1
|
Sternicki LM, Poulsen SA. Fragment-based drug discovery campaigns guided by native mass spectrometry. RSC Med Chem 2024; 15:2270-2285. [PMID: 39026646 PMCID: PMC11253872 DOI: 10.1039/d4md00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Native mass spectrometry (nMS) is well established as a biophysical technique for characterising biomolecules and their interactions with endogenous or investigational small molecule ligands. The high sensitivity mass measurements make nMS particularly well suited for applications in fragment-based drug discovery (FBDD) screening campaigns where the detection of weakly binding ligands to a target biomolecule is crucial. We first reviewed the contributions of nMS to guiding FBDD hit identification in 2013, providing a comprehensive perspective on the early adoption of nMS for fragment screening. Here we update this initial progress with a focus on contributions of nMS that have guided FBDD for the period 2014 until end of 2023. We highlight the development of nMS adoption in FBDD in the context of other biophysical fragment screening techniques. We also discuss the roadmap for increased adoption of nMS for fragment screening beyond soluble proteins, including for guiding the discovery of fragments supporting advances in PROTAC discovery, RNA-binding small molecules and covalent therapeutic drug discovery.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| |
Collapse
|
2
|
Kudo G, Hirao T, Yoshino R, Shigeta Y, Hirokawa T. Site Identification and Next Choice Protocol for Hit-to-Lead Optimization. J Chem Inf Model 2024; 64:4475-4484. [PMID: 38768949 PMCID: PMC11167593 DOI: 10.1021/acs.jcim.3c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Time efficiency and cost savings are major challenges in drug discovery and development. In this process, the hit-to-lead stage is expected to improve efficiency because it primarily exploits the trial-and-error approach of medicinal chemists. This study proposes a site identification and next choice (SINCHO) protocol to improve the hit-to-lead efficiency. This protocol selects an anchor atom and growth site pair, which is desirable for a hit-to-lead strategy starting from a 3D complex structure. We developed and fine-tuned the protocol using a training data set and assessed it using a test data set of the preceding hit-to-lead strategy. The protocol was tested for experimentally determined structures and molecular dynamics (MD) ensembles. The protocol had a high prediction accuracy for applying MD ensembles, owing to the consideration of protein flexibility. The SINCHO protocol enables medicinal chemists to visualize and modify functional groups in a hit-to-lead manner.
Collapse
Affiliation(s)
- Genki Kudo
- Physics
Department, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takumi Hirao
- Doctoral
Program in Medical Sciences, Graduate School of Comprehensive Human
Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryunosuke Yoshino
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takatsugu Hirokawa
- Division
of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder
Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
3
|
Woodhead AJ, Erlanson DA, de Esch IJP, Holvey RS, Jahnke W, Pathuri P. Fragment-to-Lead Medicinal Chemistry Publications in 2022. J Med Chem 2024; 67:2287-2304. [PMID: 38289623 DOI: 10.1021/acs.jmedchem.3c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
This Perspective is the eighth in an annual series that summarizes successful fragment-to-lead (F2L) case studies published each year. A tabulated summary of relevant articles published in 2022 is provided, and features such as target class, screening methods, and ligand efficiency are discussed both for the 2022 examples and for the combined examples over the years 2015-2022. In addition, trends and new developments in the field are summarized. In 2022, 18 publications described successful fragment-to-lead studies, including the development of three clinical compounds (MTRX1719, MK-8189, and BI-823911).
Collapse
Affiliation(s)
- Andrew J Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Blvd., South San Francisco, California 94080, United States
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rhian S Holvey
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Wolfgang Jahnke
- Novartis Biomedical Research, Discovery Sciences, 4002 Basel, Switzerland
| | - Puja Pathuri
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
4
|
de Souza Neto LR, Montoya BO, Brandão-Neto J, Verma A, Bowyer S, Moreira-Filho JT, Dantas RF, Neves BJ, Andrade CH, von Delft F, Owens RJ, Furnham N, Silva-Jr FP. Fragment library screening by X-ray crystallography and binding site analysis on thioredoxin glutathione reductase of Schistosoma mansoni. Sci Rep 2024; 14:1582. [PMID: 38238498 PMCID: PMC10796382 DOI: 10.1038/s41598-024-52018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Schistosomiasis is caused by parasites of the genus Schistosoma, which infect more than 200 million people. Praziquantel (PZQ) has been the main drug for controlling schistosomiasis for over four decades, but despite that it is ineffective against juvenile worms and size and taste issues with its pharmaceutical forms impose challenges for treating school-aged children. It is also important to note that PZQ resistant strains can be generated in laboratory conditions and observed in the field, hence its extensive use in mass drug administration programs raises concerns about resistance, highlighting the need to search for new schistosomicidal drugs. Schistosomes survival relies on the redox enzyme thioredoxin glutathione reductase (TGR), a validated target for the development of new anti-schistosomal drugs. Here we report a high-throughput fragment screening campaign of 768 compounds against S. mansoni TGR (SmTGR) using X-ray crystallography. We observed 49 binding events involving 35 distinct molecular fragments which were found to be distributed across 16 binding sites. Most sites are described for the first time within SmTGR, a noteworthy exception being the "doorstop pocket" near the NADPH binding site. We have compared results from hotspots and pocket druggability analysis of SmTGR with the experimental binding sites found in this work, with our results indicating only limited coincidence between experimental and computational results. Finally, we discuss that binding sites at the doorstop/NADPH binding site and in the SmTGR dimer interface, should be prioritized for developing SmTGR inhibitors as new antischistosomal drugs.
Collapse
Affiliation(s)
- Lauro Ribeiro de Souza Neto
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bogar Omar Montoya
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - José Brandão-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Anil Verma
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sebastian Bowyer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - José Teófilo Moreira-Filho
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
- CRAFT - Center for Research and Advancement of Fragments and Molecular Targets, University of São Paulo, São Paulo, Brazil
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Raymond J Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Structural Biology, Rosalind Franklin Institute, Harwell, UK.
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Floriano Paes Silva-Jr
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Townley C, Branduardi D, Chessari G, Cons BD, Griffiths-Jones C, Hall RJ, Johnson CN, Ochi Y, Whibley S, Grainger R. Enabling synthesis in fragment-based drug discovery (FBDD): microscale high-throughput optimisation of the medicinal chemist's toolbox reactions. RSC Med Chem 2023; 14:2699-2713. [PMID: 38107176 PMCID: PMC10718589 DOI: 10.1039/d3md00495c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 12/19/2023] Open
Abstract
Miniaturised high-throughput experimentation (HTE) is widely employed in industrial and academic laboratories for rapid reaction optimisation using material-limited, multifactorial reaction condition screening. In fragment-based drug discovery (FBDD), common toolbox reactions such as the Suzuki-Miyaura and Buchwald-Hartwig cross couplings can be hampered by the fragment's intrinsic heteroatom-rich pharmacophore which is required for ligand-protein binding. At Astex, we are using microscale HTE to speed up reaction optimisation and prevent target down-prioritisation. By identifying catalyst/base/solvent combinations which tolerate unprotected heteroatoms we can rapidly optimise key cross-couplings and expedite route design by avoiding superfluous protecting group manipulations. However, HTE requires extensive upfront training, and this modern automated synthesis technique largely differs to the way organic chemists are traditionally trained. To make HTE accessible to all our synthetic chemists we have developed a semi-automated workflow enabled by pre-made 96-well screening kits, rapid analytical methods and in-house software development, which is empowering chemists at Astex to run HTE screens independently with minimal training.
Collapse
Affiliation(s)
- Chloe Townley
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Davide Branduardi
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Gianni Chessari
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Benjamin D Cons
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Richard J Hall
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Yuji Ochi
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Stuart Whibley
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Rachel Grainger
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
6
|
Yoon HR, Park GJ, Balupuri A, Kang NS. TWN-FS method: A novel fragment screening method for drug discovery. Comput Struct Biotechnol J 2023; 21:4683-4696. [PMID: 37841326 PMCID: PMC10568351 DOI: 10.1016/j.csbj.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Fragment-based drug discovery (FBDD) is a well-established and effective method for generating diverse and novel hits in drug design. Kinases are suitable targets for FBDD due to their well-defined structure. Water molecules contribute to structure and function of proteins and also influence the environment within the binding pocket. Water molecules form a variety of hydrogen-bonded cyclic water-ring networks, collectively known as topological water networks (TWNs). Analyzing the TWNs in protein binding sites can provide valuable insights into potential locations and shapes for fragments within the binding site. Here, we introduce TWN-based fragment screening (TWN-FS) method, a novel screening method that suggests fragments through grouped TWN analysis within the protein binding site. We used this method to screen known CDK2, CHK1, IGF1R and ERBB4 inhibitors. Our findings suggest that TWN-FS method has the potential to effectively screen fragments. The TWN-FS method package is available on GitHub at https://github.com/pkj0421/TWN-FS.
Collapse
Affiliation(s)
- Hye Ree Yoon
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Gyoung Jin Park
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| |
Collapse
|
7
|
Whitehurst BC, Bauer MR, Edfeldt F, Gunnarsson A, Margreitter C, Rawlins PB, Storer RI. Design and Evaluation of a Low Hydrogen Bond Donor Count Fragment Screening Set to Aid Hit Generation of PROTACs Intended for Oral Delivery. J Med Chem 2023. [PMID: 37224440 DOI: 10.1021/acs.jmedchem.3c00493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of orally bioavailable PROTACs presents a significant challenge due to the inflated physicochemical properties of such heterobifunctional molecules. Molecules occupying this "beyond rule of five" space often demonstrate limited oral bioavailability due to the compounding effects of elevated molecular weight and hydrogen bond donor count (among other properties), but it is possible to achieve sufficient oral bioavailability through physicochemical optimization. Herein, we disclose the design and evaluation of a low hydrogen bond donor count (≤1 HBD) fragment screening set to aid hit generation of PROTACs intended for an oral route of delivery. We demonstrate that application of this library can enhance fragment screens against PROTAC proteins of interest and ubiquitin ligases, yielding fragment hits containing ≤1 HBD suitable for optimizing toward orally bioavailable PROTACs.
Collapse
Affiliation(s)
- Benjamin C Whitehurst
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Matthias R Bauer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Fredrik Edfeldt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Gothenburg 431 50, Sweden
| | - Anders Gunnarsson
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Gothenburg 431 50, Sweden
| | - Christian Margreitter
- Molecular AI, Discovery Sciences, R&D, AstraZeneca, Mölndal, Gothenburg 431 50, Sweden
| | - Philip B Rawlins
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - R Ian Storer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| |
Collapse
|
8
|
Walsh L, Erlanson DA, de Esch IJP, Jahnke W, Woodhead A, Wren E. Fragment-to-Lead Medicinal Chemistry Publications in 2021. J Med Chem 2023; 66:1137-1156. [PMID: 36622056 DOI: 10.1021/acs.jmedchem.2c01827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This Perspective is the seventh in an annual series that summarizes successful Fragment-to-Lead (F2L) case studies published in a given year. A tabulated summary of relevant articles published in 2021 is provided, and features such as target class, screening methods, and ligand efficiency are discussed, both for the 2021 examples and for the combined examples over the years 2015-2021. In addition, trends and new developments in the field are summarized. In particular, the use of structural information in fragment-based drug discovery is discussed.
Collapse
Affiliation(s)
- Louise Walsh
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Blvd., South San Francisco, California 94080, United States
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wolfgang Jahnke
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Andrew Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Ella Wren
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
9
|
Zacharioudakis E, Gavathiotis E. Targeting protein conformations with small molecules to control protein complexes. Trends Biochem Sci 2022; 47:1023-1037. [PMID: 35985943 PMCID: PMC9669135 DOI: 10.1016/j.tibs.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
Dynamic protein complexes function in all cellular processes, from signaling to transcription, using distinct conformations that regulate their activity. Conformational switching of proteins can turn on or off their activity through protein-protein interactions, catalytic function, cellular localization, or membrane interaction. Recent advances in structural, computational, and chemical methodologies have enabled the discovery of small-molecule activators and inhibitors of conformationally dynamic proteins by using a more rational design than a serendipitous screening approach. Here, we discuss such recent examples, focusing on the mechanism of protein conformational switching and its regulation by small molecules. We emphasize the rational approaches to control protein oligomerization with small molecules that offer exciting opportunities for investigation of novel biological mechanisms and drug discovery.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
Kitel R, Rodríguez I, del Corte X, Atmaj J, Żarnik M, Surmiak E, Muszak D, Magiera-Mularz K, Popowicz GM, Holak TA, Musielak B. Exploring the Surface of the Ectodomain of the PD-L1 Immune Checkpoint with Small-Molecule Fragments. ACS Chem Biol 2022; 17:2655-2663. [PMID: 36073782 PMCID: PMC9486809 DOI: 10.1021/acschembio.2c00583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Development of small molecules targeting the PD-L1/PD-1 interface is advancing both in industry and academia, but only a few have reached early-stage clinical trials. Here, we take a closer look at the general druggability of PD-L1 using in silico hot spot mapping and nuclear magnetic resonance (NMR)-based characterization. We found that the conformational elasticity of the PD-L1 surface strongly influences the formation of hot spots. We deconstructed several generations of known inhibitors into fragments and examined their binding properties using differential scanning fluorimetry (DSF) and protein-based nuclear magnetic resonance (NMR). These biophysical analyses showed that not all fragments bind to the PD-L1 ectodomain despite having the biphenyl scaffold. Although most of the binding fragments induced PD-L1 oligomerization, two compounds, TAH35 and TAH36, retain the monomeric state of proteins upon binding. Additionally, the presence of the entire ectodomain did not affect the binding of the hit compounds and dimerization of PD-L1. The data demonstrated here provide important information on the PD-L1 druggability and the structure-activity relationship of the biphenyl core moiety and therefore may aid in the design of novel inhibitors and focused fragment libraries for PD-L1.
Collapse
Affiliation(s)
- Radoslaw Kitel
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ismael Rodríguez
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Xabier del Corte
- Departamento
de Química Orgánica I, Centro de Investigación
y Estudios Avanzados “Lucio Lascaray” − Facultad
de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad
7, 01006 Vitoria-Gasteiz, Spain
| | - Jack Atmaj
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Magdalena Żarnik
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Damian Muszak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Katarzyna Magiera-Mularz
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz M. Popowicz
- Institute
of Structural Biology, Helmholtz Zentrum
München, Ingolstädter
Landstrasse 1, 85764 Neuherberg, Germany
| | - Tad A. Holak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Faculty
of Chemistry, Organic Chemistry Department, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland,
| |
Collapse
|
11
|
Alibay I, Magarkar A, Seeliger D, Biggin PC. Evaluating the use of absolute binding free energy in the fragment optimisation process. Commun Chem 2022; 5:105. [PMID: 36697714 PMCID: PMC9814858 DOI: 10.1038/s42004-022-00721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/10/2022] [Indexed: 02/01/2023] Open
Abstract
Key to the fragment optimisation process within drug design is the need to accurately capture the changes in affinity that are associated with a given set of chemical modifications. Due to the weakly binding nature of fragments, this has proven to be a challenging task, despite recent advancements in leveraging experimental and computational methods. In this work, we evaluate the use of Absolute Binding Free Energy (ABFE) calculations in guiding fragment optimisation decisions, retrospectively calculating binding free energies for 59 ligands across 4 fragment elaboration campaigns. We first demonstrate that ABFEs can be used to accurately rank fragment-sized binders with an overall Spearman's r of 0.89 and a Kendall τ of 0.67, although often deviating from experiment in absolute free energy values with an RMSE of 2.75 kcal/mol. We then also show that in several cases, retrospective fragment optimisation decisions can be supported by the ABFE calculations. Comparing against cheaper endpoint methods, namely Nwat-MM/GBSA, we find that ABFEs offer better ranking power and correlation metrics. Our results indicate that ABFE calculations can usefully guide fragment elaborations to maximise affinity.
Collapse
Affiliation(s)
- Irfan Alibay
- Department of Biochemistry, The University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
| | - Aniket Magarkar
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an de Riß, Germany
| | - Daniel Seeliger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an de Riß, Germany
- Exscientia Inc, Office 400E, 2125 Biscayne Blvd, Miami, FL, 33137, USA
| | - Philip Charles Biggin
- Department of Biochemistry, The University of Oxford, South Parks Road, OX1 3QU, Oxford, UK.
| |
Collapse
|
12
|
Andola P, Pagag J, Laxman D, Guruprasad L. Fragment-based inhibitor design for SARS-CoV2 main protease. Struct Chem 2022; 33:1467-1487. [PMID: 35811782 PMCID: PMC9251026 DOI: 10.1007/s11224-022-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
COVID-19 disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) has resulted in tremendous loss of lives across the world and is continuing to do so. Extensive work is under progress to develop inhibitors which can prevent the disease by arresting the virus in its life cycle. One such way is by targeting the main protease of the virus which is crucial for the cleavage and conversion of polyproteins into functional units of polypeptides. In this endeavor, our effort was to identify hit molecule inhibitors for SARS-CoV2 main protease using fragment-based drug discovery (FBDD), based on the available crystal structure of chromene-based inhibitor (PDB_ID: 6M2N). The designed molecules were validated by molecular docking and molecular dynamics simulations. The stability of the complexes was further assessed by calculating their binding free energies, normal mode analysis, mechanical stiffness, and principal component analysis.
Collapse
Affiliation(s)
- Priyanka Andola
- School of Chemistry, University of Hyderabad, Hyderabad, 500046 India
| | - Jishu Pagag
- School of Chemistry, University of Hyderabad, Hyderabad, 500046 India
| | - Durgam Laxman
- School of Chemistry, University of Hyderabad, Hyderabad, 500046 India
| | | |
Collapse
|
13
|
Wang ZZ, Wang MS, Wang F, Shi XX, Huang W, Hao GF, Yang GF. Exploring the kinase-inhibitor fragment interaction space facilitates the discovery of kinase inhibitor overcoming resistance by mutations. Brief Bioinform 2022; 23:6596988. [PMID: 35649390 DOI: 10.1093/bib/bbac203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Protein kinases play crucial roles in many cellular signaling processes, making them become important targets for drug discovery. But drug resistance mediated by mutation puts a barrier to the therapeutic effect of kinase inhibitors. Fragment-based drug discovery has been successfully applied to overcome such resistance. However, the complicate kinase-inhibitor fragment interaction and fragment-to-lead process seriously limit the efficiency of kinase inhibitor discovery against resistance caused by mutation. Here, we constructed a comprehensive web platform KinaFrag for the fragment-based kinase inhibitor discovery to overcome resistance. The kinase-inhibitor fragment space was investigated from 7783 crystal kinase-inhibitor fragment complexes, and the structural requirements of kinase subpockets were analyzed. The core fragment-based virtual screening workflow towards specific subpockets was developed to generate new kinase inhibitors. A series of tropomyosin receptor kinase (TRK) inhibitors were designed, and the most potent compound YT9 exhibits up to 70-fold activity improvement than marketed drugs larotrectinib and selitrectinib against G595R, G667C and F589L mutations of TRKA. YT9 shows promising antiproliferative against tumor cells in vitro and effectively inhibits tumor growth in vivo for wild type TRK and TRK mutants. Our results illustrate the great potential of KinaFrag in the kinase inhibitor discovery to combat resistance mediated by mutation. KinaFrag is freely available at http://chemyang.ccnu.edu.cn/ccb/database/KinaFrag/.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xing-Xing Shi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
14
|
Lal Gupta P, Carlson HA. Cosolvent Simulations with Fragment-Bound Proteins Identify Hot Spots to Direct Lead Growth. J Chem Theory Comput 2022; 18:3829-3844. [PMID: 35533286 DOI: 10.1021/acs.jctc.1c01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In drug design, chemical groups are sequentially added to improve a weak-binding fragment into a tight-binding lead molecule. Often, the direction to make these additions is unclear, and there are numerous chemical modifications to choose. Lead development can be guided by crystal structures of the fragment-bound protein, but this alone is unable to capture structural changes like closing or opening of the binding site and any side-chain movements. Accounting for adaptation of the site requires a dynamic approach. Here, we use molecular dynamics calculations of small organic solvents with protein-fragment pairs to reveal the nearest "hot spots". These close hot spots show the direction to make appropriate additions and suggest types of chemical modifications that could improve binding affinity. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that is well established for finding binding "hot spots" in active sites and allosteric sites of proteins. We simulated 20 fragment-bound and apo forms of key pharmaceutical targets to map out hot spots for potential lead space. Furthermore, we analyzed whether the presence of a fragment facilitates the probes' binding in the lead space, a type of binding cooperativity. To the best of our knowledge, this is the first use of cosolvent MD conducted with bound inhibitors in the simulation. Our work provides a general framework to extract molecular features of binding sites to choose chemical groups for growing lead molecules. Of the 20 systems, 17 systems were well mapped by MixMD. For the three not-mapped systems, two had lead growth out into solution away from the protein, and the third had very small modifications which indicated no nearby hot spots. Therefore, our lack of mapping in three systems was appropriate given the experimental data (true-negative cases). The simulations are run for very short time scales, making this method tractable for use in the pharmaceutical industry.
Collapse
Affiliation(s)
- Pancham Lal Gupta
- Department of Medicinal Chemistry, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Heather A Carlson
- Department of Medicinal Chemistry, College of Pharmacy, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
15
|
Klein HF, Hamilton DJ, J. P. de Esch I, Wijtmans M, O'Brien P. Escape from planarity in fragment-based drug discovery: a synthetic strategy analysis of synthetic 3D fragment libraries. Drug Discov Today 2022; 27:2484-2496. [DOI: 10.1016/j.drudis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
|
16
|
Hamilton DJ, Beemsterboer M, Carter CM, Elsayed J, Huiberts REM, Klein HF, O’Brien P, de Esch IJP, Wijtmans M. Puckering the planar landscape of fragments: design and synthesis of a 3D cyclobutane fragment library. ChemMedChem 2022; 17:e202200113. [PMID: 35277937 PMCID: PMC9315009 DOI: 10.1002/cmdc.202200113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Fragment‐based drug discovery (FBDD) has a growing need for unique screening libraries. The cyclobutane moiety was identified as an underrepresented yet attractive three‐dimensional (3D) scaffold. Synthetic strategies were developed via a key 3‐azido‐cyclobutanone intermediate, giving potential access to a range of functional groups with accessible growth vectors. A focused set of 33 novel 3D cyclobutane fragments was synthesised, comprising three functionalities: secondary amines, amides, and sulfonamides. This library was designed using Principal Component Analysis (PCA) and an expanded version of the rule of three (RO3), followed by Principal Moment of Inertia (PMI) analysis to achieve both chemical diversity and high 3D character. Cis and trans ring isomers of library members were generated to maximise the shape diversity obtained, while limiting molecular complexity through avoiding enantiomers. Property analyses of the cyclobutane library indicated that it fares favourably against existing synthetic 3D fragment libraries in terms of shape and physicochemical properties.
Collapse
Affiliation(s)
- David J. Hamilton
- Vrije Universiteit Amsterdam Chemistry and Pharmaceutical Sciences NETHERLANDS
| | | | - Caroline M. Carter
- Vrije Universiteit Amsterdam Chemistry and Pharmaceutical Sciences NETHERLANDS
| | - Jasmina Elsayed
- Vrije Universiteit Amsterdam Chemistry and Pharmaceutical Sciences NETHERLANDS
| | | | - Hanna F. Klein
- University of York Department of Chemistry UNITED KINGDOM
| | - Peter O’Brien
- University of York Department of Chemistry UNITED KINGDOM
| | - Iwan J. P. de Esch
- Vrije Universiteit Amsterdam Chemistry and Pharmaceutical Sciences NETHERLANDS
| | - Maikel Wijtmans
- Vrije Universiteit Amsterdam Chemistry & Pharamceutical Sciences De Boelelaan 1083 1081 HV Amsterdam NETHERLANDS
| |
Collapse
|
17
|
de Esch IJP, Erlanson DA, Jahnke W, Johnson CN, Walsh L. Fragment-to-Lead Medicinal Chemistry Publications in 2020. J Med Chem 2022; 65:84-99. [PMID: 34928151 PMCID: PMC8762670 DOI: 10.1021/acs.jmedchem.1c01803] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Fragment-based drug discovery (FBDD) continues to evolve and make an impact in the pharmaceutical sciences. We summarize successful fragment-to-lead studies that were published in 2020. Having systematically analyzed annual scientific outputs since 2015, we discuss trends and best practices in terms of fragment libraries, target proteins, screening technologies, hit-optimization strategies, and the properties of hit fragments and the leads resulting from them. As well as the tabulated Fragment-to-Lead (F2L) programs, our 2020 literature review identifies several trends and innovations that promise to further increase the success of FBDD. These include developing structurally novel screening fragments, improving fragment-screening technologies, using new computer-aided design and virtual screening approaches, and combining FBDD with other innovative drug-discovery technologies.
Collapse
Affiliation(s)
- Iwan J. P. de Esch
- Division
of Medicinal Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel A. Erlanson
- Frontier
Medicines, 151 Oyster
Point Blvd., South San Francisco, California 94080, United States
| | - Wolfgang Jahnke
- Novartis
Institutes for Biomedical Research, Chemical
Biology and Therapeutics, 4002 Basel, Switzerland
| | - Christopher N. Johnson
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Louise Walsh
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
18
|
Design, synthesis, and biological evaluation of N-(3-cyano-1H-indol-5/6-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamides and 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors. Eur J Med Chem 2022; 227:113928. [PMID: 34688012 DOI: 10.1016/j.ejmech.2021.113928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023]
Abstract
Xanthine oxidase (XO) has been an important target for the treatment of hyperuricemia and gout. The analysis of potential interactions of pyrimidinone and 3-cyano indole pharmacophores present in the corresponding reported XO inhibitors with parts of the XO active pocket indicated that they both can be used as effective fragments for the fragment-based design of nonpurine XO inhibitors. In this paper, we adopted the fragment-based drug design strategy to link the two fragments with an amide bond to design the type 1 compounds 13a-13w,14c, 14d, 14f, 14g, 14j, 14k, and 15g. Compound 13g displayed an evident XO inhibitory potency (IC50 = 0.16 μM), which was 52.3-fold higher than that of allopurinol (IC50 = 8.37 μM). For comparison, type 2 compounds 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles (25c-25g) were also designed by linking the two fragments with a single bond directly. The results showed that compound 25c from the latter series displayed the best inhibitory potency (IC50 = 0.085 μM), and it was 98.5-fold stronger than that of allopurinol (IC50 = 8.37 μM). These results suggested that amide and single bonds were applicable for linking the two fragments together to obtain potent nonpurine XO inhibitors. The structure-activity relationship results revealed that hydrophobic groups at N-atom of the indole moiety were indispensable for the improvement of the inhibitory potency in vitro against XO. In addition, enzyme kinetics studies suggested that compounds 13g and 25c, as the most promising XO inhibitors for the two types of target compounds, acted as mixed-type inhibitors for XO. Moreover, molecular modeling studies suggested that the pyrimidinone and indole moieties of the target compounds could interact well with key amino acid residues in the active pocket of XO. Furthermore, in vivo hypouricemic effect demonstrated that compounds 13g and 25c could effectively reduce serum uric acid levels at an oral dose of 10 mg/kg. Therefore, compounds 13g and 25c could be potential and efficacious agents for the treatment of hyperuricemia and gout.
Collapse
|
19
|
Piticchio SG, Martínez-Cartró M, Scaffidi S, Rachman M, Rodriguez-Arevalo S, Sanchez-Arfelis A, Escolano C, Picaud S, Krojer T, Filippakopoulos P, von Delft F, Galdeano C, Barril X. Discovery of Novel BRD4 Ligand Scaffolds by Automated Navigation of the Fragment Chemical Space. J Med Chem 2021; 64:17887-17900. [PMID: 34898210 DOI: 10.1021/acs.jmedchem.1c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fragment-based drug discovery (FBDD) is a very effective hit identification method. However, the evolution of fragment hits into suitable leads remains challenging and largely artisanal. Fragment evolution is often scaffold-centric, meaning that its outcome depends crucially on the chemical structure of the starting fragment. Considering that fragment screening libraries cover only a small proportion of the corresponding chemical space, hits should be seen as probes highlighting privileged areas of the chemical space rather than actual starting points. We have developed an automated computational pipeline to mine the chemical space around any specific fragment hit, rapidly finding analogues that share a common interaction motif but are structurally novel and diverse. On a prospective application on the bromodomain-containing protein 4 (BRD4), starting from a known fragment, the platform yields active molecules with nonobvious scaffold changes. The procedure is fast and inexpensive and has the potential to uncover many hidden opportunities in FBDD.
Collapse
Affiliation(s)
- Serena G Piticchio
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Míriam Martínez-Cartró
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Salvatore Scaffidi
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Moira Rachman
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sergio Rodriguez-Arevalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Ainoa Sanchez-Arfelis
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Tobias Krojer
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Frank von Delft
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom.,Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom.,Centre for Medicines Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom.,Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Carles Galdeano
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Xavier Barril
- Departament de Farmacia i Tecnología Farmacèutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
20
|
Cetin A, Bursal E, Türkan F. 2-methylindole analogs as cholinesterases and glutathione S-transferase inhibitors: Synthesis, biological evaluation, molecular docking, and pharmacokinetic studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
21
|
Norton D, Bonnette WG, Callahan JF, Carr MG, Griffiths-Jones CM, Heightman TD, Kerns JK, Nie H, Rich SJ, Richardson C, Rumsey W, Sanchez Y, Verdonk ML, Willems HMG, Wixted WE, Wolfe L, Woolford AJA, Wu Z, Davies TG. Fragment-Guided Discovery of Pyrazole Carboxylic Acid Inhibitors of the Kelch-like ECH-Associated Protein 1: Nuclear Factor Erythroid 2 Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction. J Med Chem 2021; 64:15949-15972. [PMID: 34705450 DOI: 10.1021/acs.jmedchem.1c01351] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NRF2-mediated cytoprotective response is central to cellular homoeostasis, and there is increasing interest in developing small-molecule activators of this pathway as therapeutics for diseases involving chronic oxidative stress. The protein KEAP1, which regulates NRF2, is a key point for pharmacological intervention, and we recently described the use of fragment-based drug discovery to develop a tool compound that directly disrupts the protein-protein interaction between NRF2 and KEAP1. We now present the identification of a second, chemically distinct series of KEAP1 inhibitors, which provided an alternative chemotype for lead optimization. Pharmacophoric information from our original fragment screen was used to identify new hit matter through database searching and to evolve this into a new lead with high target affinity and cell-based activity. We highlight how knowledge obtained from fragment-based approaches can be used to focus additional screening campaigns in order to de-risk projects through the rapid identification of novel chemical series.
Collapse
Affiliation(s)
- David Norton
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - William G Bonnette
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - James F Callahan
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Maria G Carr
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - Tom D Heightman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | - Jeffrey K Kerns
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Hong Nie
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Sharna J Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - William Rumsey
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Yolanda Sanchez
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Marcel L Verdonk
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| | | | - William E Wixted
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Lawrence Wolfe
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | | | - Zining Wu
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426-0989, United States
| | - Thomas G Davies
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, U.K
| |
Collapse
|
22
|
Chessari G, Grainger R, Holvey RS, Ludlow RF, Mortenson PN, Rees DC. C-H functionalisation tolerant to polar groups could transform fragment-based drug discovery (FBDD). Chem Sci 2021; 12:11976-11985. [PMID: 34667563 PMCID: PMC8457390 DOI: 10.1039/d1sc03563k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022] Open
Abstract
We have analysed 131 fragment-to-lead (F2L) examples targeting a wide variety of protein families published by academic and industrial laboratories between 2015-2019. Our assessment of X-ray structural data identifies the most common polar functional groups involved in fragment-protein binding are: N-H (hydrogen bond donors on aromatic and aliphatic N-H, amides and anilines; totalling 35%), aromatic nitrogen atoms (hydrogen bond acceptors; totalling 23%), and carbonyl oxygen group atoms (hydrogen bond acceptors on amides, ureas and ketones; totalling 22%). Furthermore, the elaboration of each fragment into its corresponding lead is analysed to identify the nominal synthetic growth vectors. In ∼80% of cases, growth originates from an aromatic or aliphatic carbon on the fragment and more than 50% of the total bonds formed are carbon-carbon bonds. This analysis reveals that growth from carbocentric vectors is key and therefore robust C-H functionalisation methods that tolerate the innate polar functionality on fragments could transform fragment-based drug discovery (FBDD). As a further resource to the community, we have provided the full data of our analysis as well as an online overlay page of the X-ray structures of the fragment hit and leads: https://astx.com/interactive/F2L-2021/.
Collapse
Affiliation(s)
- Gianni Chessari
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Rachel Grainger
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Rhian S Holvey
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Paul N Mortenson
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - David C Rees
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
23
|
Schmidt R, Klein R, Rarey M. Maximum Common Substructure Searching in Combinatorial Make-on-Demand Compound Spaces. J Chem Inf Model 2021; 62:2133-2150. [PMID: 34478299 DOI: 10.1021/acs.jcim.1c00640] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Commercial make-on-demand compound spaces have become increasingly popular within the past few years. Since these libraries are too large for enumeration, they are usually accessed using combinatorial fragment space technologies like FTrees-FS and SpaceLight. Although both search types are of high practical impact, they lack the ability to search for precise structural features on the atomic level. To address this important use case, we developed SpaceMACS enabling efficient and precise maximum common induced substructure (MCIS) similarity and substructure searches within chemical fragment spaces. SpaceMACS enumerates a user-defined number of compounds in a multistep procedure. First, substructures of the query are extracted and matched to all fragments of the space. Then partial results are combined to actual compounds of the space. In this way, SpaceMACS identifies common substructures even if they cross fragment borders. We applied SpaceMACS on three commercial fragment spaces searching for the 150 000 most similar analogs to a glucosyltransferase binder from literature. We were able to find almost all building blocks used for the synthesis of the 90 listed analogs and a plethora of additional results. SpaceMACS is the missing link to enable rational drug discovery on make-on-demand combinatorial catalogs. No matter whether initial compound suggestions come from a de novo design, an AI-based compound generation, or a medicinal chemist's drawing board, the method gives access to the structurally closest chemically available analogs in seconds to at most minutes.
Collapse
Affiliation(s)
- Robert Schmidt
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Raphael Klein
- BioSolveIT GmbH, An der Ziegelei 79, 53757 Sankt Augustin, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH-Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| |
Collapse
|
24
|
Structural and molecular bases to IRE1 activity modulation. Biochem J 2021; 478:2953-2975. [PMID: 34375386 DOI: 10.1042/bcj20200919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
The Unfolded Protein response is an adaptive pathway triggered upon alteration of endoplasmic reticulum (ER) homeostasis. It is transduced by three major ER stress sensors, among which the Inositol Requiring Enzyme 1 (IRE1) is the most evolutionarily conserved. IRE1 is an ER-resident type I transmembrane protein exhibiting an ER luminal domain that senses the protein folding status and a catalytic kinase and RNase cytosolic domain. In recent years, IRE1 has emerged as a relevant therapeutic target in various diseases including degenerative, inflammatory and metabolic pathologies and cancer. As such several drugs altering IRE1 activity were developed that target either catalytic activity and showed some efficacy in preclinical pathological mouse models. In this review, we describe the different drugs identified to target IRE1 activity as well as their mode of action from a structural perspective, thereby identifying common and different modes of action. Based on this information we discuss on how new IRE1-targeting drugs could be developed that outperform the currently available molecules.
Collapse
|
25
|
Lebrêne A, Martzel T, Gouriou L, Sanselme M, Levacher V, Oudeyer S, Afonso C, Loutelier-Bourhis C, Brière JF. The Catalytic Regio- and Stereoselective Synthesis of 1,6-Diazabicyclo[4.3.0]nonane-2,7-diones. J Org Chem 2021; 86:8600-8609. [PMID: 34125536 DOI: 10.1021/acs.joc.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A straightforward synthesis of original 1,6-diazabicyclo[4.3.0]nonane-2,7-diones was achieved through a DBU-organocatalyzed multicomponent Knoevenagel-aza-Michael-Cyclocondensation reaction which takes advantage of an unprecedented highly regio- and diastereoselective conjugate addition of pyridazinones to alkylidene Meldrum's acid intermediates. The key reactive intermediates of this complex process were analyzed by means of electrospray ionization mass spectrometry coupled to ion mobility spectrometry, allowing us to validate the proposed mechanism.
Collapse
Affiliation(s)
- Arthur Lebrêne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Thomas Martzel
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Laura Gouriou
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Morgane Sanselme
- Laboratoire SMS - EA3233, Normandie Univ-University of Rouen, 76821 Mont Saint Aignan, France
| | - Vincent Levacher
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Sylvain Oudeyer
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | | |
Collapse
|
26
|
Hoarau M, Vanichtanankul J, Srimongkolpithak N, Vitsupakorn D, Yuthavong Y, Kamchonwongpaisan S. Discovery of new non-pyrimidine scaffolds as Plasmodium falciparum DHFR inhibitors by fragment-based screening. J Enzyme Inhib Med Chem 2021; 36:198-206. [PMID: 33530764 PMCID: PMC8759724 DOI: 10.1080/14756366.2020.1854244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In various malaria-endemic regions, the appearance of resistance has precluded the use of pyrimidine-based antifolate drugs. Here, a three-step fragment screening was used to identify new non-pyrimidine Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors. Starting from a 1163-fragment commercial library, a two-step differential scanning fluorimetry screen identified 75 primary fragment hits. Subsequent enzyme inhibition assay identified 11 fragments displaying IC50 in the 28-695 μM range and selectivity for PfDHFR. In addition to the known pyrimidine, three new anti-PfDHFR chemotypes were identified. Fragments from each chemotype were successfully co-crystallized with PfDHFR, revealing a binding in the active site, in the vicinity of catalytic residues, which was confirmed by molecular docking on all fragment hits. Finally, comparison with similar non-hit fragments provides preliminary input on available growth vectors for future drug development.
Collapse
Affiliation(s)
- Marie Hoarau
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nitipol Srimongkolpithak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Danoo Vitsupakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
27
|
Leeson PD, Bento AP, Gaulton A, Hersey A, Manners EJ, Radoux CJ, Leach AR. Target-Based Evaluation of "Drug-Like" Properties and Ligand Efficiencies. J Med Chem 2021; 64:7210-7230. [PMID: 33983732 PMCID: PMC7610969 DOI: 10.1021/acs.jmedchem.1c00416] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physicochemical descriptors commonly used to define "drug-likeness" and ligand efficiency measures are assessed for their ability to differentiate marketed drugs from compounds reported to bind to their efficacious target or targets. Using ChEMBL version 26, a data set of 643 drugs acting on 271 targets was assembled, comprising 1104 drug-target pairs having ≥100 published compounds per target. Taking into account changes in their physicochemical properties over time, drugs are analyzed according to their target class, therapy area, and route of administration. Recent drugs, approved in 2010-2020, display no overall differences in molecular weight, lipophilicity, hydrogen bonding, or polar surface area from their target comparator compounds. Drugs are differentiated from target comparators by higher potency, ligand efficiency (LE), lipophilic ligand efficiency (LLE), and lower carboaromaticity. Overall, 96% of drugs have LE or LLE values, or both, greater than the median values of their target comparator compounds.
Collapse
Affiliation(s)
- Paul D Leeson
- Paul Leeson Consulting Ltd, The Malt House, Main Street, Congerstone, Nuneaton, Warkwickshire CV13 6LZ, United Kingdom
| | - A Patricia Bento
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Anna Gaulton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Anne Hersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Emma J Manners
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Chris J Radoux
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Andrew R Leach
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| |
Collapse
|
28
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
29
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
30
|
Mueller SL, Chrysanthopoulos PK, Halili MA, Hepburn C, Nebl T, Supuran CT, Nocentini A, Peat TS, Poulsen SA. The Glitazone Class of Drugs as Carbonic Anhydrase Inhibitors-A Spin-Off Discovery from Fragment Screening. Molecules 2021; 26:3010. [PMID: 34070212 PMCID: PMC8158703 DOI: 10.3390/molecules26103010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
The approved drugs that target carbonic anhydrases (CA, EC 4.2.1.1), a family of zinc metalloenzymes, comprise almost exclusively of primary sulfonamides (R-SO2NH2) as the zinc binding chemotype. New clinical applications for CA inhibitors, particularly for hard-to-treat cancers, has driven a growing interest in the development of novel CA inhibitors. We recently discovered that the thiazolidinedione heterocycle, where the ring nitrogen carries no substituent, is a new zinc binding group and an alternate CA inhibitor chemotype. This heterocycle is curiously also a substructure of the glitazone class of drugs used in the treatment options for type 2 diabetes. Herein, we investigate and characterise three glitazone drugs (troglitazone 11, rosiglitazone 12 and pioglitazone 13) for binding to CA using native mass spectrometry, protein X-ray crystallography and hydrogen-deuterium exchange (HDX) mass spectrometry, followed by CA enzyme inhibition studies. The glitazone drugs all displayed appreciable binding to and inhibition of CA isozymes. Given that thiazolidinediones are not credited as a zinc binding group nor known as CA inhibitors, our findings indicate that CA may be an off-target of these compounds when used clinically. Furthermore, thiazolidinediones may represent a new opportunity for the development of novel CA inhibitors as future drugs.
Collapse
Affiliation(s)
- Sarah L. Mueller
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Panagiotis K. Chrysanthopoulos
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd., Rydalmere, NSW 2116, Australia;
| | - Tom Nebl
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Alessio Nocentini
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche Nutraceutiche, Università Degli Studi di Firenze, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (A.N.)
| | - Thomas S. Peat
- CSIRO, Biomedical Manufacturing Program, Parkville, Melbourne, VIC 3052, Australia; (T.N.); (T.S.P.)
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (S.L.M.); (P.K.C.); (M.A.H.)
- ARC Centre for Fragment-Based Design, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
31
|
Wang ZZ, Shi XX, Huang GY, Hao GF, Yang GF. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol Sci 2021; 42:551-565. [PMID: 33958239 DOI: 10.1016/j.tips.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Protein kinases (PKs) are important drug targets, but kinases selectivity poses a challenge to protein kinase inhibitors (PKIs) design. Fragment-based drug discovery (FBDD) has achieved great success in the discovery of highly specific PKIs. It makes full use of kinase-fragment interaction in target kinase subpockets to obtain promising selectivity. However, it's difficult to understand the complicated kinase-fragment interaction space, and systemic discussion of these interactions is still lacking. Herein, we introduce the advantages of the FBDD strategy in PKIs design. Key features of the selectivity of kinase-fragment interactions are summarized and analyzed. Some promising PKIs are introduced as case studies to help understand the fragment-to-lead (F2L) optimization process. Novel strategies and technologies for FBDD in PKIs discovery are also outlooked.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Xing-Xing Shi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
32
|
Davoine C, Fillet M, Pochet L. Capillary electrophoresis as a fragment screening tool to cross-validate hits from chromogenic assay: Application to FXIIa. Talanta 2021; 226:122163. [PMID: 33676706 DOI: 10.1016/j.talanta.2021.122163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
In this study, a partial-filling affinity capillary electrophoresis (pf-ACE) method was developed for the cross-validation of fragment hits revealed by chromogenic factor XIIa (FXIIa) assay. Chromogenic assay produces false positives, mainly due to spectrophotometric interferences and sample purity issues. pf-ACE was selected as counter-screening technology because of its separative character and the fact that the target does not have to be attached or tagged. The effects of protein plug length, applied voltage and composition of the running buffer were examined and optimized. Detection limit in terms of dissociation constant was estimated at 400 μM. The affinity evaluation was performed close to physiological conditions (pH 7.4, ionic strength 0.13 mol L-1) in a poly (ethylene oxide)-coated capillary of 75 μm internal diameter x 33 cm length with an applied voltage of 3 kV. This method uncovered chromogenic assay's false positives due to zinc contamination. Moreover, pf-ACE supported the evaluation of compounds absorbing at 405 nm.
Collapse
Affiliation(s)
- C Davoine
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium; Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place du 20 Août 7, 4000, Liège, Belgium
| | - M Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Place du 20 Août 7, 4000, Liège, Belgium
| | - L Pochet
- Namur Medicine & Drug Innovation Center (NAMEDIC - NARILIS), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
33
|
Kollár L, Gobec M, Szilágyi B, Proj M, Knez D, Ábrányi-Balogh P, Petri L, Imre T, Bajusz D, Ferenczy GG, Gobec S, Keserű GM, Sosič I. Discovery of selective fragment-sized immunoproteasome inhibitors. Eur J Med Chem 2021; 219:113455. [PMID: 33894528 DOI: 10.1016/j.ejmech.2021.113455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (β5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the β5i subunit was shown and selectivity against the β5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the β5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Bence Szilágyi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117, Budapest, Hungary.
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
34
|
Modular Click Chemistry Library: Searching for Better Functions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Caplin MJ, Foley DJ. Emergent synthetic methods for the modular advancement of sp 3-rich fragments. Chem Sci 2021; 12:4646-4660. [PMID: 34168751 PMCID: PMC8179648 DOI: 10.1039/d1sc00161b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022] Open
Abstract
Fragment-based drug discovery is an important and increasingly reliable technology for the delivery of clinical candidates. Notably, however, sp3-rich fragments are a largely untapped resource in molecular discovery, in part due to the lack of general and suitably robust chemical methods available to aid their development into higher affinity lead and drug compounds. This Perspective describes the challenges associated with developing sp3-rich fragments, and succinctly highlights recent advances in C(sp3)-H functionalisations of high potential value towards advancing fragment hits by 'growing' functionalised rings and chains from unconventional, carbon-centred vectors.
Collapse
Affiliation(s)
- Max J Caplin
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| | - Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| |
Collapse
|
36
|
Kanev GK, de Graaf C, Westerman BA, de Esch IJP, Kooistra AJ. KLIFS: an overhaul after the first 5 years of supporting kinase research. Nucleic Acids Res 2021; 49:D562-D569. [PMID: 33084889 PMCID: PMC7778968 DOI: 10.1093/nar/gkaa895] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Kinases are a prime target of drug development efforts with >60 drug approvals in the past two decades. Due to the research into this protein family, a wealth of data has been accumulated that keeps on growing. KLIFS-Kinase-Ligand Interaction Fingerprints and Structures-is a structural database focusing on how kinase inhibitors interact with their targets. The aim of KLIFS is to support (structure-based) kinase research through the systematic collection, annotation, and processing of kinase structures. Now, 5 years after releasing the initial KLIFS website, the database has undergone a complete overhaul with a new website, new logo, and new functionalities. In this article, we start by looking back at how KLIFS has been used by the research community, followed by a description of the renewed KLIFS, and conclude with showcasing the functionalities of KLIFS. Major changes include the integration of approved drugs and inhibitors in clinical trials, extension of the coverage to atypical kinases, and a RESTful API for programmatic access. KLIFS is available at the new domain https://klifs.net.
Collapse
Affiliation(s)
- Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Bart A Westerman
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
37
|
Oebbeke M, Siefker C, Wagner B, Heine A, Klebe G. Fragment‐Bindung an die Kinase‐Scharnier‐Region: Wenn Ladungsverteilung und lokale p
K
a
‐Verschiebungen etablierte Bioisosterie‐Konzepte fehlleiten. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthias Oebbeke
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Christof Siefker
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Björn Wagner
- Roche Innovation Center Grenzacherstr. 124 4070 Basel Schweiz
| | - Andreas Heine
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| | - Gerhard Klebe
- Philipps Universität Marburg Institut für Pharmazeutische Chemie Marbacher Weg 6 35032 Marburg Deutschland
| |
Collapse
|
38
|
Oebbeke M, Siefker C, Wagner B, Heine A, Klebe G. Fragment Binding to Kinase Hinge: If Charge Distribution and Local pK a Shifts Mislead Popular Bioisosterism Concepts. Angew Chem Int Ed Engl 2021; 60:252-258. [PMID: 33021032 PMCID: PMC7821265 DOI: 10.1002/anie.202011295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/25/2022]
Abstract
Medicinal-chemistry optimization follows strategies replacing functional groups and attaching larger substituents at a promising lead scaffold. Well-established bioisosterism rules are considered, however, it is difficult to estimate whether the introduced modifications really match the required properties at a binding site. The electron density distribution and pKa values are modulated influencing protonation states and bioavailability. Considering the adjacent H-bond donor/acceptor pattern of the hinge binding motif in a kinase, we studied by crystallography a set of fragments to map the required interaction pattern. Unexpectedly, benzoic acid and benzamidine, decorated with the correct substituents, are totally bioisosteric just as carboxamide and phenolic OH. A mono-dentate pyridine nitrogen out-performs bi-dentate functionalities. The importance of correctly designing pKa values of attached functional groups by additional substituents at the parent scaffold is rendered prominent.
Collapse
Affiliation(s)
- Matthias Oebbeke
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Christof Siefker
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Björn Wagner
- Roche Innovation CenterGrenzacherstr. 1244070BaselSwitzerland
| | - Andreas Heine
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| | - Gerhard Klebe
- Philipps Universität MarburgInstitut für Pharmazeutische ChemieMarbacher Weg 635032MarburgGermany
| |
Collapse
|
39
|
St Denis JD, Hall RJ, Murray CW, Heightman TD, Rees DC. Fragment-based drug discovery: opportunities for organic synthesis. RSC Med Chem 2020; 12:321-329. [PMID: 34041484 PMCID: PMC8130625 DOI: 10.1039/d0md00375a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
This Review describes the increasing demand for organic synthesis to facilitate fragment-based drug discovery (FBDD), focusing on polar, unprotected fragments. In FBDD, X-ray crystal structures are used to design target molecules for synthesis with new groups added onto a fragment via specific growth vectors. This requires challenging synthesis which slows down drug discovery, and some fragments are not progressed into optimisation due to synthetic intractability. We have evaluated the output from Astex's fragment screenings for a number of programs, including urokinase-type plasminogen activator, hematopoietic prostaglandin D2 synthase, and hepatitis C virus NS3 protease-helicase, and identified fragments that were not elaborated due, in part, to a lack of commercially available analogues and/or suitable synthetic methodology. This represents an opportunity for the development of new synthetic research to enable rapid access to novel chemical space and fragment optimisation.
Collapse
Affiliation(s)
| | - Richard J Hall
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Tom D Heightman
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - David C Rees
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
40
|
Hamilton DJ, Dekker T, Klein HF, Janssen GV, Wijtmans M, O'Brien P, de Esch IJP. Escape from planarity in fragment-based drug discovery: A physicochemical and 3D property analysis of synthetic 3D fragment libraries. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 38:77-90. [PMID: 34895643 DOI: 10.1016/j.ddtec.2021.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 06/14/2023]
Abstract
Fragment-based drug discovery (FBDD) has grown into a well-established approach in the pursuit of new therapeutics. Key to the success of FBDD is the low molecular complexity of the initial hits and this has resulted in fragment libraries that mainly contain compounds with a two-dimensional (2D) shape. In an effort to increase the chemical diversity and explore the impact of increased molecular complexity on the hit rate of fragment library screening, several academic and industrial groups have designed and synthesised novel fragments with a three-dimensional (3D) shape. This review provides an overview of 25 synthetic 3D fragment libraries from the recent literature. We calculate and compare physicochemical properties and descriptors that are typically used to measure molecular three-dimensionality such as fraction sp3 (Fsp3), plane of best fit (PBF) scores and principal moment of inertia (PMI) plots. Although the libraries vary widely in structure and properties, some key common features can be identified which may have utility in designing the next generation of 3D fragment libraries.
Collapse
Affiliation(s)
- David J Hamilton
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Tom Dekker
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Hanna F Klein
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Guido V Janssen
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter O'Brien
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Li H, Gao MQ, Chen Y, Wang YX, Zhu XL, Yang GF. Discovery of Pyrazine-Carboxamide-Diphenyl-Ethers as Novel Succinate Dehydrogenase Inhibitors via Fragment Recombination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14001-14008. [PMID: 33185088 DOI: 10.1021/acs.jafc.0c05646] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The discovery of novel succinate dehydrogenase inhibitors (SDHIs) has attracted great attention worldwide. Herein, a fragment recombination strategy was proposed to design new SDHIs by understanding the ligand-receptor interaction mechanism of SDHIs. Three fragments, pyrazine from pyraziflumid, diphenyl-ether from flubeneteram, and a prolonged amide linker from pydiflumetofen and fluopyram, were identified and recombined to produce a pyrazine-carboxamide-diphenyl-ether scaffold as a new SDHI. After substituent optimization, compound 6y was successfully identified with good inhibitory activity against porcine SDH, which was about 2-fold more potent than pyraziflumid. Furthermore, compound 6y exhibited 95% and 80% inhibitory rates against soybean gray mold and wheat powdery mildew at a dosage of 100 mg/L in vivo assay, respectively. The results of the present work showed that the pyrazine-carboxamide-diphenyl-ether scaffold could be used as a new starting point for the discovery of new SDHIs.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Meng-Qi Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yan Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
42
|
Jahnke W, Erlanson DA, de Esch IJP, Johnson CN, Mortenson PN, Ochi Y, Urushima T. Fragment-to-Lead Medicinal Chemistry Publications in 2019. J Med Chem 2020; 63:15494-15507. [PMID: 33226222 DOI: 10.1021/acs.jmedchem.0c01608] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fragment-based drug discovery (FBDD) has grown and matured to a point where it is valuable to keep track of its extent and details of application. This Perspective summarizes successful fragment-to-lead stories published in 2019. It is the fifth in a series that started with literature published in 2015. The analysis of screening methods, optimization strategies, and molecular properties of hits and leads are presented in the hope of informing best practices for FBDD. Moreover, FBDD is constantly evolving, and the latest technologies and emerging trends are summarized. These include covalent FBDD, FBDD for the stabilization of proteins or protein-protein interactions, FBDD for enzyme activators, new screening technologies, and advances in library design and chemical synthesis.
Collapse
Affiliation(s)
- Wolfgang Jahnke
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Boulevard, South San Francisco, California 94080, United States of America
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Paul N Mortenson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Yuji Ochi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Tatsuya Urushima
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
43
|
Sydow D, Schmiel P, Mortier J, Volkamer A. KinFragLib: Exploring the Kinase Inhibitor Space Using Subpocket-Focused Fragmentation and Recombination. J Chem Inf Model 2020; 60:6081-6094. [PMID: 33155465 DOI: 10.1021/acs.jcim.0c00839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein kinases play a crucial role in many cell signaling processes, making them one of the most important families of drug targets. In this context, fragment-based drug design strategies have been successfully applied to develop novel kinase inhibitors. These strategies usually follow a knowledge-driven approach to optimize a focused set of fragments to a potent kinase inhibitor. Alternatively, KinFragLib explores and extends the chemical space of kinase inhibitors using data-driven fragmentation and recombination. The method builds on available structural kinome data from the KLIFS database for over 2500 kinase DFG-in structures cocrystallized with noncovalent kinase ligands. The computational fragmentation method splits the ligands into fragments with respect to their 3D proximity to six predefined functionally relevant subpocket centers. The resulting fragment library consists of six subpocket pools with over 7000 fragments, available at https://github.com/volkamerlab/KinFragLib. KinFragLib offers two main applications: on the one hand, in-depth analyses of the chemical space of known kinase inhibitors, subpocket characteristics, and connections, and on the other hand, subpocket-informed recombination of fragments to generate potential novel inhibitors. The latter showed that recombining only a subset of 624 representative fragments generated 6.7 million molecules. This combinatorial library contains, besides some known kinase inhibitors, more than 99% novel chemical matter compared to ChEMBL and 63% molecules compliant with Lipinski's rule of five.
Collapse
Affiliation(s)
- Dominique Sydow
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Paula Schmiel
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jérémie Mortier
- Digital Technologies, Computational Molecular Design, Bayer AG, 13342 Berlin, Germany
| | - Andrea Volkamer
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
44
|
Sreeramulu S, Richter C, Kuehn T, Azzaoui K, Blommers MJJ, Del Conte R, Fragai M, Trieloff N, Schmieder P, Nazaré M, Specker E, Ivanov V, Oschkinat H, Banci L, Schwalbe H. NMR quality control of fragment libraries for screening. JOURNAL OF BIOMOLECULAR NMR 2020; 74:555-563. [PMID: 32533387 PMCID: PMC7683495 DOI: 10.1007/s10858-020-00327-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Fragment-based screening has evolved as a remarkable approach within the drug discovery process both in the industry and academia. Fragment screening has become a more structure-based approach to inhibitor development, but also towards development of pathway-specific clinical probes. However, it is often witnessed that the availability, immediate and long-term, of a high quality fragment-screening library is still beyond the reach of most academic laboratories. Within iNEXT (Infrastructure for NMR, EM and X-rays for Translational research), a EU-funded Horizon 2020 program, a collection of 782 fragments were assembled utilizing the concept of "poised fragments" with the aim to facilitate downstream synthesis of ligands with high affinity by fragment ligation. Herein, we describe the analytical procedure to assess the quality of this purchased and assembled fragment library by NMR spectroscopy. This quality assessment requires buffer solubility screening, comparison with LC/MS quality control and is supported by state-of-the-art software for high throughput data acquisition and on-the-fly data analysis. Results from the analysis of the library are presented as a prototype of fragment progression through the quality control process.
Collapse
Affiliation(s)
- Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | | | | | | | - Rebecca Del Conte
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Florence, Italy
| | - Marco Fragai
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Florence, Italy
| | - Nils Trieloff
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Peter Schmieder
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Marc Nazaré
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Edgar Specker
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Vladimir Ivanov
- Enamine, ENAMINE Ltd., 78 Chervonotkatska Street, Kiev, 02660, Ukraine
| | - Hartmut Oschkinat
- Department of NMR-Supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Florence, Italy
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
45
|
Keiffer S, Carneiro MG, Hollander J, Kobayashi M, Pogoryelev D, Ab E, Theisgen S, Müller G, Siegal G. NMR in target driven drug discovery: why not? JOURNAL OF BIOMOLECULAR NMR 2020; 74:521-529. [PMID: 32901320 PMCID: PMC7683447 DOI: 10.1007/s10858-020-00343-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/17/2020] [Indexed: 05/09/2023]
Abstract
No matter the source of compounds, drug discovery campaigns focused directly on the target are entirely dependent on a consistent stream of reliable data that reports on how a putative ligand interacts with the protein of interest. The data will derive from many sources including enzyme assays and many types of biophysical binding assays such as TR-FRET, SPR, thermophoresis and many others. Each method has its strengths and weaknesses, but none is as information rich and broadly applicable as NMR. Here we provide a number of examples of the utility of NMR for enabling and providing ongoing support for the early pre-clinical phase of small molecule drug discovery efforts. The examples have been selected for their usefulness in a commercial setting, with full understanding of the need for speed, cost-effectiveness and ease of implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Eiso Ab
- ZoBio, JH Oortweg 19, 2333CH, Leiden, Netherlands
| | | | - Gerhard Müller
- Gotham GmbH, Am Klopferspitz 19a, 82152, Martinsried, Germany
| | - Gregg Siegal
- ZoBio, JH Oortweg 19, 2333CH, Leiden, Netherlands.
- Amsterdam Institute of Molecular and Life Sciences, Free University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Norton RS, Jahnke W. NMR in pharmaceutical discovery and development. JOURNAL OF BIOMOLECULAR NMR 2020; 74:473-476. [PMID: 32886261 DOI: 10.1007/s10858-020-00345-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia.
| | - Wolfgang Jahnke
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Virchow-16.3.249, 4002, Basel, Switzerland.
| |
Collapse
|
47
|
Abstract
A large-scale screening campaign has yielded dozens of crystal structures of small molecule fragments that bind to the main protease of SARS-CoV-2. The global research community is encouraged to pursue these as drug discovery starting points for COVID-19.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Frontier Medicines Corporation, 151 Oyster Point Blvd., 2nd Floor, South San Francisco, CA, 94080, USA.
| |
Collapse
|
48
|
Raymundo DP, Doultsinos D, Guillory X, Carlesso A, Eriksson LA, Chevet E. Pharmacological Targeting of IRE1 in Cancer. Trends Cancer 2020; 6:1018-1030. [PMID: 32861679 DOI: 10.1016/j.trecan.2020.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
IRE1α (inositol requiring enzyme 1 alpha) is one of the main transducers of the unfolded protein response (UPR). IRE1α plays instrumental protumoral roles in several cancers, and high IRE1α activity has been associated with poorer prognoses. In this context, IRE1α has been identified as a potentially relevant therapeutic target. Pharmacological inhibition of IRE1α activity can be achieved by targeting either the kinase domain or the RNase domain. Herein, the recent advances in IRE1α pharmacological targeting is summarized. We describe the identification and optimization of IRE1α inhibitors as well as their mode of action and limitations as anticancer drugs. The potential pitfalls and challenges that could be faced in the clinic, and the opportunities that IRE1α modulating strategies may present are discussed.
Collapse
Affiliation(s)
- Diana Pelizzari Raymundo
- Proteostasis and Cancer Team, INSERM U1242, COSS Laboratory, Université de Rennes, Rennes, France; Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Dimitrios Doultsinos
- Proteostasis and Cancer Team, INSERM U1242, COSS Laboratory, Université de Rennes, Rennes, France; Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Guillory
- Institut des Science Chimiques de Rennes, CNRS UMR6226, Université de Rennes, Rennes, France
| | - Antonio Carlesso
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Eric Chevet
- Proteostasis and Cancer Team, INSERM U1242, COSS Laboratory, Université de Rennes, Rennes, France; Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
49
|
Troelsen NS, Clausen MH. Library Design Strategies To Accelerate Fragment‐Based Drug Discovery. Chemistry 2020; 26:11391-11403. [DOI: 10.1002/chem.202000584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Nikolaj S. Troelsen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| |
Collapse
|
50
|
Competition NMR for Detection of Hit/Lead Inhibitors of Protein-Protein Interactions. Molecules 2020; 25:molecules25133017. [PMID: 32630327 PMCID: PMC7412237 DOI: 10.3390/molecules25133017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Screening for small-molecule fragments that can lead to potent inhibitors of protein–protein interactions (PPIs) is often a laborious step as the fragments cannot dissociate the targeted PPI due to their low μM–mM affinities. Here, we describe an NMR competition assay called w-AIDA-NMR (weak-antagonist induced dissociation assay-NMR), which is sensitive to weak μM–mM ligand–protein interactions and which can be used in initial fragment screening campaigns. By introducing point mutations in the complex’s protein that is not targeted by the inhibitor, we lower the effective affinity of the complex, allowing for short fragments to dissociate the complex. We illustrate the method with the compounds that block the Mdm2/X-p53 and PD-1/PD-L1 oncogenic interactions. Targeting the PD-/PD-L1 PPI has profoundly advanced the treatment of different types of cancers.
Collapse
|