1
|
Tomašević N, Emser FS, Muratspahić E, Gattringer J, Hasinger S, Hellinger R, Keov P, Felkl M, Gertsch J, Becker CFW, Gruber CW. Discovery and development of macrocyclic peptide modulators of the cannabinoid 2 receptor. J Biol Chem 2024; 300:107330. [PMID: 38679329 PMCID: PMC11154713 DOI: 10.1016/j.jbc.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 μM and a potency (EC50) of 8 μM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.
Collapse
Affiliation(s)
- Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Susanna Emser
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Simon Hasinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Manuel Felkl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Eliasof A, Liu-Chen LY, Li Y. Peptide-derived ligands for the discovery of safer opioid analgesics. Drug Discov Today 2024; 29:103950. [PMID: 38514040 PMCID: PMC11127667 DOI: 10.1016/j.drudis.2024.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Drugs targeting the μ-opioid receptor (MOR) remain the most efficacious analgesics for the treatment of pain, but activation of MOR with current opioid analgesics also produces harmful side effects, notably physical dependence, addiction, and respiratory depression. Opioid peptides have been accepted as promising candidates for the development of safer and more efficacious analgesics. To develop peptide-based opioid analgesics, strategies such as modification of endogenous opioid peptides, development of multifunctional opioid peptides, G protein-biased opioid peptides, and peripherally restricted opioid peptides have been reported. This review seeks to provide an overview of the opioid peptides that produce potent antinociception with much reduced side effects in animal models and highlight the potential advantages of peptides as safer opioid analgesics.
Collapse
Affiliation(s)
- Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Lee-Yuan Liu-Chen
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
3
|
Labani N, Gbahou F, Lian S, Liu J, Jockers R. 2023 Julius Axelrod Symposium: Plant-Derived Molecules Acting on G Protein-Coupled Receptors. Mol Pharmacol 2024; 105:328-347. [PMID: 38458772 DOI: 10.1124/molpharm.123.000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Plant extracts have played a significant role in traditional medicine for centuries, contributing to improved health and the treatment of various human illnesses. G protein-coupled receptors (GPCRs) are crucial in numerous physiologic functions, and there is growing evidence suggesting their involvement in the therapeutic effects of many plant extracts. In recent years, scientists have identified an expanding number of isolated molecules responsible for the biologic activity of these extracts, with many believed to act on GPCRs. This article critically reviews the evidence supporting the modulation of GPCR function by these plant-derived molecules through direct binding. Structural information is now available for some of these molecules, allowing for a comparison of their binding mode with that of endogenous GPCR ligands. The final section explores future trends and challenges, focusing on the identification of new plant-derived molecules with both orthosteric and allosteric binding modes, as well as innovative strategies for designing GPCR ligands inspired by these plant-derived compounds. In conclusion, plant-derived molecules are anticipated to play an increasingly vital role as therapeutic drugs and serve as templates for drug design. SIGNIFICANCE STATEMENT: This minireview summarizes the most pertinent publications on isolated plant-derived molecules interacting with G protein-coupled receptors (GPCRs) and comments on available structural information on GPCR/plant-derived ligand pairs. Future challenges and trends for the isolation and characterization of plant-derived molecules and drug design are discussed.
Collapse
Affiliation(s)
- Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Florence Gbahou
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Shuangyu Lian
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Ralf Jockers
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| |
Collapse
|
4
|
Jiang X, Gao L, Li Z, Shen Y, Lin ZH. Development and Challenges of Cyclic Peptides for Immunomodulation. Curr Protein Pept Sci 2024; 25:353-375. [PMID: 37990433 DOI: 10.2174/0113892037272528231030074158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023]
Abstract
Cyclic peptides are polypeptide chains formed by cyclic sequences of amide bonds between protein-derived or non-protein-derived amino acids. Compared to linear peptides, cyclic peptides offer several unique advantages, such as increased stability, stronger affinity, improved selectivity, and reduced toxicity. Cyclic peptide has been proved to have a promising application prospect in the medical field. In addition, this paper mainly describes that cyclic peptides play an important role in anti-cancer, anti-inflammatory, anti-virus, treatment of multiple sclerosis and membranous nephropathy through immunomodulation. In order to know more useful information about cyclic peptides in clinical research and drug application, this paper also summarizes cyclic peptides currently in the clinical trial stage and cyclic peptide drugs approved for marketing in the recent five years. Cyclic peptides have many advantages and great potential in treating various diseases, but there are still many challenges to be solved in the development process of cyclic peptides.
Collapse
Affiliation(s)
- Xianqiong Jiang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Zhilong Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China
| | - Zhi-Hua Lin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
- Chongqing College of Traditional Chinese Medicine, 402760
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
5
|
Muratspahić E, White AM, Ciotu CI, Hochrainer N, Tomašević N, Koehbach J, Lewis RJ, Spetea M, Fischer MJM, Craik DJ, Gruber CW. Development of a Selective Peptide κ-Opioid Receptor Antagonist by Late-Stage Functionalization with Cysteine Staples. J Med Chem 2023; 66:11843-11854. [PMID: 37632447 PMCID: PMC10510397 DOI: 10.1021/acs.jmedchem.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 08/28/2023]
Abstract
The κ-opioid receptor (KOR) is an attractive target for the development of novel drugs. KOR agonists are potentially safer pain medications, whereas KOR antagonists are promising drug candidates for the treatment of neuropsychiatric disorders. Hitherto, the vast majority of selective drug leads that have been developed for KOR are small molecules. In this study, novel peptide probes were designed by using an endogenous dynorphin A1-13 sequence as a template for peptide stapling via late-stage cysteine functionalization. Leveraging this strategy, we developed a stable and potent KOR antagonist, CSD-CH2(1,8)-NH2, with approximately 1000-fold improved selectivity for KOR over μ- and δ-opioid receptors. Its potent competitive KOR antagonism was verified in KOR-expressing cells, peripheral dorsal root ganglion neurons, and using the tail-flick and rotarod tests in mice. This work highlights the value of cysteine stapling to develop selective peptide probes to modulate central KOR function, as innovative peptide drug candidates for the treatment of KOR-related illnesses.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrew M. White
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Cosmin I. Ciotu
- Center
for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nadine Hochrainer
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nataša Tomašević
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Koehbach
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Richard J. Lewis
- Institute
for Molecular Bioscience, The University
of Queensland, 4072 Brisbane, Queensland, Australia
| | - Mariana Spetea
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michael J. M. Fischer
- Center
for Physiology and Pharmacology, Institute of Physiology, Medical University of Vienna, 1090 Vienna, Austria
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Labani N, Gbahou F, Noblet M, Masri B, Broussaud O, Liu J, Jockers R. Pistacia vera Extract Potentiates the Effect of Melatonin on Human Melatonin MT 1 and MT 2 Receptors with Functional Selectivity. Pharmaceutics 2023; 15:1845. [PMID: 37514032 PMCID: PMC10386454 DOI: 10.3390/pharmaceutics15071845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Melatonin is a tryptophan derivative synthesized in plants and animals. In humans, melatonin acts on melatonin MT1 and MT2 receptors belonging to the G protein-coupled receptor (GPCR) family. Synthetic melatonin receptor agonists are prescribed for insomnia and depressive and circadian-related disorders. Here, we tested 25 commercial plant extracts, reported to have beneficial properties in sleep disorders and anxiety, using cellular assays (2─[125I]iodomelatonin binding, cAMP inhibition, ERK1/2 activation and β-arrestin2 recruitment) in mock-transfected and HEK293 cells expressing MT1 or MT2. Various melatonin receptor-dependent and -independent effects were observed. Extract 18 (Ex18) from Pistacia vera dried fruits stood out with very potent effects in melatonin receptor expressing cells. The high content of endogenous melatonin in Ex18 (5.28 ± 0.46 mg/g extract) is consistent with this observation. Ex18 contains an additional active principle that potentiates the effect of melatonin on Gi protein-dependent pathways but not on β-arrestin2 recruitment. Further active principles potentiating exogenous melatonin were detected in several extracts. In conclusion, we identified plant extracts with various effects in GPCR-based binding and signalling assays and identified high melatonin levels and a melatonin-potentiating activity in Pistacia vera dried fruit extracts that might be of therapeutic potential.
Collapse
Affiliation(s)
- Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | - Florence Gbahou
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | - Marc Noblet
- Science Hub, Sanofi Consumer Healthcare, F-75017 Paris, France
| | - Bernard Masri
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | | | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| |
Collapse
|
7
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
8
|
Salah A, El-Khateeb EA, Gaafar RM, Mohamed Atia MA. Genome-wide in silico and in vitro mining to develop a novel cyclotide-based marker system in plants. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2023.2176175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Arwa Salah
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | | | | | - Mohamed Atia Mohamed Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
9
|
Falanga CM, Steinborn C, Muratspahić E, Zimmermann-Klemd AM, Winker M, Krenn L, Huber R, Gruber CW, Gründemann C. Ipecac root extracts and isolated circular peptides differentially suppress inflammatory immune response characterised by proliferation, activation and degranulation capacity of human lymphocytes in vitro. Biomed Pharmacother 2022; 152:113120. [PMID: 35653889 PMCID: PMC7614192 DOI: 10.1016/j.biopha.2022.113120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
Circular peptides are attractive lead compounds for drug development; this study investigates the immunomodulatory effects of defined root powder extracts and isolated peptides (called cyclotides) from Carapichea ipecacuanha (Brot.) L. Andersson ('ipecac'). Changes in the viability, proliferation and function of activated human primary T cells were analysed using flow cytometry-based assays. Three distinct peptide-enriched extracts of pulverised ipecac root material were prepared via C18 solid-phase extraction and analysed by reversed-phase HPLC and mass spectrometry. These extracts induced caspase 3/7 dependent apoptosis, thus leading to a suppressed proliferation of activated T cells and a reduction of the number of cells in the G2 phase. Furthermore, the stimulated T cells had a lower activation potential and a reduced degranulation capacity after treatment with ipecac extracts. Six different cyclotides were isolated from C. ipecacuanha and an T cell proliferation inhibiting effect was determined. Furthermore, the degranulation capacity of the T cells was diminished specifically by some cyclotides. In contrast to kalata B1 and its analog T20K, secretion of IL-2 and IFN- γ was not affected by any of the caripe cyclotides. The findings add to our increased understanding of the immunomodulating effects of cyclotides, and may provide a basis for the use of ipecac extracts for immunomodulation in conditions associated with an exessive immune responses.
Collapse
Affiliation(s)
- Chiara Madlen Falanga
- Center for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carmen Steinborn
- Center for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Amy Marisa Zimmermann-Klemd
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Moritz Winker
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Roman Huber
- Center for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Dalefield ML, Scouller B, Bibi R, Kivell BM. The Kappa Opioid Receptor: A Promising Therapeutic Target for Multiple Pathologies. Front Pharmacol 2022; 13:837671. [PMID: 35795569 PMCID: PMC9251383 DOI: 10.3389/fphar.2022.837671] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Kappa-opioid receptors (KOR) are widely expressed throughout the central nervous system, where they modulate a range of physiological processes depending on their location, including stress, mood, reward, pain, inflammation, and remyelination. However, clinical use of KOR agonists is limited by adverse effects such as dysphoria, aversion, and sedation. Within the drug-development field KOR agonists have been extensively investigated for the treatment of many centrally mediated nociceptive disorders including pruritis and pain. KOR agonists are potential alternatives to mu-opioid receptor (MOR) agonists for the treatment of pain due to their anti-nociceptive effects, lack of abuse potential, and reduced respiratory depressive effects, however, dysphoric side-effects have limited their widespread clinical use. Other diseases for which KOR agonists hold promising therapeutic potential include pruritis, multiple sclerosis, Alzheimer's disease, inflammatory diseases, gastrointestinal diseases, cancer, and ischemia. This review highlights recent drug-development efforts targeting KOR, including the development of G-protein-biased ligands, mixed opioid agonists, and peripherally restricted ligands to reduce side-effects. We also highlight the current KOR agonists that are in preclinical development or undergoing clinical trials.
Collapse
Affiliation(s)
| | | | | | - Bronwyn M. Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
11
|
Taghizadeh MS, Retzl B, Muratspahić E, Trenk C, Casanova E, Moghadam A, Afsharifar A, Niazi A, Gruber CW. Discovery of the cyclotide caripe 11 as a ligand of the cholecystokinin-2 receptor. Sci Rep 2022; 12:9215. [PMID: 35654807 PMCID: PMC9163038 DOI: 10.1038/s41598-022-13142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
The cholecystokinin-2 receptor (CCK2R) is a G protein-coupled receptor (GPCR) that is expressed in peripheral tissues and the central nervous system and constitutes a promising target for drug development in several diseases, such as gastrointestinal cancer. The search for ligands of this receptor over the past years mainly resulted in the discovery of a set of distinct synthetic small molecule chemicals. Here, we carried out a pharmacological screening of cyclotide-containing plant extracts using HEK293 cells transiently-expressing mouse CCK2R, and inositol phosphate (IP1) production as a readout. Our data demonstrated that cyclotide-enriched plant extracts from Oldenlandia affinis, Viola tricolor and Carapichea ipecacuanha activate the CCK2R as measured by the production of IP1. These findings prompted the isolation of a representative cyclotide, namely caripe 11 from C. ipecacuanha for detailed pharmacological analysis. Caripe 11 is a partial agonist of the CCK2R (Emax = 71%) with a moderate potency of 8.5 µM, in comparison to the endogenous full agonist cholecystokinin-8 (CCK-8; EC50 = 11.5 nM). The partial agonism of caripe 11 is further characterized by an increase on basal activity (at low concentrations) and a dextral-shift of the potency of CCK-8 (at higher concentrations) following its co-incubation with the cyclotide. Therefore, cyclotides such as caripe 11 may be explored in the future for the design and development of cyclotide-based ligands or imaging probes targeting the CCK2R and related peptide GPCRs.
Collapse
Affiliation(s)
- Mohammad Sadegh Taghizadeh
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christoph Trenk
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Emilio Casanova
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Conzelmann C, Muratspahić E, Tomašević N, Münch J, Gruber CW. In vitro Inhibition of HIV-1 by Cyclotide-Enriched Extracts of Viola tricolor. Front Pharmacol 2022; 13:888961. [PMID: 35712712 PMCID: PMC9196940 DOI: 10.3389/fphar.2022.888961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Since viral infectious diseases continue to be a global health threat, new antiviral drugs are urgently needed. A unique class of therapeutic compounds are antimicrobial peptides (AMPs). They can be found in humans, bacteria and plants. Plants express a wide variety of such defense peptides as part of their innate immune system to protect from invading pathogens. Cyclotides are non-classical AMPs that share a similar structure. Their unique topology consists of a circular peptide backbone and disulfide bonds. In previous studies they have been attributed to a wide range of biological activities. To identify novel cyclotides with antiviral activity, we established a library of plant extracts largely consisting of cyclotide-rich species and screened them as inhibitors of HIV-1 infection. Subsequent extraction and fractionation revealed four cyclotide-containing subfractions from Viola tricolor with antiviral activity. These subfractions inhibited HIV-1 infection with IC50 values between 0.6 and 11.2 μg/ml, and selectivity indices of up to 8.1. The identification and characterization of antiviral cyclotides and the determination of the antiviral mechanisms may allow to develop novel agents to combat viral infections. Therefore, cyclotides represent a natural source of bioactive molecules with prospects for development as therapeutics.
Collapse
Affiliation(s)
- Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nataša Tomašević
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Jan Münch, ; Christian W. Gruber,
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Jan Münch, ; Christian W. Gruber,
| |
Collapse
|
13
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|