blood, although probably not to the degree needed for the optimal delivery to tumours. Therefore, it is likely to be necessary to adopt higher charges and/or additional strategies to keep platinum(iv) prodrugs out of blood cells.
Collapse
Affiliation(s)
| | - Xiao Gui
- School of Chemistry, The University of Sydney, NSW, Australia.
| | - Peter Kappen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton 3168, Victoria, Australia
| | - Anna K Renfrew
- School of Chemistry, The University of Sydney, NSW, Australia.
| | | |
Collapse
|
43
|
Shao TM, Wei ZZ, Luo XL, Qin QP, Tan MX, Zeng JJ, Liang CJ, Liang H. High cytotoxic and apoptotic effects of platinum( ii) complexes bearing the 4-acridinol ligand. NEW J CHEM 2020. [DOI: 10.1039/d0nj04753h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
4-Acridinol platinum(ii) complex PtA induces SK-OV-3/DDP cell apoptosis that is mediated by the mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Tai-Ming Shao
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zu-Zhuang Wei
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- P. R. China
| | - Xiao-Ling Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Jia-Jing Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
44
|
Wang Q, Zhu Y, Li Z, Bu Q, Sun T, Wang H, Sun H, Cao X. Up-regulation of SPC25 promotes breast cancer. Aging (Albany NY) 2019; 11:5689-5704. [PMID: 31400751 PMCID: PMC6710047 DOI: 10.18632/aging.102153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
In this study, expression of the SPC25 gene was characterized in breast cancer (BC), and its effects on BC development and progression, functions in BC cells, and potential underlying mechanisms were examined. Data from TCGAportal and FIREBROWSE indicated that SPC25 was upregulated in BC tissues compared to normal tissues, and CANCERTOOL indicated that higher SPC25 mRNA levels were associated with increased probability of recurrence and poorer survival in BC patients. BC patients with higher SPC25 expression displayed shorter distant metastasis-free survival, relapse-free survival, and overall survival. Colony formation and CCK-8 experiments confirmed that SPC25 promoted proliferation of BC cells. Single-cell analysis indicated that SPC25 is associated with cell cycle regulation, DNA damage and repair, and BC cell proliferation. SPC25 knockdown suppressed proliferation of BC cells. MiRNAs, circRNAs, RNA-binding proteins, transcription factors, and immune factors that might interact with SPC25 mRNA to promote BC were also identified. These findings suggest that SPC25 levels are higher in more malignant BC subtypes and are associated with poor prognosis in BC patients. In addition, DNA methyltransferase inhibitor and transcription factors inhibitor treatments targeting SPC25 might improve survival in BC patients.
Collapse
Affiliation(s)
- Qian Wang
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Qian Bu
- Department of Medical Oncology, Taizhou People's Hospital, Jiangsu University, Zhenjiang, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Handong Sun
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiufeng Cao
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Deo KM, Sakoff J, Gilbert J, Zhang Y, Aldrich Wright JR. Synthesis, characterisation and potent cytotoxicity of unconventional platinum(iv) complexes with modified lipophilicity. Dalton Trans 2019; 48:17217-17227. [DOI: 10.1039/c9dt03339d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Platinum(iv) complexes with facile modulation of lipophilicity exhibited nanomolar activity against tested lines. The most potent complexes exhibited 850-fold greater activity than cisplatin against HT29 colon carcinoma with GI50 values of 13 nM.
Collapse
Affiliation(s)
- Krishant M. Deo
- Nanoscale Organisation and Dynamics Group
- Western Sydney University
- Campbelltown
- Australia
| | | | | | - Yingjie Zhang
- Australian Nuclear Science and Technology Organisation
- Australia
| | | |
Collapse
|