1
|
Dunker C, Schlegel K, Junker A. Phenol (bio)isosteres in drug design and development. Arch Pharm (Weinheim) 2025; 358:e2400700. [PMID: 39580699 PMCID: PMC11726161 DOI: 10.1002/ardp.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Due to their versatile properties, phenolic compounds are integral to various biologically active molecules, including many pharmaceuticals. However, their application in drug design is often hindered by issues such as poor oral bioavailability, rapid metabolism, and potential toxicity. This review explores the use of phenol bioisosteres-structurally similar compounds that can mimic the biological activity of phenols while potentially offering improved drug-like properties. We provide an extensive analysis of various phenol bioisosteres, including benzimidazolones, benzoxazolones, indoles, quinolinones, and pyridones, highlighting their impact on the pharmacokinetic and pharmacodynamic profiles of drugs. Case studies illustrate the successful application of these bioisosteres in enhancing metabolic stability, receptor selectivity, and overall therapeutic efficacy. Additionally, the review addresses the challenges associated with phenol bioisosterism, such as maintaining potency and avoiding undesirable side effects. By offering a detailed examination of current strategies and potential future directions, this review serves as a valuable resource for medicinal chemists seeking to optimize phenolic scaffolds in drug development. The insights provided herein aim to facilitate the design of more effective and safer therapeutic agents through strategic bioisosteric modifications.
Collapse
Affiliation(s)
- Calvin Dunker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| | - Katja Schlegel
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI)University of MuensterMuensterGermany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and RadiopharmacyUniversity of TübingenTübingenGermany
| |
Collapse
|
2
|
Wichert M, Guasch L, Franzini RM. Challenges and Prospects of DNA-Encoded Library Data Interpretation. Chem Rev 2024; 124:12551-12572. [PMID: 39508428 DOI: 10.1021/acs.chemrev.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
DNA-encoded library (DEL) technology is a powerful platform for the efficient identification of novel chemical matter in the early drug discovery process enabled by parallel screening of vast libraries of encoded small molecules through affinity selection and deep sequencing. While DEL selections provide rich data sets for computational drug discovery, the underlying technical factors influencing DEL data remain incompletely understood. This review systematically examines the key parameters affecting the chemical information in DEL data and their impact on hit triaging and machine learning integration. The need for rigorous data handling and interpretation is emphasized, with standardized methods being critical for the success of DEL-based approaches. Major challenges include the relationship between sequence counts and binding affinities, frequent hitters, and the influence of factors such as inhomogeneous library composition, DNA damage, and linkers on binding modes. Experimental artifacts, such as those caused by protein immobilization and screening matrix effects, further complicate data interpretation. Recent advancements in using machine learning to denoise DEL data and predict drug candidates are highlighted. This review offers practical guidance on adopting best practices for integrating robust methodologies, comprehensive data analysis, and computational tools to improve the accuracy and efficacy of DEL-driven hit discovery.
Collapse
Affiliation(s)
- Moreno Wichert
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Suo Y, Qian X, Xiong Z, Liu X, Wang C, Mu B, Wu X, Lu W, Cui M, Liu J, Chen Y, Zheng M, Lu X. Enhancing the Predictive Power of Machine Learning Models through a Chemical Space Complementary DEL Screening Strategy. J Med Chem 2024; 67:18969-18980. [PMID: 39441849 DOI: 10.1021/acs.jmedchem.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-encoded library (DEL) technology is an effective method for small molecule drug discovery, enabling high-throughput screening against target proteins. While DEL screening produces extensive data, it can reveal complex patterns not easily recognized by human analysis. Lead compounds from DEL screens often have higher molecular weights, posing challenges for drug development. This study refines traditional DELs by integrating alternative techniques like photocross-linking screening to enhance chemical diversity. Combining these methods improved predictive performance for small molecule identification models. Using this approach, we predicted active small molecules for BRD4 and p300, achieving hit rates of 26.7 and 35.7%. Notably, the identified compounds exhibit smaller molecular weights and better modification potential compared to traditional DEL molecules. This research demonstrates the synergy between DEL and AI technologies, enhancing drug discovery.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xu Qian
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Zhaoping Xiong
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Xiaohong Liu
- Technology Development Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Chao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Baiyang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- Shandong Second Medical University, Weifang 261053, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Meiying Cui
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Jiaxiang Liu
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Yujie Chen
- DEL Department, Suzhou Alphama Biotechnology Co., Ltd., Suzhou 215125,China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
4
|
Ashraf SN, Blackwell JH, Holdgate GA, Lucas SCC, Solovyeva A, Storer RI, Whitehurst BC. Hit me with your best shot: Integrated hit discovery for the next generation of drug targets. Drug Discov Today 2024; 29:104143. [PMID: 39173704 DOI: 10.1016/j.drudis.2024.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Identification of high-quality hit chemical matter is of vital importance to the success of drug discovery campaigns. However, this goal is becoming ever harder to achieve as the targets entering the portfolios of pharmaceutical and biotechnology companies are increasingly trending towards novel and traditionally challenging to drug. This demand has fuelled the development and adoption of numerous new screening approaches, whereby the contemporary hit identification toolbox comprises a growing number of orthogonal and complementary technologies including high-throughput screening, fragment-based ligand design, affinity screening (affinity-selection mass spectrometry, differential scanning fluorimetry, DNA-encoded library screening), as well as increasingly sophisticated computational predictive approaches. Herein we describe how an integrated strategy for hit discovery, whereby multiple hit identification techniques are tactically applied, selected in the context of target suitability and resource priority, represents an optimal and often essential approach to maximise the likelihood of identifying quality starting points from which to develop the next generation of medicines.
Collapse
Affiliation(s)
- S Neha Ashraf
- Hit Discovery, Discovery Science, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | - J Henry Blackwell
- Hit Discovery, Discovery Science, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | | | - Simon C C Lucas
- Hit Discovery, Discovery Science, AstraZeneca R&D, Cambridge CB2 0AA, UK
| | - Alisa Solovyeva
- Hit Discovery, Discovery Science, AstraZeneca R&D, Gothenburg SE-431 83, Sweden
| | - R Ian Storer
- Hit Discovery, Discovery Science, AstraZeneca R&D, Cambridge CB2 0AA, UK.
| | | |
Collapse
|
5
|
Leśniewska A, Przybylski P. Seven-membered N-heterocycles as approved drugs and promising leads in medicinal chemistry as well as the metal-free domino access to their scaffolds. Eur J Med Chem 2024; 275:116556. [PMID: 38879971 DOI: 10.1016/j.ejmech.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Azepanes or azepines are structural motifs of many drugs, drug candidates and evaluated lead compounds. Even though compounds having N-heterocyclic 7-membered rings are often found in nature (e.g. alkaloids), the natural compounds of this group are rather rare as approved therapeutics. Thus, recently studied and approved azepane or azepine-congeners predominantly consist of semi-synthetically or synthetically-obtained scaffolds. In this review a comparison of approved drugs and recently investigated leads was proposed taking into regard their structural aspects (stereochemistry), biological activities, pharmacokinetic properties and confirmed molecular targets. The 7-membered N-heterocycles reveal a wide range of biological activities, not only against CNS diseases, but also as e.g. antibacterial, anticancer, antiviral, antiparasitic and against allergy agents. As most of the approved or investigated potential drugs or lead structures, belonging to 7-membered N-heterocycles, are synthetic scaffolds, this report also reveals different and efficient metal-free cascade approaches useful to synthesize both simple azepane or azepine-containing congeners and those of oligocyclic structures. Stereochemistry of azepane/azepine fused systems, in view of biological data and binding with the targets, is discussed. Apart from the approved drugs, we compare advances in SAR studies of 7-membered N-heterocycles (mainly from 2018 to 2023), whereas the related synthetic part concerning various domino strategies is focused on the last ten years.
Collapse
Affiliation(s)
- Aleksandra Leśniewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
6
|
Sternicki LM, Poulsen SA. Fragment-based drug discovery campaigns guided by native mass spectrometry. RSC Med Chem 2024; 15:2270-2285. [PMID: 39026646 PMCID: PMC11253872 DOI: 10.1039/d4md00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Native mass spectrometry (nMS) is well established as a biophysical technique for characterising biomolecules and their interactions with endogenous or investigational small molecule ligands. The high sensitivity mass measurements make nMS particularly well suited for applications in fragment-based drug discovery (FBDD) screening campaigns where the detection of weakly binding ligands to a target biomolecule is crucial. We first reviewed the contributions of nMS to guiding FBDD hit identification in 2013, providing a comprehensive perspective on the early adoption of nMS for fragment screening. Here we update this initial progress with a focus on contributions of nMS that have guided FBDD for the period 2014 until end of 2023. We highlight the development of nMS adoption in FBDD in the context of other biophysical fragment screening techniques. We also discuss the roadmap for increased adoption of nMS for fragment screening beyond soluble proteins, including for guiding the discovery of fragments supporting advances in PROTAC discovery, RNA-binding small molecules and covalent therapeutic drug discovery.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| |
Collapse
|
7
|
Hirst DJ, Bamborough P, Al-Mahdi N, Angell DC, Barnett HA, Baxter A, Bit RA, Brown JA, Chung CW, Craggs PD, Davis RP, Demont EH, Ferrie A, Gordon LJ, Harada I, Ho TCT, Holyer ID, Hooper-Greenhill E, Jones KL, Lindon MJ, Lovatt C, Lugo D, Maller C, McGonagle G, Messenger C, Mitchell DJ, Pascoe DD, Patel VK, Patten C, Poole DL, Shah RR, Rioja I, Stafford KAJ, Tape D, Taylor S, Theodoulou NH, Tomlinson L, Wall ID, Wellaway CR, White G, Prinjha RK, Humphreys PG. Structure- and Property-Based Optimization of Efficient Pan-Bromodomain and Extra Terminal Inhibitors to Identify Oral and Intravenous Candidate I-BET787. J Med Chem 2024; 67:10464-10489. [PMID: 38866424 DOI: 10.1021/acs.jmedchem.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail N-acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 (70) that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration. This focused two-phase explore-exploit medicinal chemistry effort delivered the candidate molecule in 3 months with less than 100 final compounds synthesized.
Collapse
Affiliation(s)
- David J Hirst
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Niam Al-Mahdi
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Davina C Angell
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather A Barnett
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew Baxter
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rino A Bit
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jack A Brown
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-Wa Chung
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D Craggs
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert P Davis
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Emmanuel H Demont
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Alan Ferrie
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Laurie J Gordon
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Isobel Harada
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Tim C T Ho
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Holyer
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Katherine L Jones
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew J Lindon
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Cerys Lovatt
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David Lugo
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Claire Maller
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Grant McGonagle
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Cassie Messenger
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Darren J Mitchell
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David D Pascoe
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Darren L Poole
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rishi R Shah
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Inmaculada Rioja
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Daniel Tape
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Simon Taylor
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laura Tomlinson
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Wall
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Gemma White
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K Prinjha
- GSK Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | |
Collapse
|
8
|
Shah RR, De Vita E, Sathyamurthi PS, Conole D, Zhang X, Fellows E, Dickinson ER, Fleites CM, Queisser MA, Harling JD, Tate EW. Structure-Guided Design and Optimization of Covalent VHL-Targeted Sulfonyl Fluoride PROTACs. J Med Chem 2024; 67:4641-4654. [PMID: 38478885 PMCID: PMC10982999 DOI: 10.1021/acs.jmedchem.3c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules that have emerged as a therapeutic modality to induce targeted protein degradation (TPD) by harnessing cellular proteolytic degradation machinery. PROTACs which ligand the E3 ligase in a covalent manner have attracted intense interest; however, covalent PROTACs with a broad protein of interest (POI) scope have proven challenging to discover by design. Here, we report the structure-guided design and optimization of Von Hippel-Lindau (VHL) protein-targeted sulfonyl fluorides which covalently bind Ser110 in the HIF1α binding site. We demonstrate that their incorporation in bifunctional degraders induces targeted protein degradation of BRD4 or the androgen receptor without further linker optimization. Our study discloses the first covalent VHL ligands which can be implemented directly in bifunctional degrader design, expanding the substrate scope of covalent E3 ligase PROTACs.
Collapse
Affiliation(s)
- Rishi R. Shah
- GSK,
Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Elena De Vita
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- Department
of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, U.K.
| | | | - Daniel Conole
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Xinyue Zhang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
| | - Elliot Fellows
- GSK,
Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | - Carlos M. Fleites
- GSK,
Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | - John D. Harling
- GSK,
Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Edward W. Tate
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12
0BZ, U.K.
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| |
Collapse
|
9
|
Bradley E, Fusani L, Chung CW, Craggs PD, Demont EH, Humphreys PG, Mitchell DJ, Phillipou A, Rioja I, Shah RR, Wellaway CR, Prinjha RK, Palmer DS, Kerr WJ, Reid M, Wall ID, Cookson R. Structure-Guided Design of a Domain-Selective Bromodomain and Extra Terminal N-Terminal Bromodomain Chemical Probe. J Med Chem 2023; 66:15728-15749. [PMID: 37967462 PMCID: PMC10726358 DOI: 10.1021/acs.jmedchem.3c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.
Collapse
Affiliation(s)
- Erin Bradley
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Lucia Fusani
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Chun-wa Chung
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Peter D. Craggs
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | | | | | | | - Alex Phillipou
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Inmaculada Rioja
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Rishi R. Shah
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | | | - Rab K. Prinjha
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - David S. Palmer
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - William J. Kerr
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Marc Reid
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Ian D. Wall
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Rosa Cookson
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| |
Collapse
|
10
|
Stevens R, Bendito-Moll E, Battersby DJ, Miah AH, Wellaway N, Law RP, Stacey P, Klimaszewska D, Macina JM, Burley GA, Harling JD. Integrated Direct-to-Biology Platform for the Nanoscale Synthesis and Biological Evaluation of PROTACs. J Med Chem 2023; 66:15437-15452. [PMID: 37933562 DOI: 10.1021/acs.jmedchem.3c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules that co-opt the cell's natural proteasomal degradation mechanisms to degrade undesired proteins. A challenge associated with PROTACs is the time and resource-intensive optimization; thus, the development of high-throughput platforms for their synthesis and biological evaluation is required. In this study, we establish an ultra-high-throughput experimentation (ultraHTE) platform for PROTAC synthesis, followed by direct addition of the crude reaction mixtures to cellular degradation assays without any purification. This 'direct-to-biology' (D2B) approach was validated and then exemplified in a medicinal chemistry campaign to identify novel BRD4 PROTACs. Using the D2B platform, the synthesis of 650 PROTACs was carried out in a 1536-well plate, and subsequent biological evaluation was performed by a single scientist in less than 1 month. Due to its ability to hugely accelerate the optimization of new degraders, we anticipate our platform will transform the synthesis and testing of PROTACs.
Collapse
Affiliation(s)
- Rebecca Stevens
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Enrique Bendito-Moll
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - David J Battersby
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Afjal H Miah
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Natalie Wellaway
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Robert P Law
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter Stacey
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Diana Klimaszewska
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Justyna M Macina
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - John D Harling
- Medicines Design, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
11
|
Abstract
The oxetane ring is an emergent, underexplored motif in drug discovery that shows attractive properties such as low molecular weight, high polarity, and marked three-dimensionality. Oxetanes have garnered further interest as isosteres of carbonyl groups and as molecular tools to fine-tune physicochemical properties of drug compounds such as pKa, LogD, aqueous solubility, and metabolic clearance. This perspective highlights recent applications of oxetane motifs in drug discovery campaigns (2017-2022), with emphasis on the effect of the oxetane on medicinally relevant properties and on the building blocks used to incorporate the oxetane ring. Based on this analysis, we provide an overview of the potential benefits of appending an oxetane to a drug compound, as well as potential pitfalls, challenges, and future directions.
Collapse
Affiliation(s)
- Juan J. Rojas
- Department of Chemistry,
Imperial College London, Molecular Sciences
Research Hub, White City
Campus, Wood Lane, London W12 0BZ, U.K.
| | - James A. Bull
- Department of Chemistry,
Imperial College London, Molecular Sciences
Research Hub, White City
Campus, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
12
|
Bamborough P, Chung CW, Goodwin NC, Mitchell DJ, Neipp CE, Phillipou A, Preston A, Prinjha RK, Soden PE, Watson RJ, Demont EH. Design and Characterization of 1,3-Dihydro-2 H-benzo[ d]azepin-2-ones as Rule-of-5 Compliant Bivalent BET Inhibitors. ACS Med Chem Lett 2023; 14:1231-1236. [PMID: 37736196 PMCID: PMC10510503 DOI: 10.1021/acsmedchemlett.3c00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023] Open
Abstract
The 1,3-dihydro-2H-benzo[d]azepin-2-ones are potent and ligand-efficient pan-BET bromodomain inhibitors. Here we describe the extension of this template to exploit a bivalent mode of action, binding simultaneously to both bromodomains. Initially the linker length and attachment vectors compatible with bivalent binding were explored, leading to the discovery of exceptionally potent bivalent BET inhibitors within druglike rule-of-5 space.
Collapse
Affiliation(s)
- Paul Bamborough
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Chun-wa Chung
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | - Darren J. Mitchell
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | | | - Alex Phillipou
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Alex Preston
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Rab K. Prinjha
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Peter E. Soden
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Robert J. Watson
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Emmanuel H. Demont
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K.
| |
Collapse
|
13
|
Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov 2023; 22:699-722. [PMID: 37328653 PMCID: PMC10924799 DOI: 10.1038/s41573-023-00713-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/18/2023]
Abstract
The development of bioactive small molecules as probes or drug candidates requires discovery platforms that enable access to chemical diversity and can quickly reveal new ligands for a target of interest. Within the past 15 years, DNA-encoded library (DEL) technology has matured into a widely used platform for small-molecule discovery, yielding a wide variety of bioactive ligands for many therapeutically relevant targets. DELs offer many advantages compared with traditional screening methods, including efficiency of screening, easily multiplexed targets and library selections, minimized resources needed to evaluate an entire DEL and large library sizes. This Review provides accounts of recently described small molecules discovered from DELs, including their initial identification, optimization and validation of biological properties including suitability for clinical applications.
Collapse
Affiliation(s)
- Alexander A Peterson
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Gajjela BK, Zhou MM. Bromodomain inhibitors and therapeutic applications. Curr Opin Chem Biol 2023; 75:102323. [PMID: 37207401 PMCID: PMC10524616 DOI: 10.1016/j.cbpa.2023.102323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
The bromodomain acts to recognize acetylated lysine in histones and transcription proteins and plays a fundamental role in chromatin-based cellular processes including gene transcription and chromatin remodeling. Many bromodomain proteins, particularly the bromodomain and extra terminal domain (BET) protein BRD4 have been implicated in cancers and inflammatory disorders and recognized as attractive drug targets. Although clinical studies of many BET bromodomain inhibitors have made substantial progress toward harnessing the therapeutic potential of targeting the bromodomain proteins, the development of this new class of epigenetic drugs is met with challenges, especially on-target dose-limiting toxicity. In this review, we highlight the current development of new-generation small molecule inhibitors for the BET and non-BET bromodomain proteins and discuss the research strategies used to target different bromodomain proteins for a wide array of human diseases including cancers and inflammatory disorders.
Collapse
Affiliation(s)
- Bharath Kumar Gajjela
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States.
| |
Collapse
|
15
|
Chai J, Arico-Muendel CC, Ding Y, Pollastri MP, Scott S, Mantell MA, Yao G. Synthesis of a DNA-Encoded Macrocyclic Library Utilizing Intramolecular Benzimidazole Formation. Bioconjug Chem 2023. [PMID: 37216465 DOI: 10.1021/acs.bioconjchem.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Macrocycles occupy chemical space "beyond the rule of five". They bridge traditional bioactive small molecule drugs and macromolecules and have the potential to modulate challenging targets such as PPI or proteases. Here we report an on-DNA macrocyclization reaction utilizing intramolecular benzimidazole formation. A 129-million-member macrocyclic library composed of a privileged benzimidazole core, a dipeptide sequence (natural or non-natural), and linkers of varying length and flexibility was designed and synthesized.
Collapse
Affiliation(s)
- Jing Chai
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Christopher C Arico-Muendel
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Michael P Pollastri
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sarah Scott
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Mark A Mantell
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Gang Yao
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
16
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
17
|
Humphreys PG, Anderson NA, Bamborough P, Baxter A, Chung CW, Cookson R, Craggs PD, Dalton T, Fournier JCL, Gordon LJ, Gray HF, Gray MW, Gregory R, Hirst DJ, Jamieson C, Jones KL, Kessedjian H, Lugo D, McGonagle G, Patel VK, Patten C, Poole DL, Prinjha RK, Ramirez-Molina C, Rioja I, Seal G, Stafford KAJ, Shah RR, Tape D, Theodoulou NH, Tomlinson L, Ukuser S, Wall ID, Wellaway N, White G. Identification and Optimization of a Ligand-Efficient Benzoazepinone Bromodomain and Extra Terminal (BET) Family Acetyl-Lysine Mimetic into the Oral Candidate Quality Molecule I-BET432. J Med Chem 2022; 65:15174-15207. [DOI: 10.1021/acs.jmedchem.2c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Niall A. Anderson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paul Bamborough
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Andrew Baxter
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rosa Cookson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Toryn Dalton
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laurie J. Gordon
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Heather F. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Matthew W. Gray
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Richard Gregory
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David J. Hirst
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Craig Jamieson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | | | | | - David Lugo
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Grant McGonagle
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | | | - Darren L. Poole
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Inmaculada Rioja
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gail Seal
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Rishi R. Shah
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Daniel Tape
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | | | - Laura Tomlinson
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Sabri Ukuser
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D. Wall
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Natalie Wellaway
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Gemma White
- GSK, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
18
|
Cipriano A, Milite C, Feoli A, Viviano M, Pepe G, Campiglia P, Sarno G, Picaud S, Imaide S, Makukhin N, Filippakopoulos P, Ciulli A, Castellano S, Sbardella G. Discovery of Benzo[d]imidazole-6-sulfonamides as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the First Bromodomain. ChemMedChem 2022; 17:e202200343. [PMID: 36040095 PMCID: PMC9826262 DOI: 10.1002/cmdc.202200343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/29/2022] [Indexed: 01/11/2023]
Abstract
The bromodomain and extra-terminal (BET) family of proteins includes BRD2, BRD3, BRD4, and the testis-specific protein, BRDT, each containing two N-terminal tandem bromodomain (BRD) modules. Potent and selective inhibitors targeting the two bromodomains are required to elucidate their biological role(s), with potential clinical applications. In this study, we designed and synthesized a series of benzimidazole-6-sulfonamides starting from the azobenzene compounds MS436 (7 a) and MS611 (7 b) that exhibited preference for the first (BD1) over the second (BD2) BRD of BET family members. The most-promising compound (9 a) showed good binding potency and improved metabolic stability and selectivity towards BD1 with respect to the parent compounds.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Ciro Milite
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Alessandra Feoli
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Monica Viviano
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Giacomo Pepe
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Pietro Campiglia
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Giuliana Sarno
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Sarah Picaud
- Nuffield Department of MedicineOxford UniversityOX3 7DQOxfordUK
| | - Satomi Imaide
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EH, ScotlandUK,Discovery Technology Research LaboratoriesOno Pharmaceutical Co., Ltd.618-8585OsakaJapan
| | - Nikolai Makukhin
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EH, ScotlandUK,Oncology R&DTumour Targeted DeliveryAstraZenecaQMB Innovation Centre42 New RoadLondonE1 2AXUK
| | | | - Alessio Ciulli
- Division of Biological Chemistry and Drug DiscoverySchool of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EH, ScotlandUK
| | - Sabrina Castellano
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| | - Gianluca Sbardella
- Department of PharmacyUniversity of Salernovia Giovanni Paolo II 13284084Fisciano (SA)Italy
| |
Collapse
|
19
|
Chines S, Ehrt C, Potowski M, Biesenkamp F, Grützbach L, Brunner S, van den Broek F, Bali S, Ickstadt K, Brunschweiger A. Navigating chemical reaction space - application to DNA-encoded chemistry. Chem Sci 2022; 13:11221-11231. [PMID: 36320474 PMCID: PMC9517168 DOI: 10.1039/d2sc02474h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Databases contain millions of reactions for compound synthesis, rendering selection of reactions for forward synthetic design of small molecule screening libraries, such as DNA-encoded libraries (DELs), a big data challenge. To support reaction space navigation, we developed the computational workflow Reaction Navigator. Reaction files from a large chemistry database were processed using the open-source KNIME Analytics Platform. Initial processing steps included a customizable filtering cascade that removed reactions with a high probability to be incompatible with DEL, as they would e.g. damage the genetic barcode, to arrive at a comprehensive list of transformations for DEL design with applicability potential. These reactions were displayed and clustered by user-defined molecular reaction descriptors which are independent of reaction core substitution patterns. Thanks to clustering, these can be searched manually to identify reactions for DEL synthesis according to desired reaction criteria, such as ring formation or sp3 content. The workflow was initially applied for mapping chemical reaction space for aromatic aldehydes as an exemplary functional group often used in DEL synthesis. Exemplary reactions have been successfully translated to DNA-tagged substrates and can be applied to library synthesis. The versatility of the Reaction Navigator was then shown by mapping reaction space for different reaction conditions, for amines as a second set of starting materials, and for data from a second database.
Collapse
Affiliation(s)
- Silvia Chines
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| | | | - Marco Potowski
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Felix Biesenkamp
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Lars Grützbach
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Susanne Brunner
- TU Dortmund University, Department of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | | | - Shilpa Bali
- Elsevier B.V. Radarweg 29 1043 NX Amsterdam The Netherlands
| | - Katja Ickstadt
- TU Dortmund University, Department of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Andreas Brunschweiger
- TU Dortmund University, Department of Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund Germany
| |
Collapse
|
20
|
Ghiboub M, Koster J, Craggs PD, Li Yim AYF, Shillings A, Hutchinson S, Bingham RP, Gatfield K, Hageman IL, Yao G, O’Keefe HP, Coffin A, Patel A, Sloan LA, Mitchell DJ, Hayhow TG, Lunven L, Watson RJ, Blunt CE, Harrison LA, Bruton G, Kumar U, Hamer N, Spaull JR, Zwijnenburg DA, Welting O, Hakvoort TBM, te Velde AA, van Limbergen J, Henneman P, Prinjha RK, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. Modulation of macrophage inflammatory function through selective inhibition of the epigenetic reader protein SP140. BMC Biol 2022; 20:182. [PMID: 35986286 PMCID: PMC9392322 DOI: 10.1186/s12915-022-01380-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn’s disease (CD), suggesting a role in inflammation. Results We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. Conclusions This study identifies SP140 as a druggable epigenetic therapeutic target for CD. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01380-6.
Collapse
|
21
|
Castan IFSF, Madin A, Pairaudeau G, Waring MJ. Scope of on-DNA nucleophilic aromatic substitution on weakly-activated heterocyclic substrates for the synthesis of DNA-encoded libraries. Bioorg Med Chem 2022; 63:116688. [PMID: 35430536 DOI: 10.1016/j.bmc.2022.116688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
DNA-Encoded Libraries (DEL) represent a promising hit finding strategy for drug discovery. Nonetheless, the available DNA-compatible chemistry remains of limited scope. Nucleophilic aromatic substitution (SNAr) has been extensively used in DEL synthesis but has generally been restricted to highly activated (hetero)arenes. Herein, we report an optimised procedure for SNAr reactions through the use of factorial experimental design (FED) on-DNA using 15% THF as a co-solvent. This method gave conversions of >95% for pyridine and pyrazine scaffolds for 36 secondary cyclic amines. This analysis provides a new DNA-compatible SNAr reaction to produce high yielding libraries. The scope of this reaction on other amines is described. This work identifies challenges for the further development for DNA-compatible SNAr reactions. 2009 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
- Isaline F S F Castan
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Michael J Waring
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
22
|
An efficient low melting mixture mediated green approach for the synthesis of 2-substituted benzothiazoles and benzimidazoles. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
de Esch IJP, Erlanson DA, Jahnke W, Johnson CN, Walsh L. Fragment-to-Lead Medicinal Chemistry Publications in 2020. J Med Chem 2022; 65:84-99. [PMID: 34928151 PMCID: PMC8762670 DOI: 10.1021/acs.jmedchem.1c01803] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Fragment-based drug discovery (FBDD) continues to evolve and make an impact in the pharmaceutical sciences. We summarize successful fragment-to-lead studies that were published in 2020. Having systematically analyzed annual scientific outputs since 2015, we discuss trends and best practices in terms of fragment libraries, target proteins, screening technologies, hit-optimization strategies, and the properties of hit fragments and the leads resulting from them. As well as the tabulated Fragment-to-Lead (F2L) programs, our 2020 literature review identifies several trends and innovations that promise to further increase the success of FBDD. These include developing structurally novel screening fragments, improving fragment-screening technologies, using new computer-aided design and virtual screening approaches, and combining FBDD with other innovative drug-discovery technologies.
Collapse
Affiliation(s)
- Iwan J. P. de Esch
- Division
of Medicinal Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel A. Erlanson
- Frontier
Medicines, 151 Oyster
Point Blvd., South San Francisco, California 94080, United States
| | - Wolfgang Jahnke
- Novartis
Institutes for Biomedical Research, Chemical
Biology and Therapeutics, 4002 Basel, Switzerland
| | - Christopher N. Johnson
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Louise Walsh
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
24
|
Humphreys PG, Atkinson SJ, Bamborough P, Bit RA, Chung CW, Craggs PD, Cutler L, Davis R, Ferrie A, Gong G, Gordon LJ, Gray M, Harrison LA, Hayhow TG, Haynes A, Henley N, Hirst DJ, Holyer ID, Lindon MJ, Lovatt C, Lugo D, McCleary S, Molnar J, Osmani Q, Patten C, Preston A, Rioja I, Seal JT, Smithers N, Sun F, Tang D, Taylor S, Theodoulou NH, Thomas C, Watson RJ, Wellaway CR, Zhu L, Tomkinson NCO, Prinjha RK. Design, Synthesis, and Characterization of I-BET567, a Pan-Bromodomain and Extra Terminal (BET) Bromodomain Oral Candidate. J Med Chem 2022; 65:2262-2287. [PMID: 34995458 DOI: 10.1021/acs.jmedchem.1c01747] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free-Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation.
Collapse
Affiliation(s)
| | | | - Paul Bamborough
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Rino A Bit
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter D Craggs
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Leanne Cutler
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Rob Davis
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Alan Ferrie
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - GangLi Gong
- WuXi Shanghai STA Pharmaceutical R&D Co., Ltd., No. 90 Delin Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | - Laurie J Gordon
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Matthew Gray
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Lee A Harrison
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Thomas G Hayhow
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Andrea Haynes
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Nick Henley
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - David J Hirst
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Ian D Holyer
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Matthew J Lindon
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Cerys Lovatt
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - David Lugo
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Scott McCleary
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Judit Molnar
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Qendresa Osmani
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Chris Patten
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Alex Preston
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Inmaculada Rioja
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Jonathan T Seal
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Nicholas Smithers
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Fenglai Sun
- WuXi Shanghai STA Pharmaceutical R&D Co., Ltd., No. 90 Delin Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | - Dalin Tang
- WuXi Shanghai STA Pharmaceutical R&D Co., Ltd., No. 90 Delin Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | - Simon Taylor
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Natalie H Theodoulou
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Clare Thomas
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Robert J Watson
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | | | - Linrong Zhu
- WuXi Shanghai STA Pharmaceutical R&D Co., Ltd., No. 90 Delin Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K Prinjha
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
25
|
Discovery of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as novel and potent bromodomain and extra-terminal (BET) inhibitors with anticancer efficacy. Eur J Med Chem 2022; 227:113953. [PMID: 34731760 DOI: 10.1016/j.ejmech.2021.113953] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022]
Abstract
As epigenetic readers, bromodomain and extra-terminal domain (BET) family proteins bind to acetylated-lysine residues in histones and recruit protein complexes to promote transcription initiation and elongation. Inhibition of BET bromodomains by small molecule inhibitors has emerged as a promising therapeutic strategy for cancer. Herein, we describe our efforts toward the discovery of a novel series of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as BET inhibitors. Intensive structural modifications led to the identification of compound 35f as the most active inhibitor of BET BRD4 with selectivity against BET family proteins. Further biological studies revealed that compound 35f can arrest the cell cycle in G0/G1 phase and induce apoptosis via decreasing the expression of c-Myc and other proteins related to cell cycle and apoptosis. More importantly, compound 35f showed favorable pharmacokinetic properties and antitumor efficacy in MV4-11 mouse xenograft model with acceptable tolerability. These results indicated that BET inhibitors could be potentially used to treat hematologic malignancies and some solid tumors.
Collapse
|
26
|
Fallon DJ, Lehmann S, Chung CW, Phillipou A, Eberl C, Fantom KGM, Zappacosta F, Patel VK, Bantscheff M, Schofield CJ, Tomkinson NCO, Bush JT. One-Step Synthesis of Photoaffinity Probes for Live-Cell MS-Based Proteomics. Chemistry 2021; 27:17880-17888. [PMID: 34328642 DOI: 10.1002/chem.202102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/06/2022]
Abstract
We present a one-step Ugi reaction protocol for the expedient synthesis of photoaffinity probes for live-cell MS-based proteomics. The reaction couples an amine affinity function with commonly used photoreactive groups, and a variety of handle functionalities. Using this technology, a series of pan-BET (BET: bromodomain and extra-terminal domain) selective bromodomain photoaffinity probes were obtained by parallel synthesis. Studies on the effects of photoreactive group, linker length and irradiation wavelength on photocrosslinking efficiency provide valuable insights into photoaffinity probe design. Optimal probes were progressed to MS-based proteomics to capture the BET family of proteins from live cells and reveal their potential on- and off-target profiles.
Collapse
Affiliation(s)
- David J Fallon
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Stephanie Lehmann
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Alex Phillipou
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Christian Eberl
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | - Ken G M Fantom
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | | | - Marcus Bantscheff
- Cellzome GmbH, a GSK company, Meyerhofstraße 1, Heidelberg, 69117, Germany
| | | | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Jacob T Bush
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| |
Collapse
|
27
|
Zhou Y, Shen W, Peng J, Deng Y, Li X. Identification of isoform/domain-selective fragments from the selection of DNA-encoded dynamic library. Bioorg Med Chem 2021; 45:116328. [PMID: 34364223 DOI: 10.1016/j.bmc.2021.116328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged to be a powerful ligand screening technology in drug discovery. Recently, we reported a DNA-encoded dynamic library (DEDL) approach that combines the principle of traditional dynamic combinatorial library (DCL) with DEL. DEDL has shown excellent potential in fragment-based ligand discovery with a variety of protein targets. Here, we further tested the utility of DEDL in identifying low molecular weight fragments that are selective for different isoforms or domains of the same protein family. A 10,000-member DEDL was selected against sirtuin-1, 2, and 5 (SIRT1, 2, 5) and the BD1 and BD2 domains of bromodomain 4 (BRD4), respectively. Albeit with modest potency, a series of isoform/domain-selective fragments were identified and the corresponding inhibitors were derived by fragment linking.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Wenyin Shen
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Jianzhao Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Yuqing Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region; Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK, Innovation and Technology Commission, Hong Kong Special Administrative Region
| |
Collapse
|
28
|
Rianjongdee F, Atkinson SJ, Chung CW, Grandi P, Gray JRJ, Kaushansky LJ, Medeiros P, Messenger C, Phillipou A, Preston A, Prinjha RK, Rioja I, Satz AL, Taylor S, Wall ID, Watson RJ, Yao G, Demont EH. Discovery of a Highly Selective BET BD2 Inhibitor from a DNA-Encoded Library Technology Screening Hit. J Med Chem 2021; 64:10806-10833. [PMID: 34251219 DOI: 10.1021/acs.jmedchem.1c00412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Second-generation bromodomain and extra terminal (BET) inhibitors, which selectively target one of the two bromodomains in the BET proteins, have begun to emerge in the literature. These inhibitors aim to help determine the roles and functions of each domain and assess whether they can demonstrate an improved safety profile in clinical settings compared to pan-BET inhibitors. Herein, we describe the discovery of a novel BET BD2-selective chemotype using a structure-based drug design from a hit identified by DNA-encoded library technologies, showing a structural differentiation from key previously reported greater than 100-fold BD2-selective chemotypes GSK620, GSK046, and ABBV-744. Following a structure-based hypothesis for the selectivity and optimization of the physicochemical properties of the series, we identified 60 (GSK040), an in vitro ready and in vivo capable BET BD2-inhibitor of unprecedented selectivity (5000-fold) against BET BD1, excellent selectivity against other bromodomains, and good physicochemical properties. This novel chemical probe can be added to the toolbox used in the advancement of epigenetics research.
Collapse
Affiliation(s)
| | | | | | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstr. 1, Heidelberg 69117, Germany
| | | | - Laura J Kaushansky
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | - Patricia Medeiros
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | | | | | | | | | | | | | | | | | | | - Gang Yao
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | | |
Collapse
|
29
|
Harrison LA, Atkinson SJ, Bassil A, Chung CW, Grandi P, Gray JRJ, Levernier E, Lewis A, Lugo D, Messenger C, Michon AM, Mitchell DJ, Preston A, Prinjha RK, Rioja I, Seal JT, Taylor S, Wall ID, Watson RJ, Woolven JM, Demont EH. Identification of a Series of N-Methylpyridine-2-carboxamides as Potent and Selective Inhibitors of the Second Bromodomain (BD2) of the Bromo and Extra Terminal Domain (BET) Proteins. J Med Chem 2021; 64:10742-10771. [PMID: 34232650 DOI: 10.1021/acs.jmedchem.0c02155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Domain-specific BET bromodomain ligands represent an attractive target for drug discovery with the potential to unlock the therapeutic benefits of antagonizing these proteins without eliciting the toxicological aspects seen with pan-BET inhibitors. While we have reported several distinct classes of BD2 selective compounds, namely, GSK620, GSK549, and GSK046, only GSK046 shows high aqueous solubility. Herein, we describe the lead optimization of a further class of highly soluble compounds based upon a picolinamide chemotype. Focusing on achieving >1000-fold selectivity for BD2 over BD1 ,while retaining favorable physical chemical properties, compound 36 was identified as being 2000-fold selective for BD2 over BD1 (Brd4 data) with >1 mg/mL solubility in FaSSIF media. 36 represents a valuable new in vivo ready molecule for the exploration of the BD2 phenotype.
Collapse
Affiliation(s)
- Lee A Harrison
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Stephen J Atkinson
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anna Bassil
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-Wa Chung
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - James R J Gray
- Quantitative Pharmacology, Immunoinflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Etienne Levernier
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Antonia Lewis
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David Lugo
- Quantitative Pharmacology, Immunoinflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Cassie Messenger
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anne-Marie Michon
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Darren J Mitchell
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Alex Preston
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Inmaculada Rioja
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jonathan T Seal
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Simon Taylor
- Quantitative Pharmacology, Immunoinflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Wall
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert J Watson
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - James M Woolven
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Emmanuel H Demont
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
30
|
Guest EE, Pickett SD, Hirst JD. Structural variation of protein-ligand complexes of the first bromodomain of BRD4. Org Biomol Chem 2021; 19:5632-5641. [PMID: 34105560 DOI: 10.1039/d1ob00658d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) family, plays a key role in several diseases, especially cancers. With increased interest in BRD4 as a therapeutic target, many X-ray crystal structures of the protein in complex with small molecule inhibitors are publicly available over the recent decade. In this study, we use this structural information to investigate the conformations of the first bromodomain (BD1) of BRD4. Structural alignment of 297 BRD4-BD1 complexes shows a high level of similarity between the structures of BRD4-BD1, regardless of the bound ligand. We employ WONKA, a tool for detailed analyses of protein binding sites, to compare the active site of over 100 of these crystal structures. The positions of key binding site residues show a high level of conformational similarity, with the exception of Trp81. A focused analysis on the highly conserved water network in the binding site of BRD4-BD1 is performed to identify the positions of these water molecules across the crystal structures. The importance of the water network is illustrated using molecular docking and absolute free energy perturbation simulations. 82% of the ligand poses were better predicted when including water molecules as part of the receptor. Our analysis provides guidance for the design of new BRD4-BD1 inhibitors and the selection of the best structure of BRD4-BD1 to use in structure-based drug design, an important approach for faster and more cost-efficient lead discovery.
Collapse
Affiliation(s)
- Ellen E Guest
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Stephen D Pickett
- GlaxoSmithKline R&D Pharmaceuticals, Computational Chemistry, Stevenage, UK
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
31
|
Ding Y, Belyanskaya S, DeLorey JL, Messer JA, Joseph Franklin G, Centrella PA, Morgan BA, Clark MA, Skinner SR, Dodson JW, Li P, Marino JP, Israel DI. Discovery of soluble epoxide hydrolase inhibitors through DNA-encoded library technology (ELT). Bioorg Med Chem 2021; 41:116216. [PMID: 34023664 DOI: 10.1016/j.bmc.2021.116216] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Inhibition of soluble epoxide hydrolase (sEH) has recently emerged as a new approach to treat cardiovascular disease and respiratory disease. Inhibitors based on 1,3,5-triazine chemotype were discovered through affinity selection against two triazine-based DNA-encoded libraries. The structure and activity relationship study led to the expansion of the original 1,4-cycloalkyl series to related aniline, piperidine, quinoline, aryl-ether and benzylic series. The 1,3-cycloalkyl chemotype led to the discovery of a clinical candidate (GSK2256294) for COPD.
Collapse
Affiliation(s)
- Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | - Svetlana Belyanskaya
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Jennifer L DeLorey
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Jeffrey A Messer
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - G Joseph Franklin
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Paolo A Centrella
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Barry A Morgan
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Matthew A Clark
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Steven R Skinner
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - Jason W Dodson
- Department of Chemistry, Heart Failure Disease Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GSK, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Peng Li
- Department of Chemistry, Heart Failure Disease Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GSK, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - Joseph P Marino
- Department of Chemistry, Heart Failure Disease Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GSK, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | - David I Israel
- Encoded Library Technologies/NCE Molecular Discovery, GSK, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| |
Collapse
|
32
|
Nepali K, Liou JP. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci 2021; 28:27. [PMID: 33840388 PMCID: PMC8040241 DOI: 10.1186/s12929-021-00721-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic drug discovery field has evidenced significant advancement in the recent times. A plethora of small molecule inhibitors have progressed to clinical stage investigations and are being explored exhaustively to ascertain conclusive benefits in diverse malignancies. Literature precedents indicates that substantial amount of efforts were directed towards the use of epigenetic tools in monotherapy as well as in combination regimens at the clinical level, however, the preclinical/preliminary explorations were inclined towards the identification of prudent approaches that can leverage the anticancer potential of small molecule epigenetic inhibitors as single agents only. This review article presents an update of FDA approved epigenetic drugs along with the epigenetic inhibitors undergoing clinical stage investigations in different cancer types. A detailed discussion of the pragmatic strategies that are expected to steer the progress of the epigenetic therapy through the implementation of emerging approaches such as PROTACS and CRISPR/Cas9 along with logical ways for scaffold fabrication to selectively approach the enzyme isoforms in pursuit of garnering amplified antitumor effects has been covered. In addition, the compilation also presents the rational strategies for the construction of multi-targeting scaffold assemblages employing previously identified pharmacophores as potential alternatives to the combination therapy.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Biomedical Commercialization Center, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
33
|
Kunig VBK, Potowski M, Klika Škopić M, Brunschweiger A. Scanning Protein Surfaces with DNA-Encoded Libraries. ChemMedChem 2021; 16:1048-1062. [PMID: 33295694 PMCID: PMC8048995 DOI: 10.1002/cmdc.202000869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Understanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space. Encoded library selection screens uncovered several protein-protein interaction inhibitors and compounds binding to the surface of G protein-coupled receptors (GPCRs) and kinases. The protein surface-binding chemotypes from DELs are predominantly chemically modified and cyclized peptides, and functional small-molecule peptidomimetics. Peptoid libraries and structural peptidomimetics have been less studied in the DEL field, hinting at hitherto less populated chemical space and suggesting alternative library designs. Roughly a third of bioactive molecules evolved from smaller, target-focused libraries. They showcase the potential of encoded libraries to identify more potent molecules from weak, for example, fragment-like, starting points.
Collapse
Affiliation(s)
- Verena B. K. Kunig
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Marco Potowski
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Mateja Klika Škopić
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
34
|
Zhang Y, Pike A. Pyridones in drug discovery: Recent advances. Bioorg Med Chem Lett 2021; 38:127849. [DOI: 10.1016/j.bmcl.2021.127849] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
|
35
|
Reiher CA, Schuman DP, Simmons N, Wolkenberg SE. Trends in Hit-to-Lead Optimization Following DNA-Encoded Library Screens. ACS Med Chem Lett 2021; 12:343-350. [PMID: 33738060 DOI: 10.1021/acsmedchemlett.0c00615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
DNA-encoded library (DEL) screens have emerged as a powerful hit-finding tool for a number of biological targets. In this Innovations article, we review published hit-to-lead optimization studies following DEL screens. Trends in molecular property changes from hit to lead are identified, and specific optimization tactics are exemplified in case studies. Across the studies, physicochemical property and structural changes post-DEL screening are similar to those which occur during hit-to-lead optimization following high throughputscreens (HTS). However, unique aspects of DEL-the combinatorial synthetic methods which enable DEL synthesis and the linker effects at the DNA attachment point-impact the strategies and outcomes of hit-to-lead optimizations.
Collapse
Affiliation(s)
- Christopher A. Reiher
- Discovery Chemistry, Janssen Research & Development, LLC, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| | - David P. Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Scott E. Wolkenberg
- Discovery Chemistry, Janssen Research & Development, LLC, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
36
|
Shi Y, Wu YR, Yu JQ, Zhang WN, Zhuang CL. DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output. RSC Adv 2021; 11:2359-2376. [PMID: 35424149 PMCID: PMC8693808 DOI: 10.1039/d0ra09889b] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
A DNA-encoded library is a collection of small molecules covalently linked to DNA that has unique information about the identity and the structure of each library member. A DNA-encoded chemical library (DEL) is broadly adopted by major pharmaceutical companies and used in numerous drug discovery programs. The application of the DEL technology is advantageous at the initial period of drug discovery because of reduced cost, time, and storage space for the identification of target compounds. The key points for the construction of DELs comprise the development and the selection of the encoding methods, transfer of routine chemical reaction from off-DNA to on-DNA, and exploration of new chemical reactions on DNA. The limitations in the chemical space and the diversity of DEL were reduced gradually by using novel DNA-compatible reactions based on the formation and the cleavage of various bonds. Here, we summarized a series of novel DNA-compatible chemistry reactions for DEL building blocks and analysed the druggability of screened hit molecules via DELs in the past five years.
Collapse
Affiliation(s)
- Ying Shi
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Yan-Ran Wu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Jian-Qiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Wan-Nian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Chun-Lin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| |
Collapse
|
37
|
Yuen J, Chai J, Ding Y. Condensation of DNA-Conjugated Imines with Homophthalic Anhydride for the Synthesis of Isoquinolones on DNA. Bioconjug Chem 2020; 31:2712-2718. [DOI: 10.1021/acs.bioconjchem.0c00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Josephine Yuen
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jing Chai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Yun Ding
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
38
|
Prieto-Martínez FD, Medina-Franco JL. Current advances on the development of BET inhibitors: insights from computational methods. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:127-180. [PMID: 32951810 DOI: 10.1016/bs.apcsb.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epigenetics was coined almost 70 years ago for the description of heritable phenotype without altering DNA sequences. Research on the field has uncovered significant roles of such mechanisms, that account for the biogenesis of several diseases. Further studies have led the way for drug development which targets epi-enzymes, mainly for cancer treatment. Of the numerous epi-targets involved with histone acetylation, bromodomains have captured the spotlight of drug discovery focused on novel therapies. However, due to high sequence identity, the development of potent and selective inhibitors poses a significant challenge. Herein, we discuss recent computational developments on BET inhibitors and other methods that may be applied for drug discovery in general. As a proof-of-concept, we discuss a virtual screening to identify novel BET inhibitors based on coumarin derivatives. From public data, we identified putative structure-activity relationships of coumarin scaffold and propose R-group modifications for BET selectivity. Results showed that the optimization and design of novel coumarins could be further explored.
Collapse
Affiliation(s)
- Fernando D Prieto-Martínez
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - José L Medina-Franco
- Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
39
|
Lemke M, Ravenscroft H, Rueb NJ, Kireev D, Ferraris D, Franzini RM. Integrating DNA-encoded chemical libraries with virtual combinatorial library screening: Optimizing a PARP10 inhibitor. Bioorg Med Chem Lett 2020; 30:127464. [PMID: 32768646 DOI: 10.1016/j.bmcl.2020.127464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 12/17/2022]
Abstract
Two critical steps in drug development are 1) the discovery of molecules that have the desired effects on a target, and 2) the optimization of such molecules into lead compounds with the required potency and pharmacokinetic properties for translation. DNA-encoded chemical libraries (DECLs) can nowadays yield hits with unprecedented ease, and lead-optimization is becoming the limiting step. Here we integrate DECL screening with structure-based computational methods to streamline the development of lead compounds. The presented workflow consists of enumerating a virtual combinatorial library (VCL) derived from a DECL screening hit and using computational binding prediction to identify molecules with enhanced properties relative to the original DECL hit. As proof-of-concept demonstration, we applied this approach to identify an inhibitor of PARP10 that is more potent and druglike than the original DECL screening hit.
Collapse
Affiliation(s)
- Mike Lemke
- Department of Chemistry, McDaniel College, 2 College Hill, Westminster, MD 21157, USA
| | - Hannah Ravenscroft
- Department of Chemistry, McDaniel College, 2 College Hill, Westminster, MD 21157, USA
| | - Nicole J Rueb
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 301 Pharmacy Lane, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Dana Ferraris
- Department of Chemistry, McDaniel College, 2 College Hill, Westminster, MD 21157, USA.
| | - Raphael M Franzini
- Department of Medicinal Chemistry, Skaggs College of Pharmacy, University of Utah, 30 S 2000 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
40
|
Wellaway CR, Bamborough P, Bernard SG, Chung CW, Craggs PD, Cutler L, Demont EH, Evans JP, Gordon L, Karamshi B, Lewis AJ, Lindon MJ, Mitchell DJ, Rioja I, Soden PE, Taylor S, Watson RJ, Willis R, Woolven JM, Wyspiańska BS, Kerr WJ, Prinjha RK. Structure-Based Design of a Bromodomain and Extraterminal Domain (BET) Inhibitor Selective for the N-Terminal Bromodomains That Retains an Anti-inflammatory and Antiproliferative Phenotype. J Med Chem 2020; 63:9020-9044. [DOI: 10.1021/acs.jmedchem.0c00566] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher R. Wellaway
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Paul Bamborough
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Sharon G. Bernard
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Leanne Cutler
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Emmanuel H. Demont
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - John P. Evans
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Laurie Gordon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Bhumika Karamshi
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Antonia J. Lewis
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Matthew J. Lindon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Darren J. Mitchell
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Inmaculada Rioja
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter E. Soden
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Simon Taylor
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Robert J. Watson
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Rob Willis
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - James M. Woolven
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Beata S. Wyspiańska
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|