1
|
Liu Q, Wang YX, Ge ZH, Zhu MZ, Ding J, Wang H, Liu SM, Liu RC, Li C, Yu MJ, Feng Y, Zhu XH, Liang JH. Discovery of glycosidated glycyrrhetinic acid derivatives: Natural product-based soluble epoxide hydrolase inhibitors. Eur J Med Chem 2024; 280:116937. [PMID: 39413443 DOI: 10.1016/j.ejmech.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
There are few reports on soluble epoxide hydrolase (sEH) structure-activity relationship studies using natural product-based scaffolds. In this study, we discovered that C-30 urea derivatives of glycyrrhetinic acid such as 33, rather than C-20/C-3 urea derivatives, possess in vitro sEH inhibitory capabilities. Furthermore, we explored the impact of stereoconfigurations at C-3 and C-18 positions, and glycosidic bonds at the 3-OH on the compound's activity. Consequently, a glycoside of 33, specifically 49Cα containing alpha-oriented mannose, exhibited promising in vivo efficacy in alleviating carrageenan-induced paw edema and acetic acid-induced writhing. Meanwhile, 49Cα demonstrated potential in mitigating acute pancreatitis by modulating the ratios of anti-inflammatory epoxyeicosatrienoic acids (EETs) to pro-inflammatory dihydroxyeicosatrienoic acids (DHETs). The co-crystal structure of sEH in complex with 49Cα revealed that the N-tetrahydropyranylmethylene urea hydrogen bonded with the residues within the sEH tunnel, contrasting with the mannose component that extended beyond the tunnel's confines. Our findings highlight 49Cα (coded LQ-38) as a promising candidate for anti-inflammatory and analgesic effects, and pave the way for the future rational design of triterpenoid-based sEH inhibitors.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yi-Xin Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Zi-Hao Ge
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui-Chen Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
2
|
Sun Y, Lei C, Qiao R, Li C. Recent advances in carrier-free natural small molecule self-assembly for drug delivery. Biomater Sci 2024; 12:6237-6252. [PMID: 39513256 DOI: 10.1039/d4bm01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Natural small-molecule drugs have been used for thousands of years for the prevention and treatment of human diseases. Most of the natural products available on the market have been modified into various polymer materials for improving the solubility, stability, and targeted delivery of drugs. However, these nanomedicines formed based on polymer carriers would produce severe problems such as systemic toxicity and kidney metabolic stress. In contrast, the carrier-free nanomedicines formed by their self-assembly in water have inherent advantages such as low toxicity, good biocompatibility, and biodegradability. This review summarizes the assembly process and application of natural small-molecule products, which are mainly driven by multiple non-covalent interactions, and includes single-molecule assembly, bimolecular assembly, drug-modified assembly, and organogels. Meanwhile, the molecular mechanism involved in different self-assembly processes is also discussed. Self-assembly simulation and structural modification of natural small-molecule products or traditional Chinese medicine molecules using molecular dynamics simulation and computer-assisted methods are proposed, which will lead to the discovery of more carrier-free nanomedicine drug delivery systems. Overall, this review provides an important understanding and strategy to study single-molecule and multi-molecule carrier-free nanomedicines.
Collapse
Affiliation(s)
- Yehua Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Changyang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
3
|
Yang Z, Li X, Liu W, Wang G, Ma J, Jiang L, Yu D, Ding Y, Li Y. One-Step Organic Synthesis of 18β-Glycyrrhetinic Acid-Anthraquinone Ester Products: Exploration of Antibacterial Activity and Structure-Activity Relationship, Toxicity Evaluation in Zebrafish. Chem Biol Drug Des 2024; 104:e14631. [PMID: 39317695 DOI: 10.1111/cbdd.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
To combine the activity characteristics of 18β-glycyrrhetinic acid (18β-GA) and anthraquinone compounds (rhein and emodin), reduce toxicity, and explore the structure-activity relationship (SAR) of anthraquinones, 18β-GA-anthraquinone ester compounds were synthesized by one-step organic synthesis. The products were separated and purified by HPLC and characterized by NMR and EI-MS. It was finally determined as di-18β-GA-3-rhein ester (1, New), GA dimer (2, known), 18β-GA-3-emodin ester (3, known), and di-18β-GA-1-emodin ester (4, new). The MIC of three reactants and four products against Escherichia coli and Staphylococcus aureus were detected in vitro. Its developmental toxicity and cardiotoxicity were assessed using zebrafish embryos. The experimental results showed that rhein had the best antibacterial activity against Staphylococcus aureus with MIC50 of 2.4 mM, and it was speculated that -COOH, -OH, and intramolecular hydrogen bonds in anthraquinone compounds would enhance the antibacterial effect, while the presence of-CH3 might weaken the antibacterial activity. Product 1 increased the hatching rate and survival rate of zebrafish embryos and reduced the malformation rate and cardiomyocyte apoptosis. This experiment lays the foundation for further studying the SAR of anthraquinones and providing new drug candidates.
Collapse
Affiliation(s)
- Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xueyan Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wei Liu
- School of Health and Welfare, Changchun Humanities and Sciences College, Changchun, Jilin, China
| | - Guangyue Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiahui Ma
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Denghui Yu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597. [PMID: 38390501 PMCID: PMC10882267 DOI: 10.1039/d3ra08025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Glycyrrhetinic acid, a triterpenoid compound primarily sourced from licorice root, exhibits noteworthy biological attributes, including anti-inflammatory, anti-tumor, antibacterial, antiviral, and antioxidant effects. Despite these commendable effects, its further advancement and application, especially in clinical use, have been hindered by its limited druggability, including challenges such as low solubility and bioavailability. To enhance its biological activity and pharmaceutical efficacy, numerous research studies focus on the structural modification, associated biological activity data, and underlying mechanisms of glycyrrhetinic acid and its derivatives. This review endeavors to systematically compile and organize glycyrrhetinic acid derivatives that have demonstrated outstanding biological activities over the preceding decade, delineating their molecular structures, biological effects, underlying mechanisms, and future prospects for assisting researchers in finding and designing novel glycyrrhetinic acid derivatives, foster the exploration of structure-activity relationships, and aid in the screening of potential candidate compounds.
Collapse
Affiliation(s)
- Liang Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Jingwen Gong
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Xu Yong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Youbin Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Shuojin Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| |
Collapse
|
5
|
Özkan B, Altuntaş E, Ünlü Ü, Doğan HH, Özsoy Y, Çakır Koç R. Development of an Antiviral Ion-Activated In Situ Gel Containing 18β-Glycyrrhetinic Acid: A Promising Alternative against Respiratory Syncytial Virus. Pharmaceutics 2023; 15:2055. [PMID: 37631269 PMCID: PMC10458153 DOI: 10.3390/pharmaceutics15082055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 08/27/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) is a major cause of serious lower respiratory infections and poses a considerable risk to public health globally. Only a few treatments are currently used to treat RSV infections, and there is no RSV vaccination. Therefore, the need for clinically applicable, affordable, and safe RSV prevention and treatment solutions is urgent. In this study, an ion-activated in situ gelling formulation containing the broad-spectrum antiviral 18β-glycyrrhetinic acid (GA) was developed for its antiviral effect on RSV. In this context, pH, mechanical characteristics, ex vivo mucoadhesive strength, in vitro drug release pattern, sprayability, drug content, and stability were all examined. Rheological characteristics were also tested using in vitro gelation capacity and rheological synergism tests. Finally, the cytotoxic and antiviral activities of the optimized in situ gelling formulation on RSV cultured in the human laryngeal epidermoid carcinoma (HEp-2) cell line were evaluated. In conclusion, the optimized formulation prepared with a combination of 0.5% w/w gellan gum and 0.5% w/w sodium carboxymethylcellulose demonstrated good gelation capacity and sprayability (weight deviation between the first day of the experiment (T0) and the last day of the experiment (T14) was 0.34%), desired rheological synergism (mucoadhesive force (Fb): 9.53 Pa), mechanical characteristics (adhesiveness: 0.300 ± 0.05 mJ), ex vivo bioadhesion force (19.67 ± 1.90 g), drug content uniformity (RSD%: 0.494), and sustained drug release over a period of 6 h (24.56% ± 0.49). The optimized formulation demonstrated strong anti-hRSV activity (simultaneous half maximal effective concentration (EC50) = 0.05 µg/mL; selectivity index (SI) = 306; pre-infection EC50 = 0.154 µg/mL; SI = 100), which was significantly higher than that of ribavirin (EC50 = 4.189 µg/mL; SI = 28) used as a positive control against hRSV, according to the results of the antiviral activity test. In conclusion, this study showed that nasal in situ gelling spray can prevent viral infection and replication by directly inhibiting viral entry or modulating viral replication.
Collapse
Affiliation(s)
- Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Istanbul 34116, Turkey;
| | - Ümmühan Ünlü
- Elderly Care Program, Ataturk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | - Hasan Hüseyin Doğan
- Department of Biology, Science Faculty, Alaeddin Keykubat Campus, Selcuk University, Konya 42130, Turkey;
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Istanbul 34116, Turkey;
| | - Rabia Çakır Koç
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
6
|
Dubinin MV, Nedopekina DA, Ilzorkina AI, Semenova AA, Sharapov VA, Davletshin EV, Mikina NV, Belsky YP, Spivak AY, Akatov VS, Belosludtseva NV, Liu J, Belosludtsev KN. Conjugation of Triterpenic Acids of Ursane and Oleanane Types with Mitochondria-Targeting Cation F16 Synergistically Enhanced Their Cytotoxicity against Tumor Cells. MEMBRANES 2023; 13:563. [PMID: 37367767 DOI: 10.3390/membranes13060563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The present work shows the cytotoxic effects of novel conjugates of ursolic, oleanolic, maslinic, and corosolic acids with the penetrating cation F16 on cancer cells (lung adenocarcinoma A549 and H1299, breast cancer cell lines MCF-7 and BT474) and non-tumor human fibroblasts. It has been established that the conjugates have a significantly enhanced toxicity against tumor-derived cells compared to native acids and also demonstrate selectivity to some cancer cells. The toxic effect of the conjugates is shown to be due to ROS hyperproduction in cells, induced by the effect on mitochondria. The conjugates caused dysfunction of isolated rat liver mitochondria and, in particular, a decrease in the efficiency of oxidative phosphorylation, a decrease in the membrane potential, and also an overproduction of ROS by organelles. The paper discusses how the membranotropic- and mitochondria-targeted effects of the conjugates may be related to their toxic effects.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Vyacheslav A Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Natalia V Mikina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Yuri P Belsky
- Centre of Preclinical Translational Research, Almazov National Medical Research Centre, St. Petersburg 197371, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Vladimir S Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Natalia V Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| |
Collapse
|
7
|
Specific discrimination and efficient elimination of gram-positive bacteria by an aggregation-induced emission-active ruthenium (II) photosensitizer. Eur J Med Chem 2023; 251:115249. [PMID: 36893623 DOI: 10.1016/j.ejmech.2023.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The infections caused by Gram-positive bacteria (G+) have seriously endangered public heath due to their high morbidity and mortality. Therefore, it is urgent to develop a multifunctional system for selective recognition, imaging and efficient eradication of G+. Aggregation-induced emission materials have shown great promise for microbial detection and antimicrobial therapy. In this paper, a multifunctional ruthenium (II) polypyridine complex Ru2 with aggregation-induced emission (AIE) characteristic, was developed and used for selective discrimination and efficient extermination of G+ from other bacteria with unique selectivity. The selective G+ recognition benefited from the interaction between lipoteichoic acids (LTA) and Ru2. Accumulation of Ru2 on the G+ membrane turned on its AIE luminescence and allowed specific G+ staining. Meanwhile, Ru2 under light irradiation also possessed robust antibacterial activity for G+in vitro and in vivo antibacterial experiments. To the best of our knowledge, Ru2 is the first Ru-based AIEgen photosensitizer for simultaneous dual applications of G+ detection and treatment, and inspires the development of promising antibacterial agents in the future.
Collapse
|
8
|
Chen K, Qin T, Pan L, Bing X, Xi B, Xie J. Effects of glycyrrhetinic acid β on growth and virulence of Aeromonas hydrophila. Front Microbiol 2023; 14:1043838. [PMID: 36846766 PMCID: PMC9950564 DOI: 10.3389/fmicb.2023.1043838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Aeromonas hydrophila is a significant pathogen to freshwater farmed animals, and antibiotics are usually used to control the bacterial septicemia caused by A. hydrophila. Due to the severe situation of development and spread of antibiotic resistance, there are stricter restrictions on antibiotics used in aquaculture. To evaluate the feasibility of glycyrrhetinic acid β (GA) as an alternative therapy against bacterial infection, in this study, an A. hydrophila isolated from diseased fish is used to test the antibacterial, anti-virulence activity and therapeutic effect of GA in vitro and in vivo, respectively. Results showed that GA did not affect the growth of A. hydrophila in vitro, while it could down-regulate (p < 0.05) the mRNA expression of the hemolysis-related genes hly and aerA, and significantly inhibited (p < 0.05) hemolytic activity of A. hydrophila. In addition, in vivo test showed that oral administration of GA was ineffective in controlling acute infections caused by A. hydrophila. In conclusion, these findings suggested that GA was a potential anti-virulence candidate against A. hydrophila, but the application of GA for the prevention and treatment of A. hydrophila-related diseases was still a long way.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Ting Qin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Liangkun Pan
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xuwen Bing
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | | | | |
Collapse
|
9
|
Cai DS, Yang XY, Yang YQ, Gao F, Cheng XH, Zhao YJ, Qi R, Zhang YZ, Lu JH, Lin XY, Liu YJ, Xu B, Wang PL, Lei HM. Design and synthesis of novel anti-multidrug-resistant staphylococcus aureus derivatives of glycyrrhetinic acid by blocking arginine biosynthesis, metabolic and H 2S biogenesis. Bioorg Chem 2023; 131:106337. [PMID: 36603244 DOI: 10.1016/j.bioorg.2022.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 μM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 μM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 μM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.
Collapse
Affiliation(s)
- De-Sheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yu-Qin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ya-Juan Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Rui Qi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yao-Zhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ji-Hui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Xiao-Yu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yi-Jing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Peng-Long Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
10
|
Krainova G, Beloglazova Y, Dmitriev M, Grishko V. Stereoselective Epoxidation of Triterpenic Allylic Alcohols and Cytotoxicity Evaluation of Synthesized Compounds. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020550. [PMID: 36677609 PMCID: PMC9863255 DOI: 10.3390/molecules28020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
The epoxidation process of semi-synthetic triterpenoids 2-methyl-3-oxo-19β,28-epoxy- 18α-olean-1-ene, and its allylic alcohol derivatives were examined. 1,2α-epoxide, as the main product, was found to be formed from the starting enone exposed to m-chloroperbenzoic acid (mCPBA). In the case of hydroxy-directed mCPBA-oxidation of triterpenic allyl alcohols and their 3α-alkyl-substituted derivatives, inversion of C1 and C2 asymmetric centers with the formation of 1,2β-epoxyalcohols took place. The synthesis of 2,3α-epoxides was fulfilled from 2,3-dialkyl-substituted C(3) allyl alcohols by the action of pyridinium chlorochromate under [1,3]-oxidative rearrangement conditions. The transformations brought about enabled chiral oleanane derivatives with an oxygen-containing substituent at the C1, C2, and C3 atoms to be obtained. The study also provides information on in silico PASS prediction of pharmacological effects and in vitro evaluation of the cytotoxic activity of the synthesized compounds.
Collapse
Affiliation(s)
- Gulnaz Krainova
- Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm 614013, Russia
| | - Yulia Beloglazova
- Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm 614013, Russia
| | - Maksim Dmitriev
- Department of Organic Chemistry, Perm State University, Perm 614990, Russia
| | - Victoria Grishko
- Institute of Technical Chemistry, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm 614013, Russia
- Correspondence: ; Tel.: +7-342-2378265; Fax: +7-342-2378262
| |
Collapse
|
11
|
Cicogna F, Passaglia E, Benedettini M, Oberhauser W, Ishak R, Signori F, Coiai S. Rosmarinic and Glycyrrhetinic Acid-Modified Layered Double Hydroxides as Functional Additives for Poly(Lactic Acid)/Poly(Butylene Succinate) Blends. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010347. [PMID: 36615541 PMCID: PMC9822188 DOI: 10.3390/molecules28010347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Immobilizing natural antioxidant and biologically active molecules in layered double hydroxides (LDHs) is an excellent method to retain and release these substances in a controlled manner, as well as protect them from thermal and photochemical degradation. Herein, we describe the preparation of host-guest systems based on LDHs and rosmarinic and glycyrrhetinic acids, two molecules obtained from the extraction of herbs and licorice root, respectively, with antioxidant, antimicrobial, and anti-inflammatory properties. Intercalation between the lamellae of the mono-deprotonated anions of rosmarinic and glycyrrhetinic acid (RA and GA), alone or in the presence of an alkyl surfactant, allows for readily dispersible systems in biobased polymer matrices such as poly(lactic acid) (PLA), poly(butylene succinate) (PBS), and a 60/40 wt./wt. PLA/PBS blend. The composites based on the PLA/PBS blend showed better interphase compatibility than the neat blend, correlated with increased adhesion at the interface and a decreased dispersed phase size. In addition, we proved that the active species migrate slowly from thin films of the composite materials in a hydroalcoholic solvent, confirming the optimization of the release process. Finally, both host-guest systems and polymeric composites showed antioxidant capacity and, in the case of the PLA composite containing LDH-RA, excellent inhibitory capacity against E. coli and S. aureus.
Collapse
Affiliation(s)
- Francesca Cicogna
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
- Correspondence: (F.C.); (S.C.); Tel.: +39-050-315-3393 (F.C.); +39-050-315-2556 (S.C.)
| | - Elisa Passaglia
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
| | - Matilde Benedettini
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
| | - Werner Oberhauser
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy
| | - Randa Ishak
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, PI, Italy
| | - Francesca Signori
- Department of Civil and Industrial Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, PI, Italy
| | - Serena Coiai
- National Research Council-Institute for the Chemistry of OrganoMetallic Compounds (CNR-ICCOM), SS Pisa, Via Moruzzi 1, 56124 Pisa, PI, Italy
- Correspondence: (F.C.); (S.C.); Tel.: +39-050-315-3393 (F.C.); +39-050-315-2556 (S.C.)
| |
Collapse
|
12
|
Ni Q, Gao Y, Yang X, Zhang Q, Guo B, Han J, Chen S. Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Front Pharmacol 2022; 13:1001018. [PMID: 36313350 PMCID: PMC9606671 DOI: 10.3389/fphar.2022.1001018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Licorice, a herbal product derived from the root of Glycyrrhiza species, has been used as a sweetening agent and traditional herbal medicine for hundreds of years. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Both GL and GA have pharmacological effects against tumors, inflammation, viral infection, liver diseases, neurological diseases, and metabolic diseases. However, they also exhibit differences. KEGG analysis indicated that licorice is involved in neuroactive ligand‒receptor interactions, while 18β-GA is mostly involved in arrhythmogenic right ventricular cardiomyopathy. In this article, we comprehensively review the therapeutic potential of GL and GA by focusing on their pharmacological effects and working mechanisms. We systemically examine the structure-activity relationship of GL, GA and their isomers. Based on the various pharmacological activities of GL, GA and their isomers, we propose further development of structural derivatives of GA after chemical structure modification, with less cytotoxicity but higher targeting specificity. More research is needed on the clinical applications of licorice and its active ingredients.
Collapse
Affiliation(s)
- Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affifiliated to Shandong First Medical University, Jinan, Shandong, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxuan Gao
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuzhen Yang
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qingmeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, Guangdong, China
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| | - Shaoru Chen
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| |
Collapse
|
13
|
Cai D, Yang Y, Lu J, Yuan Z, Zhang Y, Yang X, Huang X, Li T, Tian X, Xu B, Wang P, Lei H. Injectable Carrier-Free Hydrogel Dressing with Anti-Multidrug-Resistant Staphylococcus aureus and Anti-Inflammatory Capabilities for Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43035-43049. [PMID: 36124878 DOI: 10.1021/acsami.2c15463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibacterial hydrogels have gradually become a powerful weapon to treat bacterially infected wounds and accelerate healing. In this paper, we designed a small-molecule self-healing antibacterial hydrogel containing 100% drug-loaded benzyl 3β-amino-11-oxo-olean-12-en-30-oate (GN-Bn), which was governed by π-π stacking, hydrogen bonding, and van der Waals forces. Due to the carrier-free design concept, the problems of interbatch variability during sample preparation and carrier-related toxicity can be effectively avoided. Moreover, the GN-Bn hydrogel exhibited promising antibacterial activities against multidrug-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of the GN-Bn hydrogel was 1.5625 nmol/mL, which was lower than those against clinical agents such as norfloxacin, penicillin, and tetracycline. This is attributed to its unique antibacterial mechanism that aims at killing bacteria or preventing their growth by regulating arginine biosynthesis and metabolism through both transcriptomic (RNA-seq) analysis and quantitative polymerase chain reaction (qPCR) analysis. In addition, the GN-Bn hydrogel can also inhibit proinflammatory cytokines (TNF-α, IL-1β, and IL-6) to promote wound healing. Collectively, the GN-Bn hydrogel elicited dual therapeutic effects on an MRSA-infected full-thickness skin wound model through its antibacterial and anti-inflammatory activities, which is attributed to the fact that the GN-Bn hydrogel has multiple advantages including sufficient mechanical stability, biocompatibility, and unique antibacterial mechanisms, making it significantly accelerate MRSA-infected full-thickness skin wound healing as a wound dressing. In a word, the GN-Bn antibacterial hydrogel dressing with an anti-inflammatory and antibacterial bifunctional material holds great potential in clinical application.
Collapse
Affiliation(s)
- Desheng Cai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yuqin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiaoyun Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xuehao Tian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
14
|
Jin X, Li L, Peng Q, Gan C, Gao L, He S, Tan S, Pu W, Liu Y, Gong Y, Yao Y, Wang G, Liu X, Gong M, Lei P, Zhang H, Qi S, Xu H, Hu H, Dong B, Peng Y, Su D, Dai L. Glycyrrhetinic acid restricts mitochondrial energy metabolism by targeting SHMT2. iScience 2022; 25:104349. [PMID: 35602963 PMCID: PMC9117551 DOI: 10.1016/j.isci.2022.104349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Glycyrrhetinic acid (GA) is a natural product of licorice with mitochondria targeting properties and shows broad anticancer activities, but its targets and underlying mechanisms remain elusive. Here, we identified the mitochondrial enzyme serine hydroxymethyltransferase 2 (SHMT2) as a target of GA by using chemical proteomics. Binding to and inhibiting the activity of SHMT2 by GA were validated in vitro and in vivo. Knockout of SHMT2 or inhibiting SHMT2 with GA restricts mitochondrial energy supplies by downregulating mitochondrial oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation, and consequently suppresses cancer cell proliferation and tumor growth. Crystal structures of GA derivatives indicate that GA occupies SHMT2 folate-binding pocket and regulates SHMT2 activity. Modifications at GA carboxylic group with diamines significantly improved its anticancer potency, demonstrating GA as a decent structural template for SHMT2 inhibitor development.
Collapse
Affiliation(s)
- Xiuxiu Jin
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Henan Provincial People’s Hospital, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Li Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinlu Peng
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunmei Gan
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Gao
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuangyan Tan
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchen Pu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Buvanesvaragurunathan K, Ganesh J, Nagul Kumar S, Porchezhiyan V, Radha A, Azhahianambi P, Pandikumar P, Ignacimuthu S. In vitro growth inhibitory effect of selected 18β-glycyrrhetinic acid esters on Theileriaannulata. Exp Parasitol 2022; 236-237:108258. [PMID: 35421387 DOI: 10.1016/j.exppara.2022.108258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022]
Abstract
Glycyrrhetinic acid (GA) is one of the important Pentacyclic Triterpenoids (PT) found in the roots of licorice. This study aimed to evaluate the in vitro growth inhibitory effect of 18β-GA (18β-Glycyrrhetinic acid) and C-30 esters against Theileria annulata, the causative agent of Tropical Bovine Theileriosis. C-30 esters of 18β-GA were synthesized and their structures were elucidated using spectroscopy. The pharmacodynamic properties of 18β-GA and its C-30 esters were predicted using DataWarrior and Swiss ADME tools. Cattle isolates of T. annulata schizont-infected bovine lymphoblastoid cells were cultured using standard conditions and the growth inhibitory effect of GA and its esters were evaluated using MTT assay. The isopropyl ester of 18β-GA (GI50- 1.638 μM; R2- 0.818) showed improved anti-theileriosis efficacy than other 18β-GA derivatives. The propyl (GI50 - 5.549 μM), ethyl (GI50 - 5.638 μM), and benzyl (GI50 - 7.431 μM) esters also showed considerable inhibitory effect. The GI50 value for 18β-GA was recorded as 6.829 μM. This study throws light on the usefulness of 18β-GA and its esters for the treatment of Tropical Bovine Theileriosis.
Collapse
Affiliation(s)
- K Buvanesvaragurunathan
- PG and Research Department of Botany, Bharathi Women's College, Broadway Road, George Town, Chennai, Tamil Nadu, 600108, India
| | - J Ganesh
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600 051, India
| | - S Nagul Kumar
- PG and Research Department of Botany, Bharathi Women's College, Broadway Road, George Town, Chennai, Tamil Nadu, 600108, India
| | - V Porchezhiyan
- PG and Research Department of Botany, Bharathi Women's College, Broadway Road, George Town, Chennai, Tamil Nadu, 600108, India
| | - A Radha
- PG and Research Department of Botany, Bharathi Women's College, Broadway Road, George Town, Chennai, Tamil Nadu, 600108, India
| | - P Azhahianambi
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, 600 051, India.
| | - P Pandikumar
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627 002, India.
| | - S Ignacimuthu
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627 002, India.
| |
Collapse
|
16
|
Liu Y, Sheng R, Fan J, Guo R. A Mini-Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities. Mini Rev Med Chem 2022; 22:2024-2066. [PMID: 35081889 DOI: 10.2174/1389557522666220126093033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Pentacyclic triterpenoids, consisting of six isoprene units, are a kind of natural active substance. At present, numerous pentacyclic triterpene have been observed and classified into four subgroups of oleanane, ursane, lupane, and xylene on the basis of the carbon skeleton. Among them, oleanane is the most popular due to its rich backbone and diverse bioactivities. 18β-Glycyrrhetinic acid (GA), an oleanane-type pentacyclic triterpene isolated from licorice roots, possesses diverse bioactivities including antitumor, anti-inflammatory, antiviral, antimicrobial, enzyme inhibitor, hepatoprotective and so on. It has received more attention in medicinal chemistry due to the advantages of easy-to-access and rich bioactivity. Thus, numerous novel lead compounds were synthesized using GA as a scaffold. Herein, we summarize the structure-activity relationship and synthetic methodologies of GA derivatives from 2010 to 2020 as well as the most active GA derivatives. Finally, we anticipate that this review can benefit future research on structural modifications of GA to enhance bioactivity and provide an example for developing pentacyclic triterpene-based novel drugs.
Collapse
Affiliation(s)
- Yuebin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
17
|
Zhang YA, Gu X, Wendlandt AE. A Change from Kinetic to Thermodynamic Control Enables trans-Selective Stereochemical Editing of Vicinal Diols. J Am Chem Soc 2022; 144:599-605. [PMID: 34928134 PMCID: PMC9373033 DOI: 10.1021/jacs.1c11902] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we report the selective, catalytic isomerization of cis-1,2-diols to trans-diequatorial-1,2-diols. The method employs triphenylsilanethiol (Ph3SiSH) as a catalyst and proceeds under mild conditions in the presence of a photoredox catalyst and under blue light irradiation. The method is highly chemoselective, broadly functional group tolerant and provides concise access to trans-diol products which are not readily obtained using other methods. Mechanistic studies reveal that isomerization proceeds through a reversible hydrogen atom transfer pathway mediated by the silanethiol catalyst.
Collapse
Affiliation(s)
- Yu-An Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xin Gu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
van Dinteren S, Meijerink J, Witkamp R, van Ieperen B, Vincken JP, Araya-Cloutier C. Valorisation of liquorice ( Glycyrrhiza) roots: antimicrobial activity and cytotoxicity of prenylated (iso)flavonoids and chalcones from liquorice spent ( G. glabra, G. inflata, and G. uralensis). Food Funct 2022; 13:12105-12120. [DOI: 10.1039/d2fo02197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prenylated phenolics are antimicrobials found in liquorice (Glycyrrhiza spp.).
Collapse
Affiliation(s)
- Sarah van Dinteren
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Bo van Ieperen
- Division of Human Nutrition and Health, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University, P.O. box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
19
|
Wang HC, Wang CS, Hsieh SC, Hung YT, Chen HH. Evaluation of a new-formula shampoo containing 6% glycyrrhetinic acid complex for scalp seborrheic dermatitis: A pilot study. J Cosmet Dermatol 2021; 21:3423-3430. [PMID: 34792270 PMCID: PMC9542316 DOI: 10.1111/jocd.14623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
Background Scalp seborrheic dermatitis (SD) is a chronic inflammatory dermatosis associated with sebum imbalance and proliferation of Malassezia species. Various antifungal shampoos are commonly used for scalp SD. Aims Glycyrrhetinic acid is known to have antioxidative, anti‐inflammatory, and anti‐allergic effects. This study was designed to evaluate the effectiveness of a new‐formula shampoo that contains glycyrrhetinic acid for the treatment of scalp SD. Patients/Methods Thirty‐four patients were enrolled and treated with the 6% glycyrrhetinic acid complex shampoo. Efficacy was assessed clinically with Dermatology Life Quality Index (DLQI) and Adherent Scalp Flaking Score (ASFS) by the same dermatologist at baseline, week 2, and week 5. Among the 24 subjects with the most significant clinical improvement, four common microorganisms from scalp samples were analyzed by quantitative polymerase chain reaction (qPCR) at baseline, and week 5. Results The DLQI and ASFS at week 2 and week 5 improved significantly relative to baseline. The bacteria profiles showed a significant increase of Cutibacterium acnes and a decrease of Staphylococcus epidermidis at week 5. The fungi profiles showed significant decreases of both Malassezia restricta and Malassezia globosa. The ratio of C. acne to S. epidermidis increased significantly from 0.93 at baseline to 1.55 at week 5. The ratio of M. restricta to M. globosa decreased from 5.02 at baseline to 1.00 at week 5. Conclusions The effectiveness of this new regimen was objectively demonstrated at the clinical and microbiological levels. This new formula may alleviate the bacterial and fungal dysbiosis in scalp SD.
Collapse
Affiliation(s)
- Hsiao-Chi Wang
- Department of Cosmetic Applications and Management, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan
| | - Chii-Shyan Wang
- Department of Dermatology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Hung
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Hsiang Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
20
|
Wu P, Tu B, Liang J, Guo S, Cao N, Chen S, Luo Z, Li J, Zheng W, Tang X, Li D, Xu X, Liu W, Zheng X, Sheng Z, Roberts AP, Zhang K, Hong WD. Synthesis and biological evaluation of pentacyclic triterpenoid derivatives as potential novel antibacterial agents. Bioorg Chem 2021; 109:104692. [PMID: 33626454 DOI: 10.1016/j.bioorg.2021.104692] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 01/11/2023]
Abstract
A series of ursolic acid (UA), oleanolic acid (OA) and 18β-glycyrrhetinic acid (GA) derivatives were synthesized by introducing a range of substituted aromatic side-chains at the C-2 position after the hydroxyl group at C-3 position was oxidized. Their antibacterial activities were evaluated in vitro against a panel of four Staphylococcus spp. The results revealed that the introduction of aromatic side-chains at the C-2 position of GA led to the discovery of potent triterpenoid derivatives for inhibition of both drug sensitive and resistant S. aureus, while the other two series derivatives of UA and OA showed no significant antibacterial activity even at high concentrations. In particular, GA derivative 33 showed good potency against all four Staphylococcus spp. (MIC = 1.25-5 μmol/L) with acceptable pharmacokinetics properties and low cytotoxicity in vitro. Molecular docking was also performed using S. aureus DNA gyrase to rationalize the observed antibacterial activity. This series of GA derivatives has strong potential for the development of a new type of triterpenoid antibacterial agent.
Collapse
Affiliation(s)
- Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Borong Tu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jinfeng Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Shengzhu Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Nana Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Silin Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Zhujun Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jiahao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xiaowen Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Adam P Roberts
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.
| |
Collapse
|
21
|
Grafting of 18β-Glycyrrhetinic Acid and Sialic Acid onto Chitosan to Produce a New Amphipathic Chitosan Derivative: Synthesis, Characterization, and Cytotoxicity. Molecules 2021; 26:molecules26020452. [PMID: 33467083 PMCID: PMC7829902 DOI: 10.3390/molecules26020452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chitosan is the only cationic polysaccharide found in nature. It has broad application prospects in biomaterials, but its application is limited due to its poor solubility in water. A novel chitosan derivative was synthesized by amidation of chitosan with 18β-glycyrrhetinic acid and sialic acid. The chitosan derivatives were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and measurement of the zeta potential. We also investigated the solubility, cytotoxicity, and blood compatibility of chitosan derivatives. 18β-glycyrrhetinic acid and sialic acid could be grafted onto chitosan molecular chains. The thermal stability of the synthesized chitosan derivatives was decreased and the surface was positively charged in water and phosphate-buffered saline. After chitosan had been modified by 18 β-glycyrrhetinic acid and sialic acid, the solubility of chitosan was improved greatly in water and phosphate-buffered saline, and percent hemolysis was <5%. Novel amphiphilic chitosan derivatives could be suitable polymers for biomedical purposes.
Collapse
|
22
|
|
23
|
A Review of the Ethnomedicinal Uses, Biological Activities, and Triterpenoids of Euphorbia Species. Molecules 2020; 25:molecules25174019. [PMID: 32899130 PMCID: PMC7504773 DOI: 10.3390/molecules25174019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
The genus Euphorbia is one of the largest genera in the spurge family, with diversity in range, distribution, and morphology. The plant species in this genus are widely used in traditional medicine for the treatment of diseases, ranging from respirational infections, body and skin irritations, digestion complaints, inflammatory infections, body pain, microbial illness, snake or scorpion bites, pregnancy, as well as sensory disorders. Their successes have been attributed to the presence of diverse phytochemicals like polycyclic and macrocyclic diterpenes with various pharmacological properties. As a result, Euphorbia diterpenes are of interest to chemists and biochemists with regard to drug discovery from natural products due to their diverse therapeutic applications as well as their great structural diversity. Other chemical constituents such as triterpenoids have also been reported to possess various pharmacological properties, thus supporting the traditional uses of the Euphorbia species. These triterpenoids can provide potential leads that can be developed into pharmaceutical compounds for a wide range of medicinal applications. However, there are scattered scientific reports about the anticancer activities of these constituents. Harnessing such information could provide a database of bioactive pharmacopeia or targeted scaffolds for drug discovery. Therefore, this review presents an updated and comprehensive summary of the ethnomedicinal uses, phytochemistry, and the anticancer activities of the triterpenoids of Euphorbia species. Most of the reported triterpenoids in this review belong to tirucallane, cycloartanes, lupane, oleanane, ursane, and taraxane subclass. Their anticancer activities varied distinctly with the majority of them exhibiting significant cytotoxic and anticancer activities in vitro. It is, therefore, envisaged that the report on Euphorbia triterpenoids with interesting anticancer activities will form a database of potential leads or scaffolds that could be advanced into the clinical trials with regard to drug discovery.
Collapse
|
24
|
Yang Y, Zhu Q, Zhong Y, Cui X, Jiang Z, Wu P, Zheng X, Zhang K, Zhao S. Synthesis, anti-microbial and anti-inflammatory activities of 18β-glycyrrhetinic acid derivatives. Bioorg Chem 2020; 101:103985. [DOI: 10.1016/j.bioorg.2020.103985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/17/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
|
25
|
Tiboni M, Benedetti S, Skouras A, Curzi G, Perinelli DR, Palmieri GF, Casettari L. 3D-printed microfluidic chip for the preparation of glycyrrhetinic acid-loaded ethanolic liposomes. Int J Pharm 2020; 584:119436. [PMID: 32445905 DOI: 10.1016/j.ijpharm.2020.119436] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
18-α-Glycyrrhetinic acid (GA) is a bioactive compound extracted from licorice that exhibits many biological and pharmacological effects such as anti-inflammatory and antioxidant activities on the skin. However, its lipophilic nature results in poor bioavailability that limits clinical applications. Liposomes, presenting the ability to carry both hydrophobic and hydrophilic payloads and a good cytocompatibility, are effective to overcome this barrier. Furthermore, the addition of permeation enhancers such as ethanol into liposomal formulations helps the diffusion of these systems through the skin barrier. Here, we aimed to formulate GA-loaded ethanolic liposomes, using a natural soybean lecithin via a microfluidic approach. Using a fused deposition modeling (FDM) 3D printer we customized a microfluidic chip, and manufactured vesicles that presented spherical shape with a size of 202 ± 5.2 nm, a narrow size distribution and a good stability over a period of 30 days. After reaching a drug encapsulation efficiency of 63.15 ± 2.2%, liposomes were evaluated for their cytocompatibility and skin permeation potentiality after hydrogelation using xanthan gum. The in vitro release and permeation studies were performed using Franz diffusion cells comparing two different media and three synthetic membranes including a polymeric skin-mimicking membrane. The selected formulation presented no cytotoxicity and an increased permeation compared to GA saturated hydrogel. It could perform therapeutically better effects than conventional formulations containing free GA, as prolonged and controlled release topical dosage forms, which may lead to improved efficiency and better patient compliance.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Athanasios Skouras
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy; Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Giulia Curzi
- Prosopika srl, Via del Trabocchetto, 1, 61034 Fossombrone, PU, Italy
| | | | | | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| |
Collapse
|
26
|
Zhu C, Zhang M, Tang Q, Yang Q, Li J, He X, Ye Y. Structure and Activity of the Camellia oleifera Sapogenin Derivatives on Growth and Biofilm Inhibition of Staphylococcus aureus and Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14143-14151. [PMID: 31469956 DOI: 10.1021/acs.jafc.9b03577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sapogenin is the main block of Camellia oleifera saponin, which was purified and structurally modified by the C28 acylation reaction to synthesize 19 new derivatives. The growth and biofilm inhibition of Staphylococcus aureus and Escherichia coli was measured to evaluate their antibacterial effects. A three-dimensional quantitative structure-activity relationship (3D-QSAR) assay indicated that the antibacterial activities were significantly enhanced after sapogenin was modified with an aromatic ring or heterocyclic ring and electron-withdrawing substituents at the meta or para position. Among them, the derivative of sapogenin with a 2-mercapto-4-methyl-5-thiazolyl acetyl group obviously destroyed bacterial biofilm and made bacteria lysis. 3D-QSAR provides practical information for the structural design of sapogenin derivatives with strong antibacterial activity, and the C. oleifera sapogenin derivative 28-O-(2-mercapto-4-methyl-5-thiazolyl)-3β,16α,21β,22α-O-tetrahydroxy-oleantel-2-ene-23-aldehyde (S-16) is an effective candidate as an antibacterial agent for the prevention of bacterial resistance against antibiotics.
Collapse
Affiliation(s)
- Chunfang Zhu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Meng Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Qiaoling Tang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Qian Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Jing Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Xuan He
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-Tea Camellia Industrial Development , Ganzhou , Jiangxi 341000 , People's Republic of China
| | - Yong Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
- Gannan Medical University Collaborative Innovation Center for Gannan Oil-Tea Camellia Industrial Development , Ganzhou , Jiangxi 341000 , People's Republic of China
| |
Collapse
|
27
|
Cai D, Zhang Z, Chen Y, Zhang Y, Sun Y, Gong Y. Exploring New Structural Features of the 18β-Glycyrrhetinic Acid Scaffold for the Inhibition of Anaplastic Lymphoma Kinase. Molecules 2019; 24:molecules24193631. [PMID: 31597403 PMCID: PMC6803848 DOI: 10.3390/molecules24193631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Novel 18β-glycyrrhetinic acid derivatives possessing a carbamate moiety and structurally similar ester derivatives were developed and evaluated for their efficacy as antitumor inhibitors. In the cellular assays, most of the N-substituted carbamate derivatives at the C3-position exhibited potent activities. The results of SAR investigation revealed that the introduction of the morpholine group at the C30-COOH led to a significant loss of the inhibitory potency. Among the ester derivatives, the ester group at C3-position also determined a noticeable reduction in the efficacy. Compound 3j exhibited the most prominent antiproliferative activity against six human cancer cells (A549, HT29, HepG2, MCF-7, PC-3, and Karpas299). Furthermore, compound 3j exerted a moderate inhibiting effect on the ALK. The results of molecular docking analyses suggested that it could bind well to the active site of the receptor ALK, which was consistent with the biological data. These results might inspire further structural optimization of 18β-glycyrrhetinic acid aiming at the development of potent antitumor agents. The structures 4d, 4g, 4h, 4j, and 4n were studied by X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Dong Cai
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou 121001, China.
| | - ZhiHua Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - YanYan Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - YuQi Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - YiXia Gong
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
28
|
Huang RZ, Jin L, Wang CG, Xu XJ, Du Y, Liao N, Ji M, Liao ZX, Wang HS. A pentacyclic triterpene derivative possessing polyhydroxyl ring A suppresses growth of HeLa cells by reactive oxygen species-dependent NF-κB pathway. Eur J Pharmacol 2018; 838:157-169. [PMID: 30153443 DOI: 10.1016/j.ejphar.2018.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
Pentacyclic triterpene derivatives possessing polyhydroxyl ring A exhibit many important pharmacological activities. (1β, 2α, 3β, 19β, 23)-1,2,3,19,23-pentahydroxyolean-12-en-28-oic acid (5), a new bioactive phytochemical with tetra-hydroxyl ring A isolated from Euphorbia sieboldiana in our laboratory, showed potential inhibition effects against several cancer cells previously. This study was performed to investigate the underlying mechanisms of action for its antitumor activity. The results showed that compound 5 inhibited dose-/time-dependently cell growth with low toxicity to normal cells and induced apoptosis in cervical cancer cells. Also, compound 5 inhibited the growth and proliferation of HeLa cells and resulted in G1 phase arrest. Furthermore, exposure of cells to compound 5 caused inactivation of the TNF-α-TAK1-IKK-NF-κB axis and inhibition of TNF-α-stimulated NF-κB activity, followed by down-regulation of NF-κB target genes involved in cell apoptosis (Bcl-2) and in the cell cycle and growth (Cyclin D, c-Myc). Additionally, compound 5 significantly suppressed the migration of HeLa cells. In addition, exposure of HeLa cells to compound 5 decreased the activity of NF-κB through the generation of reactive oxygen species (ROS). Collectively, these results suggested that compound 5 exerted potent anticancer effects on HeLa cells in vitro through targeting the ROS-dependent NF-κB signaling cascade and this compound may be a promising anticancer agent for cancer treatment.
Collapse
Affiliation(s)
- Ri-Zhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Le Jin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chun-Gu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China
| | - Xiao-Jing Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Du
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Na Liao
- Department of Pharmacy, College of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhi-Xin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
29
|
Synthesis and Evaluation of In Vitro Antibacterial and Antitumor Activities of Novel N,N-Disubstituted Schiff Bases. Biochem Res Int 2017; 2017:6257240. [PMID: 28713593 PMCID: PMC5497607 DOI: 10.1155/2017/6257240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/08/2017] [Accepted: 04/20/2017] [Indexed: 12/02/2022] Open
Abstract
To get inside the properties of N,N-disubstituted Schiff bases, we synthesized three high-yielding benzaldehyde Schiff bases. We used the reaction between salicylaldehyde and different diamine compounds, including diamine, ethanediamine, and o-phenylenediamine, determining the structure of obtained molecules by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectroscopy. We thus evaluated the microbicidal and antitumor activity of these compounds, showing that salicylaldehyde-hydrazine hydrate Schiff base (compound 1a) significantly inhibited the growth of S. aureus; salicylaldehyde-o-phenylenediamine Schiff base (compound 1c) displayed a strong capability to inhibit the proliferation of leukemia cell lines K562 and HEL. Moreover, we observed that the antibacterial action of 1a might be associated with the regulation of the expression of key virulence genes in S. aureus. Compound 1c resulted in a strong apoptotic activity against leukemia cells, also affecting the cell cycle distribution. Overall, our novel N,N-disubstituted Schiff bases possess unique antibacterial or antitumor activities that exhibit the potent application prospect in prophylactic or therapeutic interventions, providing new insights for developing new antibacterial and anticancer chemical agents.
Collapse
|