1
|
Ayoub N, Upadhyay A, Tête A, Pietrancosta N, Munier-Lehmann H, O'Sullivan TP. Synthesis, evaluation and mechanistic insights of novel IMPDH inhibitors targeting ESKAPEE bacteria. Eur J Med Chem 2024; 280:116920. [PMID: 39369481 DOI: 10.1016/j.ejmech.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Antimicrobial resistance poses a significant threat to global health, necessitating the development of novel therapeutic agents with unique mechanisms of action. Inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme in guanine nucleotide biosynthesis, is a promising target for the discovery of new antimicrobial agents. High-throughput screening studies have previously identified several urea-based leads as potential inhibitors, although many of these are characterised by reduced chemical stability. In this work, we describe the design and synthesis of a series of heteroaryl-susbtituted analogues and the evaluation of their inhibitory potency against IMPDHs. Our screening targets ESKAPEE pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Several analogues with submicromolar inhibitory potency are identified and show no inhibitory potency on human IMPDH nor cytotoxic effects on human cells. Kinetic studies revealed that these molecules act as noncompetitive inhibitors with respect to the substrates and ligand virtual docking simulations provided insights into the binding interactions at the interface of the NAD+ and IMP binding sites on IMPDH.
Collapse
Affiliation(s)
- Nour Ayoub
- Université Paris Cité, INSERM UMRS-1124, Institut Pasteur, Structural Biology and Chemistry Department, F-75006, Paris, France
| | - Amit Upadhyay
- School of Chemistry, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Arnaud Tête
- Université Paris Cité, INSERM UMRS-1124, F-75006, Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, F-75005, Paris, France; Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), F-75005, Paris, France
| | - Hélène Munier-Lehmann
- Université Paris Cité, INSERM UMRS-1124, Institut Pasteur, Structural Biology and Chemistry Department, F-75006, Paris, France.
| | - Timothy P O'Sullivan
- School of Chemistry, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Schmiege P, Donnelly L, Elghobashi-Meinhardt N, Lee CH, Li X. Structure and inhibition of the human lysosomal transporter Sialin. Nat Commun 2024; 15:4386. [PMID: 38782953 PMCID: PMC11116495 DOI: 10.1038/s41467-024-48535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound. Our structures show that a positively charged cytosol-open vestibule accommodates either NAAG or the Sialin inhibitor Fmoc-Leu-OH, while its luminal cavity potentially binds sialic acid. Moreover, functional analyses along with molecular dynamics simulations identify key residues in binding sialic acid and NAAG. Thus, our findings uncover the essential conformational states in NAAG and sialic acid transport, demonstrating a working model of SLC17 transporters.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Hu W, Chi C, Song K, Zheng H. The molecular mechanism of sialic acid transport mediated by Sialin. SCIENCE ADVANCES 2023; 9:eade8346. [PMID: 36662855 PMCID: PMC9858498 DOI: 10.1126/sciadv.ade8346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Malfunction of the sialic acid transporter caused by various genetic mutations in the SLC17A5 gene encoding Sialin leads to a spectrum of neurodegenerative conditions called free sialic acid storage disorders. Unfortunately, how Sialin transports sialic acid/proton (H+) and how pathogenic mutations impair its function are poorly defined. Here, we present the structure of human Sialin in an inward-facing partially open conformation determined by cryo-electron microscopy, representing the first high-resolution structure of any human SLC17 member. Our analysis reveals two unique features in Sialin: (i) The H+ coupling/sensing requires two highly conserved Glu residues (E171 and E175) instead of one (E175) as implied in previous studies; and (ii) the normal function of Sialin requires the stabilization of a cytosolic helix, which has not been noticed in the literature. By mapping known pathogenic mutations, we provide mechanistic explanations for corresponding functional defects. We propose a structure-based mechanism for sialic acid transport mediated by Sialin.
Collapse
Affiliation(s)
- Wenxin Hu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Giacomini KM, Yee SW, Koleske ML, Zou L, Matsson P, Chen EC, Kroetz DL, Miller MA, Gozalpour E, Chu X. New and Emerging Research on Solute Carrier and ATP Binding Cassette Transporters in Drug Discovery and Development: Outlook From the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:540-561. [PMID: 35488474 PMCID: PMC9398938 DOI: 10.1002/cpt.2627] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Enabled by a plethora of new technologies, research in membrane transporters has exploded in the past decade. The goal of this state-of-the-art article is to describe recent advances in research on membrane transporters that are particularly relevant to drug discovery and development. This review covers advances in basic, translational, and clinical research that has led to an increased understanding of membrane transporters at all levels. At the basic level, we describe the available crystal structures of membrane transporters in both the solute carrier (SLC) and ATP binding cassette superfamilies, which has been enabled by the development of cryogenic electron microscopy methods. Next, we describe new research on lysosomal and mitochondrial transporters as well as recently deorphaned transporters in the SLC superfamily. The translational section includes a summary of proteomic research, which has led to a quantitative understanding of transporter levels in various cell types and tissues and new methods to modulate transporter function, such as allosteric modulators and targeted protein degraders of transporters. The section ends with a review of the effect of the gut microbiome on modulation of transporter function followed by a presentation of 3D cell cultures, which may enable in vivo predictions of transporter function. In the clinical section, we describe new genomic and pharmacogenomic research, highlighting important polymorphisms in transporters that are clinically relevant to many drugs. Finally, we describe new clinical tools, which are becoming increasingly available to enable precision medicine, with the application of tissue-derived small extracellular vesicles and real-world biomarkers.
Collapse
Affiliation(s)
- Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sook W. Yee
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ling Zou
- Pharmacokinetics and Drug MetabolismAmgen Inc.South San FranciscoCaliforniaUSA
| | - Pär Matsson
- Department of PharmacologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eugene C. Chen
- Department of Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Miles A. Miller
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Elnaz Gozalpour
- Drug Safety and MetabolismIMED Biotech UnitSafety and ADME Translational Sciences DepartmentAstraZeneca R&DCambridgeUK
| | - Xiaoyan Chu
- Department of ADME and Discovery ToxicologyMerck & Co. IncKenilworthNew JerseyUSA
| |
Collapse
|
6
|
Li F, Eriksen J, Finer-Moore J, Stroud RM, Edwards RH. Diversity of function and mechanism in a family of organic anion transporters. Curr Opin Struct Biol 2022; 75:102399. [PMID: 35660266 PMCID: PMC9884543 DOI: 10.1016/j.sbi.2022.102399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Originally identified as transporters for inorganic phosphate, solute carrier 17 (SLC17) family proteins subserve diverse physiological roles. The vesicular glutamate transporters (VGLUTs) package the principal excitatory neurotransmitter glutamate into synaptic vesicles (SVs). In contrast, the closely related sialic acid transporter sialin mediates the flux of sialic acid in the opposite direction, from lysosomes to the cytoplasm. The two proteins couple in different ways to the H+ electrochemical gradient driving force, and high-resolution structures of the Escherichia coli homolog d-galactonate transporter (DgoT) and more recently rat VGLUT2 now begin to suggest the mechanisms involved as well as the basis for substrate specificity.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA,Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| | - Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| | - Janet Finer-Moore
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA
| | - Robert M. Stroud
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA
| | - Robert H. Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| |
Collapse
|
7
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
8
|
Pandard J, Pan N, Ait-Yahiatène E, Grimaud L, Lemaître F, Guille-Collignon M. From FFN dual probe screening to ITO microdevice for exocytosis monitoring: electrochemical and fluorescence requirements. ChemElectroChem 2022. [DOI: 10.1002/celc.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Na Pan
- PSL: Universite PSL Chemistry FRANCE
| | | | | | | | | |
Collapse
|
9
|
Benaissa H, Ounoughi K, Aujard I, Fischer E, Goïame R, Nguyen J, Tebo AG, Li C, Le Saux T, Bertolin G, Tramier M, Danglot L, Pietrancosta N, Morin X, Jullien L, Gautier A. Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging. Nat Commun 2021; 12:6989. [PMID: 34848727 PMCID: PMC8633346 DOI: 10.1038/s41467-021-27334-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Biocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques.
Collapse
Affiliation(s)
- Hela Benaissa
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Karim Ounoughi
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Isabelle Aujard
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Evelyne Fischer
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Rosette Goïame
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Julie Nguyen
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Alison G Tebo
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Chenge Li
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Thomas Le Saux
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Giulia Bertolin
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Institute of Genetics and Development of Rennes, Unité Mixte de Recherche (UMR) 6290, F-35000, Rennes, France
| | - Marc Tramier
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Institute of Genetics and Development of Rennes, Unité Mixte de Recherche (UMR) 6290, F-35000, Rennes, France
| | - Lydia Danglot
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014, Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
10
|
Huizing M, Hackbarth ME, Adams DR, Wasserstein M, Patterson MC, Walkley SU, Gahl WA. Free sialic acid storage disorder: Progress and promise. Neurosci Lett 2021; 755:135896. [PMID: 33862140 DOI: 10.1016/j.neulet.2021.135896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
Lysosomal free sialic acid storage disorder (FSASD) is an extremely rare, autosomal recessive, neurodegenerative, multisystemic disorder caused by defects in the lysosomal sialic acid membrane exporter SLC17A5 (sialin). SLC17A5 defects cause free sialic acid and some other acidic hexoses to accumulate in lysosomes, resulting in enlarged lysosomes in some cell types and 10-100-fold increased urinary excretion of free sialic acid. Clinical features of FSASD include coarse facial features, organomegaly, and progressive neurodegenerative symptoms with cognitive impairment, cerebellar ataxia and muscular hypotonia. Central hypomyelination with cerebellar atrophy and thinning of the corpus callosum are also prominent disease features. Around 200 FSASD cases are reported worldwide, with the clinical spectrum ranging from a severe infantile onset form, often lethal in early childhood, to a mild, less severe form with subjects living into adulthood, also called Salla disease. The pathobiology of FSASD remains poorly understood and FSASD is likely underdiagnosed. Known patients have experienced a diagnostic delay due to the rarity of the disorder, absence of routine urine sialic acid testing, and non-specific clinical symptoms, including developmental delay, ataxia and infantile hypomyelination. There is no approved therapy for FSASD. We initiated a multidisciplinary collaborative effort involving worldwide academic clinical and scientific FSASD experts, the National Institutes of Health (USA), and the FSASD patient advocacy group (Salla Treatment and Research [S.T.A.R.] Foundation) to overcome the scientific, clinical and financial challenges facing the development of new treatments for FSASD. We aim to collect data that incentivize industry to further develop, obtain approval for, and commercialize FSASD treatments. This review summarizes current aspects of FSASD diagnosis, prevalence, etiology, and disease models, as well as challenges on the path to therapeutic approaches for FSASD.
Collapse
Affiliation(s)
- Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| | - Mary E Hackbarth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Melissa Wasserstein
- Departments of Pediatrics and Genetics, The Children's Hospital at Montefiore, Bronx, NY, 10467, United States; Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Marc C Patterson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, United States
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | | |
Collapse
|
11
|
Recent developments in ligands and chemical probes targeting solute carrier transporters. Curr Opin Chem Biol 2021; 62:53-63. [PMID: 33689964 DOI: 10.1016/j.cbpa.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022]
Abstract
Solute carrier (SLC) membrane transporters remain a largely unexploited target class, despite their central roles in cell identity and metabolism. This gap is reflected in the lack of high-quality chemical ligands or probes and in the small number of compounds that have progressed toward clinical development. In this review, we discuss recent advancements in SLC ligand discovery as well as new candidates that have been added to the investigational toolkit, with a particular focus on first-in-class ligands and the cognate discovery strategies. The availability of new probes expands the opportunity to elucidate the functions of SLCs and their relevance in physiology and explores any future potential of SLC druggability.
Collapse
|