1
|
Pimentel FC, Alves CCF, Forim MR, Matos AP, Cunha GOS, Cazal CDM. Chemical composition and antifungal activity of the essential oil from the Hymenaea stigonocarpa Mart. Ex Hayne (jatobá-do-cerrado) fruit peel. Nat Prod Res 2024; 38:1945-1949. [PMID: 37328943 DOI: 10.1080/14786419.2023.2225123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the chemical composition and the antifungal activity of the essential oil extracted from the Hymenaea stigonocarpa fruit peel (HSFPEO) against Botrytis cinerea, Sclerotinia sclerotiorum, Aspergillus flavus and Colletotrichum truncatum. The HSFPEO obtained through hydrodistillation was analyzed with gas chromatography coupled to mass spectrometry. The antifungal activity was determined by the mean mycelial growth inhibition of the fungus treated with essential oils and growth control. The major constituents of HSFPEO were spathulenol (25.19%) and caryophyllene oxide (13.33%). HSFPEO demonstrated antifungal activity against all fungi tested in all concentrations evaluated in a dose-dependent behavior. The best results were observed against B. cinerea and A. flavus, in which the lowest concentration tested inhibited more than 70% of mycelial growth. Based on the current knowledge, this study describes for the first time the chemical composition and the antifungal activity of HSFPEO against the phytopathogenic fungi B. cinerea and C. truncatum.
Collapse
Affiliation(s)
- Fernando Campos Pimentel
- Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Rio Verde, Rio Verde, Goiás, Brazil
| | | | | | | | | | - Cristiane de Melo Cazal
- Instituto Federal de Educação, Ciência e Tecnologia Sudeste de Minas Gerais - Campus Barbacena, Barbacena, Minas Gerais, Brazil
| |
Collapse
|
2
|
Ribeiro GDS, Martins DHN, Gomes JVD, Davies NW, Fagg CW, Simeoni LA, Homem-de-Mello M, Magalhães PO, Silveira D, Fonseca-Bazzo YM. Hepatoprotective Effects of Four Brazilian Savanna Species on Acetaminophen-Induced Hepatotoxicity in HepG2 Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3393. [PMID: 37836133 PMCID: PMC10574628 DOI: 10.3390/plants12193393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
We investigated four Cerrado plant species, i.e., Cheiloclinium cognatum (Miers) A.C.Sm, Guazuma ulmifolia Lam., Hancornia speciosa Gomes, and Hymenaea stigonocarpa Mart. ex Hayne, against acetaminophen toxicity using an in vitro assay with HepG2 cells. The activity against acetaminophen toxicity was evaluated using different protocols, i.e., pre-treatment, co-treatment, and post-treatment of the cells with acetaminophen and the plant extracts. HepG2 cell viability after treatment with acetaminophen was 39.61 ± 5.59% of viable cells. In the pre-treatment protocol, the extracts could perform protection with viability ranging from 50.02 ± 15.24% to 78.75 ± 5.61%, approaching the positive control silymarin with 75.83 ± 5.52%. In the post-treatment protocol, all extracts and silymarin failed to reverse the acetaminophen damage. In the co-treatment protocol, the extracts showed protection ranging from 50.92 ± 11.14% to 68.50 ± 9.75%, and silymarin showed 77.87 ± 4.26%, demonstrating that the aqueous extracts of the species also do not increase the toxic effect of acetaminophen. This protection observed in cell viability was accompanied by a decrease in ROS. The extracts' hepatoprotection can be related to antioxidant compounds, such as rutin and mangiferin, identified using HPLC-DAD and UPLC-MS/MS. The extracts were shown to protect HepG2 cells against future APAP toxicity and may be candidates for supplements that could be used to prevent liver damage. In the concomitant treatment using the extracts with APAP, it was demonstrated that the extracts do not present a synergistic toxicity effect, with no occurrence of potentiation of toxicity. The extracts showed considerable cytoprotective effects and important antioxidant characteristics.
Collapse
Affiliation(s)
- Gislane dos Santos Ribeiro
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Diegue Henrique Nascimento Martins
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - João Victor Dutra Gomes
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Noel William Davies
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Christopher William Fagg
- Department of Botany, Institute of Biological Science, University of Brasília, Brasilia 70910-900, Brazil;
| | - Luiz Alberto Simeoni
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Mauricio Homem-de-Mello
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Pérola Oliveira Magalhães
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Dâmaris Silveira
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Yris Maria Fonseca-Bazzo
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| |
Collapse
|
3
|
ALEXANDRE GERSOP, SIMÃO JORGELUIZS, TAVARES MARIAOLIVIAA, ZUFFO IZABELLAMARIANAS, PRADO STÉPHANIEV, PAIVA JOSEILSONADE, MUSTAPHA ABUBAKARN, OLIVEIRA ANSELMOEDE, KATO LUCILIA, SEVERINO VANESSAGISELEP. Dereplication by HPLC-ESI-MS and antioxidant activity of phenolic compounds from Banisteriopsis laevifolia (Malpighiaceae). AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220201844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Polavarapu PL, Santoro E. Vibrational optical activity for structural characterization of natural products. Nat Prod Rep 2020; 37:1661-1699. [DOI: 10.1039/d0np00025f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents the recent progress towards elucidating the structures of chiral natural products and applications using vibrational optical activity (VOA) spectroscopy.
Collapse
|
5
|
Bogaerts J, Desmet F, Aerts R, Bultinck P, Herrebout W, Johannessen C. A combined Raman optical activity and vibrational circular dichroism study on artemisinin-type products. Phys Chem Chem Phys 2020; 22:18014-18024. [DOI: 10.1039/d0cp03257c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Artemisinin and two of its derivatives, dihydroartemisinin and artesunate, front line drugs against malaria, were studied using Raman optical activity (ROA), vibrational circular dichroism (VCD) experiments and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
| | - Filip Desmet
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | - Roy Aerts
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | | | - Wouter Herrebout
- Department of Chemistry
- University of Antwerp
- B-2020 Antwerp
- Belgium
| | | |
Collapse
|
6
|
Vibrational spectra and theoretical calculations of a natural pentacyclic triterpene alcool isolated from Mucuna pruriens. Struct Chem 2019. [DOI: 10.1007/s11224-019-01431-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Silva SL, Lucas Tenório CJ, de Lima LB, Procópio TF, de Moura MC, Napoleão TH, Assunção Ferreira MR, Soares LAL. Phytochemical analysis and evaluation of the antimicrobial and antioxidant activities of extracts and fractions of Hymenaea eriogyne Benth. Nat Prod Res 2019; 35:2937-2941. [PMID: 31607161 DOI: 10.1080/14786419.2019.1675066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of this study was to conduct phytochemical characterization and biological evaluation of Hymenaea eriogyne. Crude extracts and fractions from the bark, leaves and pods, were obtained for phytochemical screening by TLC and HPLC, and evaluation of antibacterial and antioxidant potential. Chromatographic data revealed the presence of several metabolites, notably from the flavonoid class. HPLC analysis confirmed the presence of the flavanonol astilbin (taxifolin 3-O-ramnoside) and other flavonoids derived from aglycone taxifolin. In addition, it was possible to quantify phytochemical markers in the extracts and fractions, which showed an increased content of flavonoid and catechin derivatives in the fraction. Better results of the minimum inhibitory/bactericidal concentrations were obtained with extracts and fractions from bark. In the antioxidant activity using the DPPH method, the enriched bark fraction presented an IC50 of 34.46 µg/mL. These results contribute to the continuity of studies on the chemical and biological composition of the species.
Collapse
Affiliation(s)
- Sarah Luanne Silva
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Camylla Janiele Lucas Tenório
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Liliane Bezerra de Lima
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | - Magda Rhayanny Assunção Ferreira
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Therapeutic Innovation, Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Tobal IE, Roncero AM, Moro RF, Díez D, Marcos IS. The Methylene-Cycloalkylacetate (MCA) Scaffold in Terpenyl Compounds with Potential Pharmacological Activities. Molecules 2019; 24:molecules24112120. [PMID: 31195609 PMCID: PMC6600407 DOI: 10.3390/molecules24112120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 01/30/2023] Open
Abstract
Recently, the methylene-cycloakylacetate (MCA) scaffold has been reported as a potential pharmacophore for neurite outgrowth activity. In this work, natural diterpenes that embed MCA fragments are reviewed, as they are major components of Halimium viscosum: ent-halimic acid, the prototype for these bioactive compounds. Herein, structures, sources, and activities for the natural diterpenes, as well as their synthetic derivatives of interest, are reviewed.
Collapse
Affiliation(s)
- Ignacio E Tobal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain.
| | - Alejandro M Roncero
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain.
| | - Rosalina F Moro
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain.
| | - David Díez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain.
| | - Isidro S Marcos
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca. Plaza de los Caídos 1-5, 37008 Salamanca, Spain.
| |
Collapse
|
9
|
Teixeira N, Melo JC, Batista LF, Paula-Souza J, Fronza P, Brandão MG. Edible fruits from Brazilian biodiversity: A review on their sensorial characteristics versus bioactivity as tool to select research. Food Res Int 2019; 119:325-348. [DOI: 10.1016/j.foodres.2019.01.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022]
|
10
|
Biazotto KR, de Souza Mesquita LM, Neves BV, Braga ARC, Tangerina MMP, Vilegas W, Mercadante AZ, De Rosso VV. Brazilian Biodiversity Fruits: Discovering Bioactive Compounds from Underexplored Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1860-1876. [PMID: 30707576 DOI: 10.1021/acs.jafc.8b05815] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large segments of the Brazilian population still suffer from malnutrition and diet-related illnesses. In contrast, many native fruits have biodiversity and are underexploited sources of bioactive compounds and unknown to consumers. The phytochemical composition of nine underexplored Brazilian fruits was determined. Carotenoids and anthocyanins were identified and quantified by high performance liquid chromatography-photodiode array-tandem mass spectrometry (HPLC-PDA-MS/MS), and phenolic compounds and iridoids were identified by flow injection analysis-electrospray-ion trap-tandem mass spectrometry (FIA-ESI-IT-MS/MS); in total, 84 compounds were identified. In addition, the chemical structure and pathway mass fragmentation of new iridoids from jenipapo ( Genipa americana) and jatoba ( Hymenae coubaril) are proposed. The highest level of carotenoids was registered in pequi ( Caryocar brasiliense; 10156.21 μg/100 g edible fraction), while the major total phenolic content was found in cambuci ( Campomanesia coubaril; 221.70 mg GAE/100 g). Anthocyanins were quantified in jabuticaba ( Plinia cauliflora; 45.5 mg/100 g) and pitanga ( Eugenia uniflora; 81.0 mg/100 g). Our study illustrates the chemical biodiversity of underexplored fruits from Brazil, supporting the identification of new compounds and encouraging the study of more food matrixes not yet investigated.
Collapse
Affiliation(s)
- Katia Regina Biazotto
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Leonardo Mendes de Souza Mesquita
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Bruna Vitória Neves
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| | | | - Wagner Vilegas
- Laboratory of Bioprospection of Natural Products (LBPN) , UNESP - São Paulo State University/Coastal Campus of São Vicente , São Vicente , São Paulo 11015-020 , Brazil
| | - Adriana Zerlotti Mercadante
- Department of Food Science, Faculty of Food Engineering , University of Campinas (UNICAMP) , Campinas , São Paulo CEP 13083-862 , Brazil
| | - Veridiana Vera De Rosso
- Department of Biosciences , Federal University of São Paulo (UNIFESP) , Rua Silva Jardim 136 , Santos , São Paulo CEP 11015-020 , Brazil
| |
Collapse
|
11
|
Monteiro AF, Righetto GM, Simões LV, Almeida LCD, Costa-Lotufo LV, Camargo ILBDC, Castro-Gamboa I. Oxidative functionalization of a halimane diterpenoid achieved by fungal transformation. Bioorg Chem 2019; 86:550-556. [PMID: 30782573 DOI: 10.1016/j.bioorg.2019.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022]
Abstract
Regio and stereoselective activation of sp3 CH bonds remain one of the major advantages of biocatalysis over traditional chemocatalytic methods. Herein, we describe the oxy-functionalization of halimane diterpenoid 1 by whole cells of three filamentous fungi, aiming to obtain derivatives with desirable biological properties. After incubating 1 with Fusarium oxysporum, Myrothecium verrucaria, and Rhinocladiella similis at different concentrations and incubation times, four known (3, 5, 6, and 7) and three new (2, 4, and 8) halimane derivatives were obtained and characterized. F. oxysporum catalyzed the hydroxylation of positions C-2 (2) and C-7 (4), while R. similis simultaneously mediated the 2-oxo-functionalization and the hydration of 13,14-(CC)double bond belonging to an α,β-unsaturated carbonyl system (8). Compounds 1-7 were non-cytotoxic against HCT-116 and MCF-7 cancer cell lines at tested concentrations. However, substrate 1 displayed moderate reduction ability against biofilm produced by Staphylococcus epidermidis ATCC35984 (84% at 1.6 mM), and this effect was retained to some extent by derivatives 4 and 7. These results emphasize the prominent potential of filamentous fungi associated with the microbiota of medicinal plants as versatile catalysts for singularly useful reactions through their complex enzymatic machinery, as well as the high susceptibility of halimane-diterpenoid substrates.
Collapse
Affiliation(s)
- Afif Felix Monteiro
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Química Orgância, Francisco Degni, 55, 14800-900, Araraquara, SP, Brazil.
| | - Gabriela Marinho Righetto
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 135560-970, São Carlos, SP, Brazil
| | - Laura Vilar Simões
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Química Orgância, Francisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Larissa Costa de Almeida
- Universidade de São Paulo (USP), Instituto de Ciências Biomédicas, Av. Lineu Prestes, 1524, 05508-900, São Paulo, SP, Brazil
| | - Letícia Veras Costa-Lotufo
- Universidade de São Paulo (USP), Instituto de Ciências Biomédicas, Av. Lineu Prestes, 1524, 05508-900, São Paulo, SP, Brazil
| | | | - Ian Castro-Gamboa
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Química Orgância, Francisco Degni, 55, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Roncero AM, Tobal IE, Moro RF, Díez D, Marcos IS. Halimane diterpenoids: sources, structures, nomenclature and biological activities. Nat Prod Rep 2018; 35:955-991. [DOI: 10.1039/c8np00016f] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diterpenes with a halimane skeleton constitute a small group of natural products that can be biogenetically considered as being between labdane and clerodane diterpenoids.
Collapse
Affiliation(s)
- Alejandro M. Roncero
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Ignacio E. Tobal
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Rosalina F. Moro
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - David Díez
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| | - Isidro S. Marcos
- Departamento de Química Orgánica
- Facultad de Ciencias Químicas
- Universidad de Salamanca
- 37008 Salamanca
- Spain
| |
Collapse
|
13
|
Zhang JS, Tang YQ, Huang JL, Li W, Zou YH, Tang GH, Liu B, Yin S. Bioactive diterpenoids from Croton laevigatus. PHYTOCHEMISTRY 2017; 144:151-158. [PMID: 28934647 DOI: 10.1016/j.phytochem.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Eight previously undescribed diterpenoids, crolaevinoids A-H, including two halimanes, four clerodanes, and two laevinanes, along with six known analogues were isolated from the twigs of Croton laevigatus. The structures of the previously undescribed were elucidated by spectroscopic analysis, and their absolute configurations were determined by combination of a single crystal X-ray diffraction and CD analysis (exciton chirality and Rh2(OCOCF3)4-induced methods). Crolaevinoids A and B represent the first halimane diterpenoids with a unique lactone bridge between C-12 and C-17. All compounds were evaluated for their inhibitory effects on the nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW264.7 macrophage cells. Furocrotinsulolide A and 3,4,15,16-diepoxy-cleroda-13(16),14-diene-12,17-olide exhibited pronounced inhibition of NO production with IC50 values of 10.4 ± 0.8 and 6.0 ± 1.0 μM, respectively, being more potent than the positive control, quercetin (IC50 = 13.1 ± 1.9 μM).
Collapse
Affiliation(s)
- Jun-Sheng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ya-Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Luo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi-Hong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bo Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Monteiro AF, Seidl C, Severino VGP, Cardoso CL, Castro-Gamboa I. Biotransformation of labdane and halimane diterpenoids by two filamentous fungi strains. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 29291077 DOI: 10.5061/dryad.fb7r5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biotransformation of natural products by filamentous fungi is a powerful and effective approach to achieve derivatives with valuable new chemical and biological properties. Although diterpenoid substrates usually exhibit good susceptibility towards fungi enzymes, there have been no studies concerning the microbiological transformation of halimane-type diterpenoids up to now. In this work, we investigated the capability of Fusarium oxysporum (a fungus isolated from the rhizosphere of Senna spectabilis) and Myrothecium verrucaria (an endophyte) to transform halimane (1) and labdane (2) acids isolated from Hymenaea stigonocarpa (Fabaceae). Feeding experiments resulted in the production of six derivatives, including hydroxy, oxo, formyl and carboxy analogues. Incubation of 1 with F. oxysporum afforded 2-oxo-derivative (3), while bioconversion with M. verrucaria provided 18,19-dihydroxy (4), 18-formyl (5) and 18-carboxy (6) bioproducts. Transformation of substrate 2 mediated by F. oxysporum produced a 7α-hydroxy (7) derivative, while M. verrucaria yielded 7α- (7) and 3β-hydroxy (8) metabolites. Unlike F. oxysporum, which showed a preference to transform ring B, M. verrucaria exhibited the ability to hydroxylate both rings A and B from substrate 2. Additionally, compounds 1-8 were evaluated for inhibitory activity against Hr-AChE and Hu-BChE enzymes through ICER-IT-MS/MS assay.
Collapse
Affiliation(s)
- Afif F Monteiro
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Química Orgânica, Francisco Degni 55, Araraquara, 14800-900, Brazil
| | - Cláudia Seidl
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Vanessa G P Severino
- Universidade Federal de Goiás (UFG), Instituto de Química, Campus Samambaia, Goiânia, 74690-900, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Ian Castro-Gamboa
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Química Orgânica, Francisco Degni 55, Araraquara, 14800-900, Brazil
| |
Collapse
|
15
|
Monteiro AF, Seidl C, Severino VGP, Cardoso CL, Castro-Gamboa I. Biotransformation of labdane and halimane diterpenoids by two filamentous fungi strains. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170854. [PMID: 29291077 PMCID: PMC5717651 DOI: 10.1098/rsos.170854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Biotransformation of natural products by filamentous fungi is a powerful and effective approach to achieve derivatives with valuable new chemical and biological properties. Although diterpenoid substrates usually exhibit good susceptibility towards fungi enzymes, there have been no studies concerning the microbiological transformation of halimane-type diterpenoids up to now. In this work, we investigated the capability of Fusarium oxysporum (a fungus isolated from the rhizosphere of Senna spectabilis) and Myrothecium verrucaria (an endophyte) to transform halimane (1) and labdane (2) acids isolated from Hymenaea stigonocarpa (Fabaceae). Feeding experiments resulted in the production of six derivatives, including hydroxy, oxo, formyl and carboxy analogues. Incubation of 1 with F. oxysporum afforded 2-oxo-derivative (3), while bioconversion with M. verrucaria provided 18,19-dihydroxy (4), 18-formyl (5) and 18-carboxy (6) bioproducts. Transformation of substrate 2 mediated by F. oxysporum produced a 7α-hydroxy (7) derivative, while M. verrucaria yielded 7α- (7) and 3β-hydroxy (8) metabolites. Unlike F. oxysporum, which showed a preference to transform ring B, M. verrucaria exhibited the ability to hydroxylate both rings A and B from substrate 2. Additionally, compounds 1-8 were evaluated for inhibitory activity against Hr-AChE and Hu-BChE enzymes through ICER-IT-MS/MS assay.
Collapse
Affiliation(s)
- Afif F. Monteiro
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Química Orgânica, Francisco Degni 55, Araraquara, 14800-900, Brazil
| | - Cláudia Seidl
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Vanessa G. P. Severino
- Universidade Federal de Goiás (UFG), Instituto de Química, Campus Samambaia, Goiânia, 74690-900, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-901, São Paulo, Brazil
| | - Ian Castro-Gamboa
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Universidade Estadual Paulista (UNESP), Instituto de Química, Departamento de Química Orgânica, Francisco Degni 55, Araraquara, 14800-900, Brazil
| |
Collapse
|
16
|
Boniface PK, Baptista Ferreira S, Roland Kaiser C. Current state of knowledge on the traditional uses, phytochemistry, and pharmacology of the genus Hymenaea. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:193-223. [PMID: 28536059 DOI: 10.1016/j.jep.2017.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/04/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants of the genus Hymenaea (Fabaceae) are used in South American and Asian traditional medicines to treat a multitude of disorders, like cough, diarrhea, dysentery, intestinal colic, pulmonary weakness, asthma, anemia, sore throat, and for the treatment of kidney problems, viral related disorders, chronic cystitis, bronchitis, and bladder infections. Some Hymenaea species are also used as vermifuge, and for the treatment of arthritis, and inflammation conditions. This review deals with updated information on the traditional uses, phytochemistry and pharmacology of ethnomedicinally important Hymenaea species in order to provide an input for the future research prospects. METHODS Literature available in various recognized databases including Google Scholar, PubMed, SciFinder, Scopus, Springer, Wiley, ACS, Scielo and Web of Science, as well as from theses, dissertations, books, reports, and other relevant websites (www.theplantlist.org), are surveyed, analysed, and included in this review. Herein, the literature related to chemical constituents and pharmacological activities were searched in November 2016. RESULTS The literature provided information on ethnopharmacological uses of the South American and African species of the genus Hymenaea (e.g., H. courbaril, H. stigonocarpa, H. onblogifolia, H. martiana, H. parvifolia (South America) and H. verrucosa (African species)) for the treatment of multi-factorial diseases. From these plant species, more than 130 compounds, including fatty acids, flavonoids, terpenoids and steroids, phthalides, phenolic acids, procyanidins and coumarins were identified. Experimental evidences confirmed that the Hymenaea spp. could be used in treating inflammatory disorders, asthma, diarrhea, and some microbial infections. However, reports on the toxicity of Hymenaea species remain scarce. CONCLUSION Plants of this genus have offered bioactive samples, both from crude extracts and pure compounds, thus substantiating their effectiveness in traditional medicine. However, intensive investigations of all the species of Hymenaea spp. relating to phytochemical and pharmacological properties, especially their mechanism of action, safety and efficacy could be the future introspection.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Organic Chemistry, Institute of Chemistry, University of Rio de Janeiro, Avenida Athos da Silveira Ramos, Rio de Janeiro (RJ) 21949-900, Brazil.
| | - Sabrina Baptista Ferreira
- Department of Organic Chemistry, Institute of Chemistry, University of Rio de Janeiro, Avenida Athos da Silveira Ramos, Rio de Janeiro (RJ) 21949-900, Brazil
| | - Carlos Roland Kaiser
- Department of Organic Chemistry, Institute of Chemistry, University of Rio de Janeiro, Avenida Athos da Silveira Ramos, Rio de Janeiro (RJ) 21949-900, Brazil
| |
Collapse
|
17
|
Pollok CH, Merten C. Conformational distortion of α-phenylethyl amine in cryogenic matrices – a matrix isolation VCD study. Phys Chem Chem Phys 2016; 18:13496-502. [DOI: 10.1039/c6cp01946c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
MI-VCD spectroscopy reveals conformational perturbations of a chiral amine due to matrix packing effects.
Collapse
|
18
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes labdanes, clerodanes, pimaranes, abietanes, kauranes, cembranes and their cyclization products. The literature from January to December, 2015 is reviewed.
Collapse
|