1
|
Liu M, Liu H, Kang H, Wu J, Xing P, Ding X, Wei Y, Kong X. Anisodamine ameliorates crystalline silica-exposed pulmonary inflammation and fibrosis via the α7nAChR/JAK2/STAT3 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117534. [PMID: 39667322 DOI: 10.1016/j.ecoenv.2024.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Silicosis is a systemic disease marked by diffuse pulmonary fibrosis resulting from prolonged inhalation of crystalline silica (CS) dust. This study aimed to examine the effects of anisodamine (ANI) on pulmonary inflammation and fibrosis in silicosis, as well as to elucidate the underlying molecular mechanisms. Animal experiments demonstrated that ANI significantly reduced alveolar structure damage and the formation of silicosis nodules in affected mice, as confirmed by pathological slides. ANI inhibited the expression of tumor necrosis factor (TNF-α) in bronchoalveolar lavage fluid (BALF) while promoting the secretion of interleukin-4 (IL-4) and interleukin-10 (IL-10). Further molecular investigations indicated a strong link between pulmonary inflammation and fibrosis, showing decreased levels of α7nAChR and increased expression of phosphorylated Janus kinase 2 (JAK2) and phosphorylated transcription factor 3 (STAT3) in the lung tissues of mice exposed to CS. The relevant molecular alterations in the lung tissue of the model group of mice were reversed by ANI. Methyllycaconitine(MLA, α7nAChR inhibitor) and RO8191 (JAK2/STAT3 agonist) could reverse the therapeutic effect of ANI in silicosis and related molecular mechanisms. The results suggest that ANI may alleviate silicosis by inhibiting pulmonary inflammation and fibrosis through modulation of the JAK2/STAT3 signaling pathway, which is mediated by α7nAChR. Coal workers can utilize ANI early on to treat and prevent silicosis.
Collapse
Affiliation(s)
- Meng Liu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan 030000, China
| | - Hui Liu
- School of Public health, Shanxi Medical University, Taiyuan 030000, China
| | - Hong Kang
- Yangquan First People's Hospital, Yangquan 045000, China
| | - Juan Wu
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan 030000, China
| | - Puhua Xing
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan 030000, China
| | - Xiaorui Ding
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan 030000, China
| | - Yangyang Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan 030000, China.
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, Shanxi Medical University Affiliated First Hospital, Taiyuan 030000, China.
| |
Collapse
|
2
|
Sharma A, Wairkar S. Flavonoids for treating pulmonary fibrosis: Present status and future prospects. Phytother Res 2024; 38:4406-4423. [PMID: 38986681 DOI: 10.1002/ptr.8285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with an unknown underlying cause. There is no complete cure for IPF; however, two anti-fibrotic agents (Nintedanib and pirfenidone) are approved by the USFDA to extend the patient's life span. Therefore, alternative therapies supporting the survival of fibrotic patients have been studied in recent literature. The abundance of phenolic compounds, particularly flavonoids, has gathered attention due to their potential health benefits. Various flavonoids, like naringin, quercetin, baicalin, baicalein, puerarin, silymarin, and kaempferol, exhibit anti-inflammatory and anti-oxidant properties, which help decrease lung fibrosis. Various databases, including PubMed, EBSCO, ProQuest, and Scopus, as well as particular websites, such as the World Health Organisation and the National Institutes of Health, were used to conduct a literature search. Several mechanisms of action of flavonoids are reported with the help of in vivo and cell line studies emphasizing their ability to modulate oxidative stress, inflammation, and fibrotic processes in the lungs. They are reported for the restoration of biomarkers like hydroxyproline, cytokines, superoxide dismutase, malondialdehyde and others associated with IPF and for modulating various pathways responsible for the progression of pulmonary fibrosis. Yet, flavonoids have some drawbacks, such as poor solubility, challenging drug loading, stability issues, and scarce bioavailability. Therefore, novel formulations of flavonoids are explored, including liposomes, solid lipid microparticles, polymeric nanoparticles, nanogels, and nanocrystals, to enhance the therapeutic efficacy of flavonoids in pulmonary fibrosis. This review focuses on the role of flavonoids in mitigating idiopathic pulmonary fibrosis, their mode of action and novel formulations.
Collapse
Affiliation(s)
- Anju Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Yan S, Zhao Y, Yan J, Guan Y, Lyu M, Xu G, Yang X, Bai Y, Yao S. Low Expression of Lipoic Acid Synthase Aggravates Silica-Induced Pulmonary Fibrosis by Inhibiting the Differentiation of Tregs in Mice. Antioxid Redox Signal 2024; 41:216-232. [PMID: 38062726 DOI: 10.1089/ars.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aims: In addition to reducing the respiratory function, crystalline silica (SiO2) disturbs the immune response by affecting immune cells during the progression of silicosis. Regulatory T cell (Treg) differentiation may play a key role in the abnormal polarization of T helper cell (Th)1 and Th2 cells in the development of silicosis-induced fibrosis. Alpha-lipoic acid (ALA) has immunomodulatory effects by promoting Tregs differentiation. Thus, ALA may have a therapeutic potential for treating autoimmune disorders in patients with silicosis. However, little is known regarding whether ALA regulates the immune system during silicosis development. Results: We found that the expression levels of collagen increased, and the antioxidant capacity was lower in the Lias-/-+SiO2 group than in the Lias+/++SiO2 group. The proportion of Tregs decreased in the peripheral blood and spleen tissue in mice exposed to SiO2. The proportion of Tregs in the Lias-/-+SiO2 group was significantly lower than that in the Lias+/++SiO2 group. Supplementary exogenous ALA attenuates the accumulation of inflammatory cells and extracellular matrix in lung tissues. ALA promotes the immunological balance between Th17 and Treg responses during the development of silicosis-induced fibrosis. Innovation and Conclusion: Our findings confirmed that low expression of lipoic acid synthase aggravates SiO2-induced silicosis, and that supplementary exogenous ALA has therapeutic potential by improving Tregs in silicosis fibrosis.
Collapse
Affiliation(s)
- Sensen Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Jingyi Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yabo Guan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Mengdi Lyu
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xuesi Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yichun Bai
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
4
|
Wei B, Li H, Wang C, Hu J. Global research status and trends of interactions between Traditional Chinese medicine and pulmonary fibrosis: A new dawn in treatment. Heliyon 2024; 10:e34592. [PMID: 39149021 PMCID: PMC11325230 DOI: 10.1016/j.heliyon.2024.e34592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Background Pulmonary fibrosis (PF) remains a major sequela of COVID-19, yet its pharmacotherapy remains unsatisfactory. Recently, Traditional Chinese medicine (TCM) has garnered increasing recognition among patients and researchers because of its few side effects and efficacy. The objective of this study is to use bibliometric analysis to explore the current research landscape and emerging trajectories of TCM treating PF(TCM/PF) researches, and comprehensively evaluate publications with substantial citations within the domain of TCM/PF. Materials and methods TCM/PF publications from 1996 to June 15, 2023 were identified by a comprehensive search of the Web of Science Core Collection (WoSCC). The Bibliometrix of Origin, CiteSpace, Gephi, dycharts and VOSviewer were used for bibliometric analysis. Results A total of 358 papers were included. A rapid increase in the number of papers after 2013 was observed. China had the highest publication output and research contributions in this field. Beijing University of Traditional Chinese Medicine and Nanjing University of Traditional Chinese Medicineare leaders in productive research of this field. Nanjing University of Traditional Chinese Medicine had the highest citations (227). LI JIANSHENG from Henan University of Chinese Medicine was the most prolific author (8), with the highest number of citations (61), and TONG XIAO LIN from China Academy of Chinese Medical Sciences had the highest H-index (30). The leading journal publishing the most research (37) is Frontiers in Pharmacology and the Journal of Ethnopharmacology had the highest total citations (486). Burst analysis of keywords revealed three distinct phases of research. 1996 to 2013 marked the nascent stage of TCM/PF research; from 2014 to 2018, studies gradually focused on the underlying mechanisms governing TCM/PF. The most significant phase occurred from 2019 onward, where TCM/PF exhibited an explosive growth trend. This progression signifies a transition from foundational explorations to a comprehensive understanding of the mechanisms involved, ultimately leading to the current surge in research activities focused on TCM/PF. Notable research teams of this stage, led by LI JIAN SHENG and TONG XIAO LIN, have been at the forefront of advancing TCM/PF research. Their studies on Jinshui Huanxian formula and Qimai Feiluoping decoction have been pivotal in advancing the frontier of research in this domain. Furthermore, the monomeric compounds, including emodin, curcumin, salvianolic acid, baicalin, and oxymatrine, have sustained longstanding prominence. Conclusions This study gained insight into the research status, focal areas and evolving trends of global TCM/PF research. It also identified the most cited articles in TCM/PF and analyzed their characteristics, which may hold significant relevance for both clinical researchers and practitioners on future directions in this field.
Collapse
Affiliation(s)
- Bokai Wei
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| | - Haozheng Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130# Dongan Road, Shanghai, 200032, PR China
- Department of Rehabilitation Medicine, Huanshan Hospital, Fudan University, 12# Wulumuqi Road, Shanghai, 200040, PR China
| | - Chengyu Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| | - Jing Hu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Shanghai, 201203, PR China
| |
Collapse
|
5
|
Liu M, Li Z, Cui Q, Yan B, Achi JG, Zhao Y, Rong L, Du R. Integrated serum pharmacochemistry and investigation of the anti-influenza A virus pneumonia effect of Qingjin Huatan decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117701. [PMID: 38185258 DOI: 10.1016/j.jep.2024.117701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingjin Huatan Decoction (QJHTT) consists of 11 herbal medicines: Scutellaria baicalensis Georgi, Gardenia jasminoides J. Ellis, Platycodon grandiflorus (Jacq.) A. DC., Ophiopogon japonicus (Thunb.) Ker Gawl., Morus alba L., Fritillaria thunbergii Miq., Anemarrhena asphodeloides Bunge, Trichosanthes kirilowii Maxim., Citrus reticulata Blanco, Poria cocos (Schw.) Wolf, and Glycyrrhiza uralensis Fisch. As a traditional Chinese medicinal formula, QJHTT has been used for more than 400 years in China. It has shown promising results in treating influenza A virus (IAV) pneumonia. AIM OF THE STUDY To elusive the specific pharmacological constituents and mechanisms underlying its anti-IAV pneumonia effects. MATERIALS AND METHODS The components in QJHTT were analyzed through the use of a serum pharmacology-based ultra high-performance liquid chromatography Q- Exactive Orbitrap mass spectrometry (UHPLC-Q Exactive Orbitrap-MS) method. Simultaneously, the dynamic changes in IAV-infected mouse lung viral load, lung index, and expression of lung inflammation factors were monitored by qRT-PCR. RESULTS We successfully identified 152 chemical components within QJHTT, along with 59 absorbed chemical prototype constituents found in the serum of mice treated with QJHTT. 43.45% of these chemical components and 43.10% of the prototype constituents were derived from the monarch drugs, namely Huangqin and Zhizi, aligning perfectly with traditional Chinese medicine theory. Notably, our analysis led to the discovery of 14 compounds within QJHTT for the first time, three of which were absorbed into the bloodstream. Simultaneously, we observed that QJHTT not only reduced the viral load but also modulated the expression of inflammation factors in the lung tissue including TNF-α, IL-1β, IL-4, IL-6, IFN-γ, and IL17A. A time-effect analysis further revealed that QJHTT intervention effectively suppressed the peak of inflammatory responses, demonstrating a robust anti-IAV pneumonia effect. CONCLUSIONS We comprehensively analyzed the pharmacological material basis of QJHTT by a highly sensitive and high-resolution UHPLC-Q Exactive Orbitrap-MS method, and demonstrated its efficacy in combating IAV pneumonia by reducing lung viral load and inflammatory factors. This study has significant importance for elucidating the pharmacological basis and pharmacological mechanism of QJHTT in combating IAV pneumonia.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qinghua Cui
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China; Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Beibei Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jazmin Galvan Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Yangang Zhao
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA.
| | - Ruikun Du
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China; Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
6
|
Sharawi ZW, Ibrahim IM, Abd-Alhameed EK, Althagafy HS, Jaber FA, Harakeh S, Hassanein EHM. Baicalin and lung diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1405-1419. [PMID: 37725153 DOI: 10.1007/s00210-023-02704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
7
|
Zhou YM, Dong XR, Xu D, Tang J, Cui YL. Therapeutic potential of traditional Chinese medicine for interstitial lung disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116952. [PMID: 37487964 DOI: 10.1016/j.jep.2023.116952] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Interstitial lung disease (ILD) is a chronic lung dysfunction disease with a poor prognosis and poor recovery. The clinically used therapeutic drugs, such as glucocorticoids and immunosuppressants, have no significant therapeutic effect and are accompanied with severe side effects. In recent years, considerable progress has been made in exploring and applying natural herb components for treating ILD. Traditional Chinese Medicine (TCM) possesses innate, non-toxic characteristics and offers advantages in preventing and treating pulmonary ailments. However, a comprehensive study of TCM on ILD therapy has not yet been reviewed. AIM OF THE REVIEW This review aimed to provide a comprehensive summary of the monomer components, total extracts, and prescriptions of TCM for ILD therapy, elucidating their molecular mechanisms to serve as a reference in treating ILD. MATERIALS AND METHODS The literature information was searched in the PubMed, Web of Science databases. The search keywords included 'interstitial lung disease', 'lung fibrosis' or 'pulmonary fibrosis', and 'traditional Chinese medicine', 'traditional herbal medicine', or 'herb medicine'. RESULTS The active components of single herbs, such as alkaloids, flavonoids, terpenoids, phenols, and quinones, have potential therapeutic effects on ILD. The active extracts and prescriptions were also summarized and analyzed. The herbs, Glycyrrhiza uralensis Fisch. (Gancao), Astragalus membranaceus Fisch. Bunge. (Huangqi) and Angelicasinensis (Oliv.) Diels (Danggui), play significant roles in the treatment of ILD. The mechanisms involve the inhibition of inflammatory factor release, anti-oxidative injury, and interference with collagen production, etc. CONCLUSION: This review examines the therapeutic potential of TCM for ILD and elucidates its molecular mechanisms, demonstrating that mitigating inflammation and oxidative stress, modulating the immune system, and promoting tissue repair are efficacious strategies for ILD therapy. The depth research will yield both theoretical and practical implications.
Collapse
Affiliation(s)
- Yan-Ming Zhou
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Xin-Ran Dong
- The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| | - Jie Tang
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
8
|
Jiang J, Kao TC, Hu S, Li Y, Feng W, Guo X, Zeng J, Ma X. Protective role of baicalin in the dynamic progression of lung injury to idiopathic pulmonary fibrosis: A meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154777. [PMID: 37018850 DOI: 10.1016/j.phymed.2023.154777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE The pathological progression of lung injury (LI) to idiopathic pulmonary fibrosis (IPF) is a common feature of the development of lung disease. At present, effective strategies for preventing this progression are unavailable. Baicalin has been reported to specifically inhibit the progression of LI to IPF. Therefore, this meta-analysis aimed to assess its clinical application and its potential as a therapeutic drug for lung disease based on integrative analysis. METHODS We systematically searched preclinical articles in eight databases and reviewed them subjectively. The CAMARADES scoring system was used to assess the degree of bias and quality of evidence, whereas the STATA software (version 16.0 software) was used for statistical analysis, including a 3D analysis of the effects of dosage frequency of baicalin in LI and IPF. The protocol of this meta-analysis is documented in the PROSPERO database (CRD42022356152). RESULTS A total of 23 studies and 412 rodents were included after several rounds of screening. Baicalin was found to reduce the levels of TNF-α, IL-1β, IL-6, HYP, TGF-β and MDA and the W/D ratio and increase the levels of SOD. Histopathological analysis of lung tissue validated the regulatory effects of baicalin, and the 3D analysis of dosage frequency revealed that the effective dose of baicalin is 10-200 mg/kg. Mechanistically, baicalin can prevent the progression of LI to IPF by modulating p-Akt, p-NF-κB-p65 and Bcl-2-Bax-caspase-3 signalling. Additionally, baicalin is involved in signalling pathways closely related to anti-apoptotic activity and regulation of lung tissue and immune cells. CONCLUSION Baicalin at the dose of 10-200 mg/kg exerts protective effects against the progression of LI to IPF through anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Jiajie Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Te-Chan Kao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sihan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Weiyi Feng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaochuan Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
9
|
Zhang Y, Liu F, Jia Q, Zheng L, Tang Q, Sai L, Zhang W, Du Z, Peng C, Bo C, Zhang F. Baicalin alleviates silica-induced lung inflammation and fibrosis by inhibiting TLR4/NF-?B pathway in rats. Physiol Res 2023; 72:221-233. [PMID: 37159856 PMCID: PMC10226396 DOI: 10.33549/physiolres.934978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/22/2022] [Indexed: 03/24/2024] Open
Abstract
Silicosis is an occupational lung disease caused by inhaling silica dust. The disease is characterized by early lung inflammation and late irreversible pulmonary fibrosis. Here we report the effect of Baicalin, a main flavonoid compound from the roots of Chinese herbal medicine Huang Qin on silicosis in a rat model. Results showed Baicalin (50 or 100 mg/kg/day) can mitigate the silica-induced lung inflammation and reduce the harm of alveolar structure and the blue region of collagen fibers in rat lung at 28 days after administration. At the same time, Baicalin also diminished the level of interleukin-1beta (IL-1beta, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta1 (TGF-beta1) in lung tissues. The protein expression of collagen I (Col-1), alpha-smooth muscle actin (alpha-SMA) and vimentin were down-regulated while E-cadherin (E-cad) was increased in Baicalin-treated rats. In addition, the Toll Like Receptor 4 (TLR4)/ nuclear factor kappaB (NF-kappaB) pathway was enabled at 28 days after silica infusion, and the treatment of Baicalin diminished the expression of TLR4 and NF-?B in the lungs of rat with silicosis. These results suggested that Baicalin inhibited the pulmonary inflammatory and fibrosis in a rat model of silicosis, which could be attributed to inhibition of the TLR4/NF-kappaB pathway.
Collapse
Affiliation(s)
- Y Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China. ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Song S, Ding L, Liu G, Chen T, Zhao M, Li X, Li M, Qi H, Chen J, Wang Z, Wang Y, Ma J, Wang Q, Li X, Wang Z. The protective effects of baicalin for respiratory diseases: an update and future perspectives. Front Pharmacol 2023; 14:1129817. [PMID: 37007037 PMCID: PMC10060540 DOI: 10.3389/fphar.2023.1129817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases.Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to “baicalin”, “Scutellaria baicalensis Georgi”, “COVID-19”, “acute lung injury”, “pulmonary arterial hypertension”, “asthma”, “chronic obstructive pulmonary disease”, “pulmonary fibrosis”, “lung cancer”, “pharmacokinetics”, “liposomes”, “nano-emulsions”, “micelles”, “phospholipid complexes”, “solid dispersions”, “inclusion complexes”, and other terms.Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-β/Smad, Nrf2/HO-1, and ERK/GSK3β pathways.Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.
Collapse
Affiliation(s)
- Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangwen Liu
- GCP Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinjin Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ziyuan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qi Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- *Correspondence: Xiangyan Li, ; Zeyu Wang,
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- *Correspondence: Xiangyan Li, ; Zeyu Wang,
| |
Collapse
|
11
|
Zhou D, Chang W, Qi J, Chen G, Li N. Lung protective effects of dietary malate esters derivatives from Bletilla striata against SiO 2 nanoparticles through activation of Nrf2 pathway. CHINESE HERBAL MEDICINES 2023; 15:76-85. [PMID: 36875434 PMCID: PMC9975635 DOI: 10.1016/j.chmed.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To study the protective activities of the dietary malate esters derivatives of Bletilla striata against SiO2 nanoparticles-induced A549 cell lines and its mechanism action. Methods The components were isolated and elucidated by spectroscopic methods such as 1D NMR and 2D NMR. And MTT assays was used to tested these components on the A549 cell survival rates and ROS or proteins levels were detected by Western blotting. Results A new glucosyloxybenzyl 2-isobutylmalate (a malate ester derivative), along with 31 known compounds were isolated and identified from n-BuOH extract of EtOH extract of B. striata. Among them, compounds 3, 4, 11, 12 and 13 possessed noteworthy proliferative effects for damaged cells, with ED50 of 14.0, 13.1, 3.7, 11.6 and 11.5 µmol/L, respectively, compared to positive control resveratrol (ED50, 14.7 µmol/L). Militarine (8) prominently inhibited the intracellular ROS level, and increased the expression of Nrf2 and its downstream genes (HO-1 and γ-GCSc). Furthermore, Nrf2 activation mediates the interventional effects of compound 8 against SiO2 nanoparticles (nm SiO2)-induced lung injury. Moreover, treatment with compound 8 significantly reduced lung inflammation and oxidative stress in nm SiO2-instilled mice. Molecular docking experiment suggested that 8 bound stably to the HO-1 protein by hydrogen bond interactions. Conclusion The dietary malate esters derivatives of B. striata could significantly increase the viability of nm SiO2-induced A549 cells and decrease the finer particles-induced cell damages. Militarine is especially promising compound for chemoprevention of lung cancer induced by nm SiO2 through activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Di Zhou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenhui Chang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Qi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Wang D, Li Y. Pharmacological effects of baicalin in lung diseases. Front Pharmacol 2023; 14:1188202. [PMID: 37168996 PMCID: PMC10164968 DOI: 10.3389/fphar.2023.1188202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The flavonoids baicalin and baicalein were discovered in the root of Scutellaria baicalensis Georgi and are primarily used in traditional Chinese medicine, herbal supplements and healthcare. Recently, accumulated investigations have demonstrated the therapeutic benefits of baicalin in treating various lung diseases due to its antioxidant, anti-inflammatory, immunomodulatory, antiapoptotic, anticancer, and antiviral effects. In this review, the PubMed database and ClinicalTrials website were searched with the search string "baicalin" and "lung" for articles published between September 1970 and March 2023. We summarized the therapeutic role that baicalin plays in a variety of lung diseases, such as chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, pulmonary hypertension, pulmonary infections, acute lung injury/acute respiratory distress syndrome, and lung cancer. We also discussed the underlying mechanisms of baicalin targeting in these lung diseases.
Collapse
Affiliation(s)
- Duoning Wang
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
| | - Yi Li
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
- *Correspondence: Yi Li, /
| |
Collapse
|
13
|
Disease-related compound identification based on deeping learning method. Sci Rep 2022; 12:20594. [PMID: 36446871 PMCID: PMC9708143 DOI: 10.1038/s41598-022-24385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Acute lung injury (ALI) is a serious respiratory disease, which can lead to acute respiratory failure or death. It is closely related to the pathogenesis of New Coronavirus pneumonia (COVID-19). Many researches showed that traditional Chinese medicine (TCM) had a good effect on its intervention, and network pharmacology could play a very important role. In order to construct "disease-gene-target-drug" interaction network more accurately, deep learning algorithm is utilized in this paper. Two ALI-related target genes (REAL and SATA3) are considered, and the active and inactive compounds of the two corresponding target genes are collected as training data, respectively. Molecular descriptors and molecular fingerprints are utilized to characterize each compound. Forest graph embedded deep feed forward network (forgeNet) is proposed to train. The experimental results show that forgeNet performs better than support vector machines (SVM), random forest (RF), logical regression (LR), Naive Bayes (NB), XGBoost, LightGBM and gcForest. forgeNet could identify 19 compounds in Erhuang decoction (EhD) and Dexamethasone (DXMS) more accurately.
Collapse
|
14
|
Li L, Liu Q, Shi L, Zhou X, Wu W, Wang X, Wang L, Wu Z. Baicalin prevents fibrosis of human trabecular meshwork cells via inhibiting the MyD88/NF-κB pathway. Eur J Pharmacol 2022; 938:175425. [PMID: 36442621 DOI: 10.1016/j.ejphar.2022.175425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Trabecular meshwork fibrosis contributes to increased aqueous humor outflow resistance, leading to elevated intraocular pressure in primary open-angle glaucoma. Baicalin, an extract from Scutellaria baicalensis Georgi, has shown anti-fibrotic effects in liver, lung, and kidney diseases. However, its anti-fibrotic effect on human trabecular meshwork (HTM) cells has not yet been clarified. In this study, we investigated its effects on TGF-β2-induced HTM fibrosis as well as the underlying regulatory mechanisms. HTM cells were pretreated with baicalin, TAK-242, and baicalin + TAK-242 for 2 h followed by treatment with or without 5 ng/mL TGF-β2 for 48 h. Cell viability was assayed using cell counting Kit-8 and fibronectin (FN), laminin (LN), and α-smooth muscle actin (α-SMA) were assessed by western blotting, reverse transcription-polymerase chain reaction (RT-PCR), and immunocytochemistry. Further, the protein and gene expression levels of the TLR4/MyD88/NF-κB pathway (TLR4, MyD88, and NF-κB p65) were also examined by western blotting and RT-PCR, respectively. Thus, we observed that high doses of baicalin (40 μM) decreased (p < 0.1) HTM cell viability and 20 μM baicalin pretreatment was identified as the optimum pretreatment concentration. TGF-β2 upregulated (p < 0.5) the expression of FN, LN, α-SMA, MyD88, NF-κB p65 proteins and mRNA in HTM cells, and these effects were inhibited by baicalin and TAK-242 (p < 0.5). However, western blot analysis showed that baicalin did not repress TLR4 expression in HTM cells. Therefore, our findings suggested that baicalin could prevent TGF-β2-induced extracellular matrix (FN, LN) deposition and α-SMA expression in HTM cells by inhibiting the MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Li Li
- Weifang Medical University, Weifang, 261053, China; Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, BeiJing, 100039, China; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100005, China
| | - Qian Liu
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100005, China; Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Lijuan Shi
- Weifang Medical University, Weifang, 261053, China; Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, BeiJing, 100039, China
| | - Xibin Zhou
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, BeiJing, 100039, China
| | - Wei Wu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, BeiJing, 100039, China
| | - Xue Wang
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, BeiJing, 100039, China
| | - Lihua Wang
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, BeiJing, 100039, China
| | - Zhihong Wu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, BeiJing, 100039, China.
| |
Collapse
|
15
|
Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1297-1329. [PMID: 35676380 DOI: 10.1007/s00210-022-02258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.
Collapse
|
16
|
The Role of Dendritic Cell Subsets in Recurrent Spontaneous Abortion and the Regulatory Effect of Baicalin on It. J Immunol Res 2022; 2022:9693064. [PMID: 35224114 PMCID: PMC8872676 DOI: 10.1155/2022/9693064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a relevant complication of pregnancy. Aberrant dendritic cell (DC) activities and differentiation have been identified to be involved in RSA, but the underlying mechanisms remain unclear. Baicalin from Radix Scutellariae possesses a wide range of pharmacological and biological activities. However, the effect of baicalin on DC function in RSA has not been investigated. Here, we analyzed the changes of peripheral and maternal-fetal interface DC subsets and function in patients and mice with RSA, respectively. Then, we further treated RSA mice with baicalin and analyzed the therapeutic effect and underlying mechanism. We found that DCs from the peripheral blood and decidua of RSA patients and the maternal-fetal of RSA mice were all polarized to conventional DCs, whose proportion was positively correlated with the mice embryo absorption rate. Moreover, DCs from RSA patients and mice showed increased expression of HLA-DR/MHC-II, CD80, and CD86 but decreased expression of CD274 and 33D1. Importantly, baicalin could alleviate embryo resorption of RSA mice by reversing conventional DCs to plasmacytoid DCs and functional molecule expression via inhibiting the STAT5-ID2 pathway. Our research further proved that DCs play an important role in the pathogenesis of RSA and baicalin might be used for treating RSA.
Collapse
|
17
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
18
|
Chang H, Meng HY, Bai WF, Meng QG. A metabolomic approach to elucidate the inhibitory effects of baicalin in pulmonary fibrosis. PHARMACEUTICAL BIOLOGY 2021; 59:1016-1025. [PMID: 34362286 PMCID: PMC8354164 DOI: 10.1080/13880209.2021.1950192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Baicalin, a major flavonoid extracted from Scutellaria baicalensis Georgi (Lamiaceae), has been shown to exert therapeutic effects on pulmonary fibrosis (PF). OBJECTIVE To use serum metabolomics combined with biochemical and histopathological analyses to clarify anti-PF mechanisms of baicalin on metabolic pathways and the levels of potential biomarkers. MATERIALS AND METHODS Forty male Sprague-Dawley rats were randomly divided into the control, PF model, prednisolone acetate-treated (4.2 mg/kg/day) and baicalin-treated (25 and 100 mg/kg/day) groups. A rat model of PF was established using a tracheal injection of bleomycin, and the respective drugs were administered intragastrically for 4 weeks. Histomorphology of lung tissue was examined after H&E and Masson's trichrome staining. Biochemical indicators including SOD, MDA and HYP were measured. Serum-metabonomic analysis based on UPLC-Q-TOF/MS was used to clarify the changes in potential biomarkers among different groups of PF rats. RESULTS Both doses of baicalin effectively alleviated bleomycin-induced pathological changes, and increased the levels of SOD (from 69.48 to 99.50 and 112.30, respectively), reduced the levels of MDA (from 10.91 to 5.0 and 7.53, respectively) and HYP (from 0.63 to 0.41 and 0.49, respectively). Forty-eight potential biomarkers associated with PF were identified. Meanwhile, the metabolic profiles and fluctuating metabolite levels were normalized or partially reversed after baicalin treatment. Furthermore, baicalin was found to improve PF potentially by the regulation of four key biomarkers involving taurine and hypotaurine metabolism, glutathione metabolism, and glycerophospholipid metabolism. CONCLUSIONS These findings revealed the anti-fibrotic mechanisms of baicalin and it may be considered as an effective therapy for PF.
Collapse
Affiliation(s)
- Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong-yu Meng
- Nephroendocrine Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-fu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Qing-gang Meng
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- CONTACT Qing-gang Meng Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North third Ring Road East, Chaoyang District, Beijing100700, China
| |
Collapse
|
19
|
Liskova A, Koklesova L, Samec M, Abdellatif B, Zhai K, Siddiqui M, Šudomová M, Hassan ST, Kudela E, Biringer K, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. EPMA J 2021; 12:325-347. [PMID: 34367380 PMCID: PMC8329620 DOI: 10.1007/s13167-021-00249-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
The risks related to the COVID-19 are multi-faceted including but by far not restricted to the following: direct health risks by poorly understood effects of COVID-19 infection, overloaded capacities of healthcare units, restricted and slowed down care of patients with non-communicable disorders such as cancer, neurologic and cardiovascular pathologies, among others; social risks-restricted and broken social contacts, isolation, professional disruption, explosion of aggression in the society, violence in the familial environment; mental risks-loneliness, helplessness, defenceless, depressions; and economic risks-slowed down industrial productivity, broken delivery chains, unemployment, bankrupted SMEs, inflation, decreased capacity of the state to perform socially important programs and to support socio-economically weak subgroups in the population. Directly or indirectly, the above listed risks will get reflected in a healthcare occupation and workload which is a tremendous long-term challenge for the healthcare capacity and robustness. The article does not pretend to provide solutions for all kind of health risks. However, it aims to present the scientific evidence of great clinical utility for primary, secondary, and tertiary care to protect affected individuals in a cost-effective manner. To this end, due to pronounced antimicrobial, antioxidant, anti-inflammatory, and antiviral properties, naturally occurring plant substances are capable to protect affected individuals against COVID-19-associated life-threatening complications such as lung damage. Furthermore, they can be highly effective, if being applied to secondary and tertiary care of noncommunicable diseases under pandemic condition. Thus, the stratification of patients evaluating specific health conditions such as sleep quality, periodontitis, smoking, chronic inflammation and diseases, metabolic disorders and obesity, vascular dysfunction, and cancers would enable effective managemenet of COVID-19-associated complications in primary, secondary, and tertiary care in the context of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461, Rajhrad, Czech Republic
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
20
|
Zhang X, Li X, Chen Y, Li B, Guo C, Xu P, Yu Z, Ding Y, Shi Y, Gu J. Xiao-Yin-Fang Therapy Alleviates Psoriasis-like Skin Inflammation Through Suppressing γδT17 Cell Polarization. Front Pharmacol 2021; 12:629513. [PMID: 33935720 PMCID: PMC8087247 DOI: 10.3389/fphar.2021.629513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease primarily mediated by the activation of interleukin (IL)-17-producing T cells. Traditional Chinese Medicine (TCM) represents one of the most effective complementary and alternative medicine (CAM) agents for psoriasis, which provides treasured sources for the development of anti-psoriasis medications. Xiao-Yin-Fang (XYF) is an empirically developed TCM formula that has been used to treat psoriasis patients in Shanghai Changhai Hospital for over three decades. Imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model was utilized to investigate the therapeutic effects of XYF by the assessment of disease severity and skin thickness. Flow cytometric assay was performed to explore the influence of XYF on skin-related immunocytes, primarily T cells. And, RNA sequencing analysis was employed to determine the alternation in gene expression upon XYF therapy. We discovered that XYF alleviated psoriasis-like skin inflammation mainly through suppressing dermal and draining lymph-node IL-17-producing γδT (γδT17) cell polarization. Moreover, XYF therapy ameliorated the relapse of psoriasis-like dermatitis and prohibited dermal γδT cell reactivation. Transcriptional analysis suggested that XYF might regulate various inflammatory signaling pathways and metabolic processes. In conclusion, our results clarified the therapeutic efficacy and inner mechanism of XYF therapy in psoriasis, which might promote its clinical application in psoriasis patients and facilitate the development of novel anti-psoriasis drugs based on the bioactive components of XYF.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaorui Li
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youdong Chen
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Li
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Peng Xu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yangfeng Ding
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Jun Gu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.,Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Department of Dermatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
22
|
Pang J, Qi X, Luo Y, Li X, Shu T, Li B, Song M, Liu Y, Wei D, Chen J, Wang J, Wang C. Multi-omics study of silicosis reveals the potential therapeutic targets PGD 2 and TXA 2. Am J Cancer Res 2021; 11:2381-2394. [PMID: 33500731 PMCID: PMC7797695 DOI: 10.7150/thno.47627] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Silicosis is a severe occupational lung disease. Current treatments for silicosis have highly limited availability (i.e., lung transplantation) or, do not effectively prolong patient survival time (i.e., lung lavage). There is thus an urgent clinical need for effective drugs to retard the progression of silicosis. Methods: To systematically characterize the molecular changes associated with silicosis and to discover potential therapeutic targets, we conducted a transcriptomics analysis of human lung tissues acquired during transplantation, which was integrated with transcriptomics and metabolomics analyses of silicosis mouse lungs. The results from the multi-omics analyses were then verified by qPCR, western blot, and immunohistochemistry. The effect of Ramatroban on the progression of silicosis was evaluated in a silica-induced mouse model. Results: Wide metabolic alterations were found in lungs from both human patients and mice with silicosis. Targeted metabolite quantification and validation of expression of their synthases revealed that arachidonic acid (AA) pathway metabolites, prostaglandin D2 (PGD2) and thromboxane A2 (TXA2), were significantly up-regulated in silicosis lungs. We further examined the effect of Ramatroban, a clinical antagonist of both PGD2 and TXA2 receptors, on treating silicosis using a mouse model. The results showed that Ramatroban significantly alleviated silica-induced pulmonary inflammation, fibrosis, and cardiopulmonary dysfunction compared with the control group. Conclusion: Our results revealed the importance of AA metabolic reprogramming, especially PGD2 and TXA2 in the progression of silicosis. By blocking the receptors of these two prostanoids, Ramatroban may be a novel potential therapeutic drug to inhibit the progression of silicosis.
Collapse
|
23
|
Suh MG, Choi HS, Cho K, Park SS, Kim WJ, Suh HJ, Kim H. Anti-inflammatory action of herbal medicine comprised of Scutellaria baicalensis and Chrysanthemum morifolium. Biosci Biotechnol Biochem 2020; 84:1799-1809. [DOI: 10.1080/09168451.2020.1769464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Various mixtures were prepared depending on the mixing ratio of Scutellaria baicalensis hot water extract (SB-HW), and Chrysanthemum morifolium ethanol extract (CM-E) and their anti-inflammatory activity were compared. Among them, SB-HW (80 μg/mL)/CM-E (120 μg/mL) or SB-HW (40 μg/mL)/CM-E (160 μg/mL) significantly inhibited LPS-stimulated NO and IL-6 levels in RAW 264.7 cells. The SB-HW (80 μg/mL)/CM-E (120 μg/mL) mixture, which was determined as active mixture, significantly reduced MUC5AC secretion in PMA and LPS-induced NCI-H292 cells. The active mixture also reduced the production of PGE2 and IL-8 in PMA-induced A549 cells. LC-MS/MS analysis showed that the active mixture was composed of high contents of flavone glycosides, such as baicalin and cynaroside. Western blot analysis indicated that the active mixture suppressed phosphorylation of ERK, JNK, and p38, associating with the inhibition of MAPK signaling. Taken together, our results suggest that the active mixture could be applied as a new anti-inflammatory herbal medicine.
Abbreviations
JNK: c-Jun N-terminal kinases; COPD: chronic obstructive pulmonary disease; CM: Chrysanthemum morifolium; COX-2: cyclooxygenase-2; ERK: extracellular-signal-regulated kinase; IL-6: interleukin-6; IL-8: interleukin-8; IL-12: interleukin-12; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; NO: nitric oxide; NK- κB: nuclear factor kappa B; p38: p38 mitogen-activated protein kinases; PBS: phosphate buffered saline; PMA: phorbol-12-myristate-13-acetate; SB: Scutellaria baicalensis; PGE2: prostaglandin E2; TBST: Tris-buffered saline containing 0.1% Tween 20; TIC: total ion chromatogram; TNF-α: tumor necrosis factor-alpha
Collapse
Affiliation(s)
- Min Geun Suh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women’s University, Seoul, Republic of Korea
| | - Kyoungwon Cho
- R&D center, Chong Kun Dang Healthcare Corporation, Seoul, Republic of Korea
| | - Sung Sun Park
- R&D center, Chong Kun Dang Healthcare Corporation, Seoul, Republic of Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggido Business & Science Accelerator, Suwon, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
| | - Hoon Kim
- Skin-biotechnology Center, Kyunghee University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Zhang S, Xu L, Liang R, Yang C, Wang P. Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells. J Physiol Biochem 2020; 76:407-416. [PMID: 32500512 DOI: 10.1007/s13105-020-00747-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023]
Abstract
Renal fibrosis is a major pathological event in the development of diabetic nephropathy (DN). Baicalin is a flavonoid glycoside that possesses multiple pharmacological properties including anti-fibrotic activity. In the present study, the effects of baicalin on renal fibrosis along with related molecular basis were investigated in streptozotocin (STZ)-induced DN mouse model and high glucose (HG)-treated HK-2 human proximal tubule epithelial cell model. Renal injury was evaluated through blood urea nitrogen (BUN) and serum creatinine (Scr) levels and urine albumin creatine ratio (ACR). Renal fibrosis was assessed by type IV collagen (COLIV) and fibronectin (FN) protein expression and histopathologic analysis via Masson trichrome staining. Protein levels of COLIV, FN, NF-κB inhibitor alpha (IκBα), phosphorylated IκBα (p-IκBα), p65, phosphorylated p65 (p-p65), and toll-like receptor 4 (TLR4) were measured by western blot assay. MicroRNA-124 (miR-124) and TLR4 mRNA levels were detected by RT-qPCR assay. The interaction of miR-124 and TLR4 was examined by bioinformatics analysis, luciferase reporter assay, and RIP assay. Baicalin or miR-124 attenuated renal injury and fibrosis in STZ-induced DN mice. Baicalin inhibited the increase of COLIV and FN expression induced by HG through upregulating miR-124 in HK-2 cells. TLR4 was a target of miR-124. MiR-124 inhibited TLR4/NF-κB pathway activation and the inactivation of the NF-κB pathway hindered COLIV and FN expression in HG-stimulated HK-2 cells. Baicalin prevented renal fibrosis by increasing miR-124 and inactivating downstream TLR4/NF-κB pathway in DN, hinting the pivotal values of baicalin and miR-124 in the management of DN and renal fibrosis.
Collapse
Affiliation(s)
- Shefeng Zhang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Li Xu
- Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Ruifeng Liang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Chenhua Yang
- Henan Academy of Chinese Medicine, Zhengzhou, 450000, China
| | - Peiren Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Jinshui District, Zhengzhou, 450000, China.
| |
Collapse
|
25
|
Ma J, Xu Y, Li W, Zhou Y, Wang D, Yang M, Wang B, Chen W. High-mobility group box 1 promotes epithelial-to-mesenchymal transition in crystalline silica induced pulmonary inflammation and fibrosis. Toxicol Lett 2020; 330:134-143. [PMID: 32428545 DOI: 10.1016/j.toxlet.2020.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/02/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
Silicosis is an inflammatory and fibrotic lung disease caused by prolonged inhalation of silica. The potential role of high-mobility group box-1 (HMGB-1) and its underlying mechanisms in silicosis remain unclear. In this study, intratracheal instillation of a silica suspension was used to establish silicosis in male C57BL/6 mice. To elucidate the effects of HMGB-1 on the pathogenesis of silicosis, we used HMGB-1 neutralizing antibody (anti-HMGB-1) and recombinant HMGB-1 (rmHMGB-1) to abrogate or increase the HMGB-1 levels, respectively. At days 7, 28, and 84, the accumulation of macrophages and neutrophils decreased by anti-HMGB-1 treatment. The expression levels of interleukin-6 and tumor necrosis factor-α in lung increased in response to silica exposure across three time points; anti-HMGB-1 could alleviate those expressions at day 28 and 84. In contrast, rmHMGB-1 aggravated this process. At days 28 and 84, the protein expression of fibronectin and col1a1 decreased in the silica + anti-HMGB-1 groups but increased in silica + rmHMGB-1 groups compared to mice with silica alone. Further study suggested that HMGB-1-mediated epithelial-mesenchymal transition participated in the development of silicosis. In conclusion, the findings demonstrate that HMGB-1 participates in the pathogenesis of silicosis and may represent a potential therapeutic target for the treatment of silicosis.
Collapse
Affiliation(s)
- Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yiju Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meng Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
26
|
Wu X, Deng X, Wang J, Li Q. Baicalin Inhibits Cell Proliferation and Inflammatory Cytokines Induced by Tumor Necrosis Factor α (TNF-α) in Human Immortalized Keratinocytes (HaCaT) Human Keratinocytes by Inhibiting the STAT3/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2020; 26:e919392. [PMID: 32321906 PMCID: PMC7193247 DOI: 10.12659/msm.919392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Baicalin is a flavone isolated from the root of Scutellaria baicalensis and is used in traditional Chinese medicine. Psoriasis is a persistent and recurrent chronic inflammatory skin disease that is characterized by inflammation and increased proliferation of keratinocytes. This study aimed to investigate the effects of baicalin on HaCaT immortalized human keratinocytes in vitro and the molecular mechanisms involved. Material/Methods HaCaT keratinocytes were cultured in increasing concentrations of baicalin at 6.25 μM, 12.5 μM, and 25 μM. The in vitro model of psoriasis was established using HaCaT cells treated with tumor necrosis factor-α (TNF-α). The MTT assay was used to asses cell viability and apoptosis. Western blot was used to measure the expression of Bcl-2, Bax, pro-caspase-3, and cleaved caspase-3, and enzyme-linked immunosorbent assay (ELISA) was performed to detect inflammatory cytokines. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the levels of STAT3 and p65 mRNA. Results Baicalin reduced cell viability and induced apoptosis of HaCaT human keratinocytes in a dose-dependent manner. Increased cell viability and the expression of inflammatory cytokines by HaCaT cells induced by TNF-α were significantly inhibited by baicalin. Baicalin significantly inhibited the activation of the STAT3/NF-κB pathway in HaCaT cells stimulated by TNF-α. Conclusions Baicalin inhibited the proliferation and expression of inflammatory cytokines in HaCaT immortalized human keratinocytes in vitro through the inhibition of the STAT3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xianwei Wu
- Department of Dermatology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Xiue Deng
- Department of Dermatology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Jiandi Wang
- Department of Dermatology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Qin Li
- Department of Dermatology, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
27
|
Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin‑induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep 2020; 21:2321-2334. [PMID: 32323806 PMCID: PMC7185294 DOI: 10.3892/mmr.2020.11046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
Baicalin is an important flavonoid compound THAT is isolated from the Scutellaria baicalensis Georgi Chinese herb and plays a critical role in anti‑oxidative, anti‑inflammatory, anti‑infection and anti‑tumor functions. Although baicalin can suppress the proliferation of tumor cells, the underlying mechanisms of baicalin in bleomycin (BLM)‑induced pulmonary fibrosis remain to be elucidated. Thus, the aim of the present study was to determine the role of baicalin in pulmonary fibrosis and fibroblast proliferation in rats. Hematoxylin and eosin (H&E) and Masson staining were used to measure the morphology of pulmonary fibrosis, ELIASA kits were used to test the ROS and inflammation, and western blotting and TUNEL were performed to study the apoptosis proteins. In vitro, MTT assay, flow cytometry, western blotting and immunofluorescence were performed to investigate the effects of baicalin on proliferation of fibroblasts. The most significantly fibrotic changes were identified in the lungs of model rats at day 28. Baicalin (50 mg/kg) attenuated the degree of pulmonary fibrosis, and the hydroxyproline content of the lung tissues was decreased in the baicalin group, compared with the BLM group. Further investigation revealed that baicalin significantly increased glutathione peroxidase (GSH‑px), total‑superoxide dismutase (T‑SOD) and glutathione (GSH) levels, whilst decreasing that of serum malondialdehyde (MDA). TUNEL‑positive cells were significantly decreased in rats treated with baicalin group, compared with the model group. Furthermore, it was found that BLM promoted fibroblasts viability in a dose‑dependent manner in vivo, which was restricted following treatment with different concentrations of baicalin. Moreover, BLM promoted the expression levels of cyclin A, D and E, proliferating cell nuclear antigen, phosphorylated (p)‑AKT and p‑calcium/calmodulin‑dependent protein kinase type. BLM also promoted the transition of cells from the G0/G1 phase to the G2/M and S phases, and increased the intracellular Ca2+ concentration, which was subsequently suppressed by baicalin. Collectively, the results of the present study suggested that baicalin exerted a suppressive effect on BLM‑induced pulmonary fibrosis and fibroblast proliferation.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chundi Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Lina Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Junying Liu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yinghui Gao
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Kun Mu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Donghe Chen
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Aiping Lu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yuanyuan Ren
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Zhenhua Li
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
28
|
Divsalar A, Divsalar H, Dods MN, Prosser RW, Tsotsis TT. Field Testing of a UV Photodecomposition Reactor for Siloxane Removal from Landfill Gas. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alireza Divsalar
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Hasan Divsalar
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew N. Dods
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Richard W. Prosser
- GC Environmental, Inc., 1230 North Jefferson Street, Suite J, Anaheim, California 92807, United States
| | - Theodore T. Tsotsis
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
29
|
Dihydrotanshinone I Alleviates Crystalline Silica-Induced Pulmonary Inflammation by Regulation of the Th Immune Response and Inhibition of STAT1/STAT3. Mediators Inflamm 2019; 2019:3427053. [PMID: 31379467 PMCID: PMC6652093 DOI: 10.1155/2019/3427053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Occupational exposure to crystalline silica (CS) results in a persistent pulmonary inflammatory response that eventually leads to abnormal tissue repair, disability, and death. The inflammatory-immune responses occur in the early stages of CS exposure, and both innate and adaptive immunity are involved. CD4+ T cells play a pivotal role in the pathogenesis of CS-induced pulmonary disease, which has no proven curative therapy. Dihydrotanshinone I (DHI), a natural product isolated from Salvia miltiorrhiza Bunge (Danshen), has anti-inflammatory and immunomodulatory properties. However, whether DHI has a protective effect on CS-induced lung disease, how it influences the Th immune response, and the potential underlying molecular mechanism(s) have not been fully clarified. In this study, DHI treatment of CS-exposed mice reduced the expression of proinflammatory cytokines and the infiltration of immune cells. It significantly ameliorated CS-induced pulmonary inflammation by attenuating T helper (Th)1 and Th17 responses, which were tightly related to the inhibition of STAT1 and STAT3. DHI significantly altered Th2 cytokines but not the Th2 nuclear transcription factor. Furthermore, our study found that DHI treatment also affected regulatory T cell activity in CS-injured mice. Taken together, our findings indicated that DHI could modulate Th responses and alleviate CS-induced pulmonary inflammation, suggesting a novel application of DHI in CS-induced pulmonary disease.
Collapse
|
30
|
Fu S, Zhao W, Xiong C, Guo L, Guo J, Qiu Y, Hu CAA, Ye C, Liu Y, Wu Z, Hou Y. Baicalin modulates apoptosis via RAGE, MAPK, and AP-1 in vascular endothelial cells during Haemophilus parasuis invasion. Innate Immun 2019; 25:420-432. [PMID: 31271085 PMCID: PMC6900640 DOI: 10.1177/1753425919856078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glässer’s disease, caused by Haemophilus parasuis, is a chronic
disease related to an inflammatory immune response. Baicalin exerts important
biological functions. In this study, we explored the protective efficacy of
treatment with baicalin and the potential mechanism of activation of the MAPK
signaling pathway in porcine aortic vascular endothelial cells (PAVECs) induced
by H. parasuis. H. parasuis stimulated
expression of receptor for advanced glycation end products, induced a
significant increase in the level of protein kinase-α and protein kinase-δ
phosphorylation, and significantly up-regulated ERK, c-Jun N-terminal kinase,
and p38 phosphorylation in PAVECs. H. parasuis also
up-regulated the levels of apoptotic genes (Bax,
C-myc, and Fasl) and the expression levels
of c-Jun and c-Fos, and induced S-phase arrest in PAVECs. However, treatment
with baicalin inhibited expression of RAGE, suppressed H.
parasuis-induced protein kinase-α and protein kinase-δ
phosphorylation, reduced ERK, c-Jun N-terminal kinase, and p38 phosphorylation,
down-regulated apoptotic genes (Bax, C-myc,
and Fasl), attenuated phospho-c-Jun production from the
extracellular to the nuclei, and reversed S-phase arrest in PAVECs. In
conclusion, baicalin treatment inhibited the MAPK signaling pathway, thereby
achieving its anti-inflammatory responses, which provides a new strategy to
control H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Wenhua Zhao
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China
| | - Chunhong Xiong
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China
| | - Ling Guo
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Jing Guo
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yinsheng Qiu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Chien-An Andy Hu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,3 Biochemistry and Molecular Biology, University of New Mexico School of Medicine, USA
| | - Chun Ye
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yu Liu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Zhongyuan Wu
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| | - Yongqing Hou
- 1 Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, PR China.,2 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, PR China
| |
Collapse
|
31
|
Neveu WA, Staitieh BS, Mills ST, Guidot DM, Sueblinvong V. Alcohol-Induced Interleukin-17 Expression Causes Murine Lung Fibroblast-to-Myofibroblast Transdifferentiation via Thy-1 Down-Regulation. Alcohol Clin Exp Res 2019; 43:1427-1438. [PMID: 31081931 DOI: 10.1111/acer.14110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol exposure induces TGFβ1 and renders the lung susceptible to injury and disrepair. We determined that TGFβ1 regulates myofibroblast differentiation through the loss of Thy-1 expression and consequent induction of α-SMA. TGFβ1 is important for T helper 17 (Th17) differentiation and IL-17 secretion, which in turn participates in tissue repair. We hypothesized that alcohol induces Th17 differentiation via TGFβ1 and that IL-17 produced by these cells contributes to the development of profibrotic lung myofibroblasts. METHODS Primary lung fibroblasts (PLFs) were treated with alcohol, TGFβ1, and IL-17 and then analyzed for Thy-1 expression and cell morphology. Naïve and Th17-polarized CD4+ T cells were exposed to alcohol and assessed for IL-17 expression. CD4+ T cells from alcohol-fed mice were analyzed for Th17 and IL-17 expression. Lungs of control-fed, bleomycin-treated and alcohol-fed, bleomycin-treated mice were analyzed for IL-17 protein expression. RESULTS Alcohol-treated PLFs expressed lower levels of Thy-1 than untreated cells. TGFβ1 or IL-17 exposure suppressed PLF Thy-1 expression. When administered together, TGFβ1 and IL-17 additively down-regulated Thy-1 expression. Exposure of naïve and Th17-polarized CD4+ T cells to alcohol induced the Th17 phenotype and augmented their production of IL-17. CD4+ Th17+ levels are elevated in the peripheral compartment but not in the lungs of alcohol-fed animals. Treatment of the PLFs with IL-17 and alcohol induced α-SMA expression. Induction of α-SMA and myofibroblast morphology by IL-17 occurred selectively in a Thy-1- fibroblast subpopulation. Chronic alcohol ingestion augmented lung-specific IL-17 expression following bleomycin-induced lung injury. CONCLUSIONS Alcohol exposure skews T cells toward a Th17 immune response that in turn primes the lung for fibroproliferative disrepair through loss of Thy-1 expression and induction of myofibroblast differentiation. These effects suggest that IL-17 and TGFβ1 contribute to fibroproliferative disrepair in the lung and targeting these proteins could limit morbidity and mortality following lung injury in alcoholic individuals.
Collapse
Affiliation(s)
- Wendy A Neveu
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bashar S Staitieh
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Stephen T Mills
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - David M Guidot
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Atlanta VAMC, Decatur, Georgia
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
32
|
Role of Nephronectin in Pathophysiology of Silicosis. Int J Mol Sci 2019; 20:ijms20102581. [PMID: 31130697 PMCID: PMC6566895 DOI: 10.3390/ijms20102581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 01/11/2023] Open
Abstract
Silicosis is a typical form of pneumoconiosis and is characterized as a type of lung fibrosis. Silica particles are captured and recognized upon by alveolar macrophages via the macrophage receptor with collagenous structure (MARCO) scavenger receptor, and thereafter the inflammasome is activated. Thereafter, various chemokines/cytokines play their roles to eventually form fibrosis. Additionally, silica particles chronically activate T helper cells which sets the background for the formation of silicosis-associated autoimmune disturbances. The occurrence and progression of lung fibrosis, the extracellular matrix-related molecules such as integrins and their ligands including fibronectin, vitronectin, laminin, and collagens, all play important roles. Here, the roles of these molecules in silicosis-related lung fibrosis are reviewed from the literature. Additionally, the measurement of serum nephronectin (Npnt), a new member of the integrin family of ligands, is discussed, together with investigations attempting to delineate the role of Npnt in silica-induced lung fibrosis. Serum Npnt was found to be higher in silicosis patients compared to healthy volunteers and seems to play a role in the progression of fibrosis with other cytokines. Therefore, serum Npnt levels may be employed as a suitable marker to monitor the progression of fibrosis in silicosis patients.
Collapse
|
33
|
Jang YJ, Kim JH, Byun S. Modulation of Autophagy for Controlling Immunity. Cells 2019; 8:cells8020138. [PMID: 30744138 PMCID: PMC6406335 DOI: 10.3390/cells8020138] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process that maintains physiological homeostasis by promoting the transfer of cytoplasmic constituents to autophagolysosomes for degradation. In immune cells, the autophagy pathway plays an additional role in facilitating proper immunological functions. Specifically, the autophagy pathway can participate in controlling key steps in innate and adaptive immunity. Accordingly, alterations in autophagy have been linked to inflammatory diseases and defective immune responses against pathogens. In this review, we discuss the various roles of autophagy signaling in coordinating immune responses and how these activities are connected to pathological conditions. We highlight the therapeutic potential of autophagy modulators that can impact immune responses and the mechanisms of action responsible.
Collapse
Affiliation(s)
- Young Jin Jang
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanjugun55365, Korea.
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
34
|
Polyphenol-rich blue honeysuckle extract alleviates silica-induced lung fibrosis by modulating Th immune response and NRF2/HO-1 MAPK signaling. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Divsalar A, Entesari N, Dods MN, Prosser RW, Egolfopoulos FN, Tsotsis TT. A UV photodecomposition reactor for siloxane removal from biogas: Modeling aspects. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Lou LL, Li W, Zhou BH, Chen L, Weng HZ, Zou YH, Tang GH, Bu XZ, Yin S. (+)-Isobicyclogermacrenal and spathulenol from Aristolochia yunnanensis alleviate cardiac fibrosis by inhibiting transforming growth factor β/small mother against decapentaplegic signaling pathway. Phytother Res 2018; 33:214-223. [PMID: 30375049 DOI: 10.1002/ptr.6219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/03/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022]
Abstract
Cardiac fibrosis contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. Antifibrotic therapies are likely to be a crucial strategy in curbing many fibrosis-related cardiac diseases. In our previous study, an ethyl acetate extract of a traditional Chinese medicine Aristolochia yunnanensis Franch. was found to have a therapeutic effect on myocardial fibrosis in vitro and in vivo. However, the exact chemicals and their mechanisms responsible for the activity of the crude extract have not been illustrated yet. In the current study, 10 sesquiterpenoids (1-10) were isolated from the active extract, and their antifibrotic effects were systematically evaluated in transforming growth factor β 1 (TGFβ1)-stimulated cardiac fibroblasts and NIH3T3 fibrosis models. (+)-Isobicyclogermacrenal (1) and spathulenol (2) were identified as the main active components, being more potent than the well-known natural antifibrotic agent oxymatrine. Compounds 1 and 2 could inhibit the TGFβ1-induced cardiac fibroblasts proliferation and suppress the expression of the fibrosis biomarkers fibronectin and α-smooth muscle actin via down-regulation of their mRNA levels. The mechanism study revealed that 1 and 2 could inhibit the phosphorylation of TGFβ type I receptor, leading to the decrease of the phosphorylation levels of downstream Smad2/3, then consequently blocking the nuclear translocation of Smad2/3 in the TGFβ/Smad signaling pathway. These findings suggest that 1 and 2 may serve as promising natural leads for the development of anticardiac fibrosis drugs.
Collapse
Affiliation(s)
- Lan-Lan Lou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Bin-Hua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lin Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Han-Zhuang Weng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Hong Zou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xian-Zhang Bu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Chen G, Yang Y, Hu C, Cheng X, Xu Y, Cai X, Wang M, Yang CS, Cao P. Protective effects of Huangqin Decoction against ulcerative colitis and associated cancer in mice. Oncotarget 2018; 7:61643-61655. [PMID: 27557503 PMCID: PMC5308679 DOI: 10.18632/oncotarget.11426] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022] Open
Abstract
Individuals with ulcerative colitis (UC) are at a high risk for developing colorectal cancer (CRC). Huangqin Decoction (HQD), a traditional Chinese medicinal formula chronicled in the Shang Han Lun, is commonly used to treat gastrointestinal symptoms. However, experimental evidence for supporting the clinical practice is lacking. This study used modern biomedical approaches to investigate the protective/preventive effects of HQD in dextran sulfate sodium (DSS)-induced acute/chronic UC and azoxymethane (AOM)/DSS-induced CRC in mice. HQDs were prepared in 4 different ways: HQD-1 and HQD-2 were prepared in boiling water, whereas HQD-3 and HQD-4 were prepared in heated ethanol (70%). For HQD-1 and HQD-3, the 4 constituent herbs were processed together, whereas for HQD-2 and HQD4, these herbs were processed individually and then combined. The mice were administered 9.1 g/kg HQD via oral gavage daily. HQD-1 significantly inhibited DSS-induced acute UC, whereas HQD-3 and HQD-4 exhibited mild ameliorative effects; but HQD-2 had no protective effect and resulted in a higher mortality rate. This higher mortality rate may be due to the greater abundance of baicalein and wogonin in HQD-2 than HQD-1. Furthermore, HQD-1 protected against DSS-induced chronic UC and significantly inhibited AOM/DSS-induced CRC in mice. HQD-1 also inhibited the production of inflammatory cytokines and increased antioxidant capacity both in chronic DSS and AOM/DSS treated mice. Overall, HQD-1 inhibits the development of acute/chronic colitis and prevents colitis-associated CRC, possibly by inhibiting inflammation and preventing oxidative stress induced cellular damage.
Collapse
Affiliation(s)
- Gang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yang Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Xiaolan Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yuehua Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Min Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, China
| |
Collapse
|
38
|
Yue H, Zhao Y, Wang H, Ma F, Liu F, Shen S, Hou Y, Dou H. Anti-fibrosis effect for Hirsutella sinensis mycelium based on inhibition of mTOR p70S6K phosphorylation. Innate Immun 2017; 23:615-624. [DOI: 10.1177/1753425917726361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hirsutella sinensis, cultured in vitro, is an attractive substitute for Cordyceps sinensis as health supplement. The aim of this study was to demonstrate whether H. sinensis mycelium (HSM) attenuates murine pulmonary fibrosis induced by bleomycin and to explore the underlying molecular mechanisms. Using lung fibrosis modle induced by intratracheal instillation of bleomycin (BLM; 4 mg/kg), we observed that the administration of HSM reduced HYP, TGF-β1 and the production of several pro-fibrosis cytokines (α-smooth muscle actin, fibronectin and vimentin) in fibrotic mice lung sections. Histopathological examination of lung tissues also demonstrated that HSM improved BLM-induced pathological damage. Concurrently, HSM supplementation markedly reduced the chemotaxis of alveolar macrophages and potently suppressed the expression of inflammatory cytokines. Also, HSM influenced Th1/Th2 and Th17/Treg imbalance and blocked the phosphorylation of mTOR pathway in vivo. Alveolar epithelial A549 cells acquired a mesenchymal phenotype and an increased expression of myofibroblast markers of differentiation (vimentin and fibronectin) after treatment with TGF-β1. HSM suppressed these markers and blocked the phosphorylation of mTOR pathway in vitro. The results provide evidence supporting the use of HSM in the intervention of pulmonary fibrosis and suggest that HSM is a potential therapeutic agent for lung fibrosis.
Collapse
Affiliation(s)
- Huimin Yue
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yarong Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Haining Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Feiya Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
39
|
Baicalin and baicalein attenuate renal fibrosis in vitro via inhibition of the TGF-β1 signaling pathway. Exp Ther Med 2017; 14:3074-3080. [PMID: 28928802 PMCID: PMC5590043 DOI: 10.3892/etm.2017.4888] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
Abstract
Baicalin and baicalein are flavonoid compounds derived from Scutellaria baicalensis Georgi. These compounds have been used in the treatment of numerous diseases, including fibrotic diseases. However, research regarding their antifibrotic effects and mechanism of action in renal fibrosis is limited. In the present study, normal rat kidney interstitial fibroblast (NRK-49F) cells were stimulated with transforming growth factor (TGF)-β1, with or without baicalin/baicalein, and assessed for proliferation, apoptosis, extracellular matrix (ECM) accumulation, collagen expression, TGF-β1 expression and mothers against decapentaplegic homolog 3 (SMAD3) protein activation. The results revealed that baicalin and baicalein exhibited antifibrotic effects in vitro, whereas baicalein had a stronger inhibitory action compared with baicalin on TGF-β1-induced NRK-49F cell proliferation, deposition of ECM, collagen synthesis, endogenous TGF-β1 expression and phosphorylation of SMAD3. In conclusion, the findings of the present study indicate that baicalin and baicalein, particularly baicalein, exhibit antifibrotic effects in vitro by inhibiting the TGF-β1 pathway. Therefore, these compounds have the potential to be developed as novel agents to treat renal fibrosis.
Collapse
|
40
|
Bui TT, Piao CH, Song CH, Lee CH, Shin HS, Chai OH. Baicalein, wogonin, and Scutellaria baicalensis ethanol extract alleviate ovalbumin-induced allergic airway inflammation and mast cell-mediated anaphylactic shock by regulation of Th1/Th2 imbalance and histamine release. Anat Cell Biol 2017; 50:124-134. [PMID: 28713616 PMCID: PMC5509896 DOI: 10.5115/acb.2017.50.2.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/09/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022] Open
Abstract
Asthma is characterized by chronic inflammation, goblet cell hyperplasia, the aberrant production of the Th2 cytokines, and eosinophil infiltration into the lungs. In this study, we examined the effects of baicalein, wogonin, and Scutellaria baicalensis ethanol extract on ovalbumin (OVA)-induced asthma by evaluating Th1/Th2 cytokine levels, histopathologic analysis, and compound 48/80-induced systemic anaphylaxis and mast cell activation, focusing on the histamine release from rat peritoneal mast cells. Baicalein, wogonin, and S. baicalensis ethanol extract also decreased the number of inflammatory cells especially eosinophils and downregulated peribronchial and perivascular inflammation in the lungs of mice challenged by OVA. Baicalein, wogonin, and S. baicalensis ethanol extract significantly reduced the levels of tumor necrosis factor α, interleukin (IL)-1β, IL-4, IL-5 and the production of OVA-specific IgE and IgG1, and upregulated the level of interferon-γ and OVA-specific IgG2a. In addition, oral administration of baicalein, wogonin, and S. baicalensis ethanol extract inhibited compound 48/80-induced systemic anaphylaxis and plasma histamine release in mice. Moreover, baicalein, wogonin, and S. baicalensis ethanol extract suppressed compound 48/80-induced mast cell degranulation and histamine release from rat peritoneal mast cells. Conclusively, baicalein and wogonin as major flavonoids of S. baicalensis may have therapeutic potential for allergic asthma through modulation of Th1/Th2 cytokine imbalance and histamine release from mast cells.
Collapse
Affiliation(s)
- Thi Tho Bui
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
| | - Chun Hua Piao
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
| | - Chang Ho Song
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea.,Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Korea
| | - Chang-Hyun Lee
- Department of Anatomy, College of Korean Medicine, Woosuk University, Samrye, Korea
| | - Hee Soon Shin
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon, Korea.,Division of Nutrition and Metabolism Research, Korea Food Research Institute, Seongnam, Korea
| | - Ok Hee Chai
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea.,Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
41
|
Asadi-Samani M, Bagheri N, Rafieian-Kopaei M, Shirzad H. Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review. Phytother Res 2017; 31:1128-1139. [DOI: 10.1002/ptr.5837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/24/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Majid Asadi-Samani
- Students Research Committee; Shahrekord University of Medical Sciences; Shahrekord Iran
| | - Nader Bagheri
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute; Shahrekord University of Medical Sciences; Shahrekord Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute; Shahrekord University of Medical Sciences; Shahrekord Iran
| |
Collapse
|
42
|
|
43
|
Li C, Du S, Lu Y, Lu X, Liu F, Chen Y, Weng D, Chen J. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice. Am J Cancer Res 2016; 6:2052-2067. [PMID: 27698940 PMCID: PMC5039680 DOI: 10.7150/thno.16180] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/30/2016] [Indexed: 12/30/2022] Open
Abstract
Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung.
Collapse
|
44
|
Fu S, Xu L, Li S, Qiu Y, Liu Y, Wu Z, Ye C, Hou Y, Hu CAA. Baicalin suppresses NLRP3 inflammasome and nuclear factor-kappa B (NF-κB) signaling during Haemophilus parasuis infection. Vet Res 2016; 47:80. [PMID: 27502767 PMCID: PMC4977663 DOI: 10.1186/s13567-016-0359-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/18/2016] [Indexed: 01/04/2023] Open
Abstract
Haemophilus parasuis (H. parasuis) is the causative agent of Glässer’s disease, a severe membrane inflammation disorder. Previously we showed that Baicalin (BA) possesses anti-inflammatory effects via the NLRP3 inflammatory pathway in an LPS-challenged piglet model. However, whether BA has anti-inflammatory effects upon H. parasuis infection is still unclear. This study investigated the anti-inflammatory effects and mechanisms of BA on H. parasuis-induced inflammatory responses via the NF-κB and NLRP3 inflammasome pathway in piglet mononuclear phagocytes (PMNP). Our data demonstrate that PMNP, when infected with H. parasuis, induced ROS (reactive oxygen species) production, promoted apoptosis, and initiated transcription expression of IL-6, IL-8, IL-10, PGE2, COX-2 and TNF-α via the NF-κB signaling pathway, and IL-1β and IL-18 via the NLRP3 inflammasome signaling pathway. Moreover, when BA was administrated, we observed a reduction in ROS production, suppression of apoptosis, and inhibition of the activation of NF-κB and NLRP3 inflammasome signaling pathway in PMNP treated with H. parasuis. To our best knowledge, this is the first example that uses piglet primary immune cells for an H. parasuis infection study. Our data strongly suggest that BA can reverse the inflammatory effect initiated by H. parasuis and possesses significant immunosuppression activity, which represents a promising therapeutic agent in the treatment of H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Lei Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Sali Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chien-An Andy Hu
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
45
|
Joerger M, Finn SP, Cuffe S, Byrne AT, Gray SG. The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Opin Ther Targets 2016; 20:1339-1356. [PMID: 27353429 DOI: 10.1080/14728222.2016.1206891] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is strong pharmaceutical development of agents targeting the IL-17-TH17 pathway for the treatment of psoriasis (Ps) and psoriatic arthritis (PsA). Lung cancer accounts for 28% of all cancer-related deaths worldwide, and roughly 80% of patients with newly-diagnosed non-small cell lung cancer (NSCLC) present with metastatic disease, with a poor prognosis of around 12 months. Therefore, there is a high unmet medical need for the development of new and potent systemic treatments in this deadly disease. The emergence of immunotherapies such as anti-PD-1 or anti-PDL1 as candidate therapies in non-small cell lung cancer (NSCLC) indicates that targeting critical immuno-modulatory cytokines including those within the IL-17-Th1/Th17 axis may have proven benefit in the treatment of lung cancer. Areas covered: In this review we describe the current evidence for aberrant IL-17-Th1/Th17 settings in cancer, particularly with regard to targeting this axis in NSCLC. We further discuss the current agents under pharmaceutical development which could potentially target this axis, and discuss the current limitations and areas of concern regarding the use of these in lung cancer. Expert opinion: Current evidence suggests that moving forward agents targeting the IL-17-Th1/Th17 pathway may have novel new oncoimmunology indications in the treatment paradigm for NSCLC.
Collapse
Affiliation(s)
- Markus Joerger
- a Department of Medical Oncology & Hematology , Cantonal Hospital , St. Gallen , Switzerland
| | - Stephen P Finn
- b Department of Histopathology & Morbid Anatomy , Trinity College Dublin , Dublin , Ireland
| | - Sinead Cuffe
- c HOPE Directorate , St James's Hospital , Dublin , Ireland
| | - Annette T Byrne
- d Department of Physiology and Medical Physics & Centre for Systems Medicine , Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Steven G Gray
- e Thoracic Oncology Research Group , IMM, St James's Hospital , Dublin , Ireland.,f Department of Clinical Medicine , Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
46
|
Xie J, Nie S, Yu Q, Yin J, Xiong T, Gong D, Xie M. Lactobacillus plantarum NCU116 Attenuates Cyclophosphamide-Induced Immunosuppression and Regulates Th17/Treg Cell Immune Responses in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1291-1297. [PMID: 26822718 DOI: 10.1021/acs.jafc.5b06177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The balance of T helper cells 17 (Th17)/regulatory T cells (Treg) plays a key role in maintaining a normal immune response. It is well-known that cyclophosphamide (CTX) applied at high dose often damages the immune system by inhibiting immune cell proliferation. In this study, the immunomodulating effects of Lactobacillus plantarum NCU116 in CTX-induced immunosuppression mice were investigated. Results showed that the levels of cytokines interleukin (IL)-17 and IL-21 were significantly increased after 10 days of treatment with a high dose of NCU116 (46.92 ± 4.28 and 119.92 ± 10.89, respectively) compared with the model group (36.20 ± 2.63, 61.00 ± 6.92, respectively), and the levels of cytokines IL-23 and TGF-β3 of the three NCU116 treatment groups were significantly higher than that of the model group (90.48 ± 6.33 and 140.45 ± 14.30, respectively) (p < 0.05) and close to 62 and 69% of the normal group's level (140.98 ± 14.74 and 266.95 ± 23.11, respectively) at 10 days. The bacterium was also found to increase the expression levels of Th17 immune response and Treg immune response specific transcription factors RORγt and Foxp3. In addition, the bacterium significantly increased the number of CD4(+)T cells and dendrtic cells (DCs) and up-regulated mRNA expression of Toll-like receptors (TLRs). These findings demonstrated that NCU116 has the potential ability to enhance intestinal mucosa immunity and regulate the Th17/Treg balance, which may be attributed to the TLR pathway in DCs.
Collapse
Affiliation(s)
- Junhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
- School of Biological Sciences, The University of Auckland , Private Bag 92019, Auckland, New Zealand
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, China
| |
Collapse
|