1
|
Kato Y, Furutani Y, Nakai H, Takaoka E, Kamizato E, Niwa T. Methyl Syringate Monoglucoside Is a Crucial Intermediate in Leptosperin Biosynthesis in Leptospermum scoparium (ma̅nuka). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2912-2919. [PMID: 39841936 DOI: 10.1021/acs.jafc.4c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Leptosperin (methyl syringate-4-O-β-d-gentiobioside) serves as a unique marker for ma̅nuka honey, derived from the ma̅nuka plant (Leptospermum scoparium). Despite its importance, the biosynthesis pathway of leptosperin remains unreported. This study investigates the molecular mechanism of leptosperin formation from its aglycone, methyl syringate (MSYR), in ma̅nuka plants. Methyl syringate-4-O-β-d-glucopyranoside (MSYR-glucose) was identified in ma̅nuka flower nectar but not in ma̅nuka honey. MSYR was distributed in the flowers, leaves, branches, and roots of ma̅nuka plants, while MSYR-glucose and leptosperin were only observed in the flowers. By immersing a cut flowering branch in a deuterium-labeled aqueous medium, the formation of deuterated leptosperin (leptosperin-d6) and MSYR-glucose (MSYR-d6-glucose) was analyzed. When MSYR-d6 was added, both MSYR-d6-glucose and leptosperin-d6 were detected. Supplementation with synthetic MSYR-d6-glucose also generated leptosperin-d6, indicating that gentiobioside moiety in leptosperin forms through the conjugation of MSYR with d-glucose, followed by the addition of another d-glucose.
Collapse
Affiliation(s)
- Yoji Kato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
- Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Yuka Furutani
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Hayato Nakai
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Emi Takaoka
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Emiri Kamizato
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo 670-0092, Japan
| | - Toshio Niwa
- Faculty of Health and Nutrition, Shubun University, Ichinomiya, Aichi 491-0938, Japan
| |
Collapse
|
2
|
Xu W, Shi D, Chen K, Popovich DG. TLC-Bioautography-Guided Isolation and Assessment of Antibacterial Compounds from Manuka ( Leptospermum scoparium) Leaf and Branch Extracts. Molecules 2024; 29:717. [PMID: 38338460 PMCID: PMC10856334 DOI: 10.3390/molecules29030717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
A rapid procedure for the targeted isolation of antibacterial compounds from Manuka (Leptospermum scoparium) leaf and branch extracts was described in this paper. Antibacterial compounds from three different Manuka samples collected from New Zealand and China were compared. The active compounds were targeted by TLC-bioautography against S. aureus and were identified by HR-ESI-MS, and -MS/MS analysis in conjunction with Compound Discoverer 3.3. The major antibacterial component, grandiflorone, was identified, along with 20 β-triketones, flavonoids, and phloroglucinol derivatives. To verify the software identification, grandiflorone underwent purification via column chromatography, and its structure was elucidated through NMR analysis, ultimately confirming its identity as grandiflorone. This study successfully demonstrated that the leaves and branches remaining after Manuka essential oil distillation serve as excellent source for extracting grandiflorone. Additionally, we proposed an improved TLC-bioautography protocol for evaluating the antibacterial efficacy on solid surfaces, which is suitable for both S. aureus and E. coli. The minimum effective dose (MED) of grandiflorone was observed to be 0.29-0.59 μg/cm2 against S. aureus and 2.34-4.68 μg/cm2 against E. coli, respectively. Furthermore, the synthetic plant growth retardant, paclobutrazol, was isolated from the samples obtained in China. It is hypothesized that this compound may disrupt the synthesis pathway of triketones, consequently diminishing the antibacterial efficacy of Chinese Manuka extract in comparison to that of New Zealand.
Collapse
Affiliation(s)
- Wenliang Xu
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand; (W.X.); (D.S.); (K.C.)
| | - Danxia Shi
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand; (W.X.); (D.S.); (K.C.)
| | - Kuanmin Chen
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand; (W.X.); (D.S.); (K.C.)
| | - David G. Popovich
- School of Science, Engineering & Technology, RMIT, Ho Chi Minh City 800010, Vietnam
| |
Collapse
|
3
|
da Silva L, Donato IA, Gonçalves CAC, Scherf JR, dos Santos HS, Mori E, Coutinho HDM, da Cunha FAB. Antibacterial potential of chalcones and its derivatives against Staphylococcus aureus. 3 Biotech 2023; 13:1. [PMID: 36466769 PMCID: PMC9712905 DOI: 10.1007/s13205-022-03398-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Chalcones are natural substances found in the metabolism of several botanical families. Their structure consists of 1,3-diphenyl-2-propen-1-one and they are characterized by having in their chains an α, β-unsaturated carbonyl system, two phenol rings and a three-carbon chain that unites them. In plants, Chalcones are mainly involved in the biosynthesis of flavonoids and isoflavonoids through the phenylalanine derivation. This group of substances has been shown to be a viable alternative for the investigation of its antibacterial potential, considering the numerous biological activities reported and the increase of the microbial resistance that concern global health agencies. Staphylococcus aureus is a bacterium that has stood out for its ability to adapt and develop resistance to a wide variety of drugs. This literature review aimed to highlight recent advances in the use of Chalcones and derivatives as antibacterial agents against S. aureus, focusing on research articles available on the Science Direct, Pub Med and Scopus data platforms in the period 2015-2021. It was constructed informative tables that provided an overview of which types of Chalcones are being studied more (Natural or Synthetic); its chemical name and main Synthesis Methodology. From the analysis of the data, it was observed that the compounds based on Chalcones have great potential in medicinal chemistry as antibacterial agents and that the molecular skeletons of these compounds as well as their derivatives can be easily obtained through substitutions in the A and B rings of Chalcones, in order to obtain the desired bioactivity. It was verified that Chalcones and derivatives are promising agents for combating the multidrug resistance of S. aureus to drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03398-7.
Collapse
Affiliation(s)
- Larissa da Silva
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, CE Brazil
| | - Isydorio Alves Donato
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Department of Biological Chemistry, URCA, Crato, CE Brazil
| | | | - Jackelyne Roberta Scherf
- Graduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, UFPE, Recife, PE Brazil
| | - Hélcio Silva dos Santos
- Laboratory of Chemistry of Natural and Synthetic Product, State university of Ceará, UECE, Fortaleza, CE Brazil
| | - Edna Mori
- CECAPE, College of Dentistry, Juazeiro do Norte, CE 63024-015 Brazil
| | | | | |
Collapse
|
4
|
Taylor S, Walther D, Fernando DD, Swe-Kay P, Fischer K. Investigating the Antibacterial Properties of Prospective Scabicides. Biomedicines 2022; 10:biomedicines10123287. [PMID: 36552044 PMCID: PMC9776028 DOI: 10.3390/biomedicines10123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Scabies is a dermatological disease found worldwide. Mainly in tropical regions, it is also the cause of significant morbidity and mortality due to its association with potentially severe secondary bacterial infections. Current treatment strategies for scabies do not consider the role of opportunistic bacteria, and here we investigate whether current and emerging scabicides can offer any anti-bacterial protection. Using the broth microdilution method, we examined antimicrobial potential of the current scabicide ivermectin and emerging scabies treatments: abametapir, mānuka oil, and its individual β-triketones. Our results demonstrate that the two novel scabicides abametapir and mānuka oil have antimicrobial properties against common scabies-associated bacteria, specifically Staphylococcus aureus, Streptococcus pyogenes, Streptococcus dysgalactiae subsp. equisimilis and Acinetobacter baumannii. The current scabicide ivermectin offers some antimicrobial activity and is capable of inhibiting the growth aforementioned bacteria. This research is important as it could help to inform future best treatment options of scabies, and scabies-related impetigo.
Collapse
|
5
|
Deng X, Xia J, Hu B, Hou XC, Pu XD, Wu L. Hyjapones A-D, trimethylated acyphloroglucinol meroterpenoids from Hypericum japonicum thunb. With anti-inflammatory activity. PHYTOCHEMISTRY 2022; 202:113308. [PMID: 35817204 DOI: 10.1016/j.phytochem.2022.113308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Four undescribed trimethylated acylphloroglucinol meroterpenoids, hyjapones A-D, along with seven known analogues, were isolated from Hypericum japonicum Thunb. Hyjapone A represents the first example of a double norflavesones-caryophyllene hybrid featuring a rare 6/6/9/4/6/6 hexacyclic frame. Hyjapone D was isolated as a natural product for the first time. Their structures and absolute configurations were established by comprehensive spectroscopic data analyses and electronic circular dichroism (ECD) calculations. The anti-inflammatory activities of all compounds were evaluated using lipopolysaccharide-induced RAW264.7 cells. Hyperjapone A showed more pronounced anti-inflammatory effect through reducing the production of nitric oxide (IC50 value of 11.32 ± 2.10 μM) and proinflammatory cytokines. In addition, the mechanistic studies revealed hyperjapone A inhibited LPS-induced activation of nuclear factor-κB.
Collapse
Affiliation(s)
- Xin Deng
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Jing Xia
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bo Hu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xing-Cun Hou
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xiang-Dong Pu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Lin Wu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
6
|
The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. Int J Mol Sci 2022; 23:ijms23094618. [PMID: 35563008 PMCID: PMC9104956 DOI: 10.3390/ijms23094618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Collapse
|
7
|
Xia K, Gu JH, Fu XX, Li NP, Chen M, Huang Q, Wang WJ, Ye WC, Wang L. Dimeric Acylphloroglucinol Derivatives with New Skeletons from Leptospermum scoparium. Chem Biodivers 2021; 18:e2100252. [PMID: 33988294 DOI: 10.1002/cbdv.202100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022]
Abstract
Leptosparones A-F (1-6), six new dimeric acylphloroglucinol derivatives with unprecedented skeletons, were isolated from Leptospermum scoparium. Compounds 1-3 and 5-6 are phenylpropanoyl-phloroglucinol dimers, while 4 is a phenylpropanoylphloroglucinol-isovalerylphloroglucinol hybrid. Structurally, these compounds represent the first examples of dimeric phloroglucinols with unprecedented C(7')-C(8) linkage between the phloroglucinol core and the acyl side chain. Their structures were elucidated by comprehensive analyses of spectroscopic data, single crystal X-ray diffraction and chemical calculations. In addition, all compounds showed inhibitory effects against α-glucosidase with IC50 values ranging from 39.5 to 186.8 μM.
Collapse
Affiliation(s)
- Kai Xia
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ji-Hong Gu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Xiao-Xue Fu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Mu Chen
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Qian Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Jing Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
8
|
George JH. Biomimetic Dearomatization Strategies in the Total Synthesis of Meroterpenoid Natural Products. Acc Chem Res 2021; 54:1843-1855. [PMID: 33793197 DOI: 10.1021/acs.accounts.1c00019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products are biosynthesized from a limited pool of starting materials via pathways that obey the same chemical logic as textbook organic reactions. Given the structure of a natural product, it is therefore often possible to predict its likely biosynthesis. Although biosynthesis mainly occurs in the highly specific chemical environments of enzymes, the field of biomimetic total synthesis attempts to replicate predisposed pathways using chemical reagents.We have followed several guidelines in our biomimetic approach to total synthesis. The overarching aim is to construct the same skeletal C-C and C-heteroatom bonds and in the same order as our biosynthetic hypothesis. In order to explore the innate reactivity of (bio)synthetic intermediates, the use of protecting groups is avoided or at least minimized. The key step, which is usually a cascade reaction, should be predisposed to selectively generate molecular complexity under substrate control (e.g., cycloadditions, radical cyclizations, carbocation rearrangements). In general, simple reagents and mild conditions are used; many of the total syntheses presented in this Account could be achieved using pre-1980s methodology. We have focused almost exclusively on the synthesis of meroterpenoids, that is, natural products of mixed terpene and aromatic polyketide origin, using commercially available terpenes and electron-rich aromatic compounds as starting materials. Finally, all of the syntheses in this Account involve a dearomatization step as a means to trigger a cascade reaction or to construct stereochemical complexity from a planar, aromatic intermediate.A biomimetic strategy can offer several advantages to a total synthesis project. Most obviously, successful biomimetic syntheses are usually concise and efficient, naturally adhering to the atom, step, and redox economies of synthesis. For example, in this Account, we describe a four-step synthesis of garcibracteatone and a three-step synthesis of nyingchinoid A. It is difficult to imagine shorter, non-biomimetic syntheses of these intricate molecules. Furthermore, biomimetic synthesis gives insight into biosynthesis by revealing the chemical relationships between biosynthetic intermediates. Access to these natural substrates allows collaboration with biochemists to help uncover the function of newly discovered enzymes and elucidate biosynthetic pathways, as demonstrated in our work on the napyradiomycin family. Third, by making biosynthetic connections between natural products, we can sometimes highlight incorrect structural assignments, and herein we discuss structure revisions of siphonodictyal B, rasumatranin D, and furoerioaustralasine. Last, biomimetic synthesis motivates the prediction of "undiscovered natural products" (i.e., missing links in biosynthesis), which inspired the isolation of prenylbruceol A and isobruceol.
Collapse
Affiliation(s)
- Jonathan H. George
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
9
|
Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021; 13:pharmaceutics13020230. [PMID: 33562128 PMCID: PMC7915176 DOI: 10.3390/pharmaceutics13020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Site-Specific release of active molecules with antimicrobial activity spurred the interest in the development of innovative polymeric nanocarriers. In the preparation of polymeric devices, nanotechnologies usually overcome the inconvenience frequently related to other synthetic strategies. High performing nanocarriers were synthesized using a wide range of starting polymer structures, with tailored features and great chemical versatility. Over the last decade, many antimicrobial substances originating from plants, herbs, and agro-food waste by-products were deeply investigated, significantly catching the interest of the scientific community. In this review, the most innovative strategies to synthesize nanodevices able to release antimicrobial natural extracts were discussed. In this regard, the properties and structure of the starting polymers, either synthetic or natural, as well as the antimicrobial activity of the biomolecules were deeply investigated, outlining the right combination able to inhibit pathogens in specific biological compartments.
Collapse
|
10
|
Mānuka Oil-A Review of Antimicrobial and Other Medicinal Properties. Pharmaceuticals (Basel) 2020; 13:ph13110343. [PMID: 33114724 PMCID: PMC7694078 DOI: 10.3390/ph13110343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Mānuka oil is an essential oil derived from Leptospermum scoparium, a plant that has been used by the indigenous populations of New Zealand and Australia for centuries. Both the extracted oil and its individual components have been associated with various medicinal properties. Given the rise in resistance to conventional antibiotics, natural products have been targeted for the development of antimicrobials with novel mechanism of action. This review aimed to collate available evidence on the antimicrobial, anti-parasitic and anti-inflammatory activities of mānuka oil and its components. A comprehensive literature search of was conducted using PubMed and Embase (via Scopus) targeting articles from database inception until June 2020. Chemical structures and IUPAC names were sourced from PubChem. Unpublished information from grey literature databases, Google search, targeted websites and Google Patents were also included. The present review found extensive in vitro data supporting the antimicrobial effects of mānuka oil warrants further clinical studies to establish its therapeutic potential. Clinical evidence on its efficacy, safety and dosing guidelines are necessary for its implementation for medical purposes. Further work on regulation, standardization and characterization of the medicinal properties of mānuka oil is required for establishing consistent efficacy of the product.
Collapse
|
11
|
Gu JH, Wang WJ, Chen JZ, Liu JS, Li NP, Cheng MJ, Hu LJ, Li CC, Ye WC, Wang L. Leptosperols A and B, Two Cinnamoylphloroglucinol-Sesquiterpenoid Hybrids from Leptospermum scoparium: Structural Elucidation and Biomimetic Synthesis. Org Lett 2020; 22:1796-1800. [PMID: 32091219 DOI: 10.1021/acs.orglett.0c00109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Leptosperols A and B (1 and 2), two cinnamoylphloroglucinol-sesquiterpenoid hybrids featuring unprecedented 1-benzyl-2-(2-phenylethyl) cyclodecane and 2-benzyl-3-phenylethyl decahydronaphthalene backbones, along with their biosynthetic precursor (3), were isolated from Leptospermum scoparium. Compounds 1 and 2 represent the first example of phloroglucinol derivatives biogenetically constructed by a De Mayo reaction. The biomimetic synthesis of leptosperol B (2) was achieved using the proposed biosynthetic pathway. In addition, compounds 1 and 2 showed significant anti-inflammatory effects in zebrafish acute inflammatory models.
Collapse
Affiliation(s)
- Ji-Hong Gu
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wen-Jing Wang
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun-Zi Chen
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ni-Ping Li
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Min-Jing Cheng
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.,Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Li-Jun Hu
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Chuang-Chuang Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
12
|
Liu F, Wu Y, Li NP, Liu JW, Wang L, Ye WC. Chiral Isolation and Absolute Configuration of (+)- and (-)-Xanchryones F and G from Xanthostemon chrysanthus. Chem Biodivers 2019; 17:e1900683. [PMID: 31797569 DOI: 10.1002/cbdv.201900683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023]
Abstract
(+)- and (-)-Xanchryones F and G ((+)- and (-)-1 and 2) were isolated from the plant Xanthostemon chrysanthus by chiral separation. Compounds 1 and 2 featured a new carbon skeleton with cinnamoyltriketone-flavone adducts. Their structures with absolute configurations were elucidated by detailed spectroscopic analyses and chemical calculations. The antibacterial and anti-inflammatory activities of (+)- and (-)-1 and 2 were evaluated.
Collapse
Affiliation(s)
- Fen Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Jiao-Wen Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
13
|
Gatadi S, Gour J, Nanduri S. Natural product derived promising anti-MRSA drug leads: A review. Bioorg Med Chem 2019; 27:3760-3774. [DOI: 10.1016/j.bmc.2019.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
14
|
Khaled A, Sleiman M, Darras E, Trivella A, Bertrand C, Inguimbert N, Goupil P, Richard C. Photodegradation of Myrigalone A, an Allelochemical from Myrica gale: Photoproducts and Effect of Terpenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7258-7265. [PMID: 31188589 DOI: 10.1021/acs.jafc.9b01722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study investigated the environmental fate of myrigalone A, a light absorbing natural herbicide found on leaves and fruits of Myrica gale. Myrigalone A was irradiated in water and as a dry solid deposit to simulate reactions on leaves, alone and in the presence of the terpenes generated by Myrica gale. The phototransformation was fast ( t1/2 = 35 min in water). Analyses by liquid chromatography coupled to high resolution orbitrap electrospray mass spectrometry (MS) and gas chromatography-MS revealed the formation of 11 photoproducts in water and solid and 9 in gaseous phase. Some were detected in the leaf glands and oil covering the fruits of Myrica gale, which suggested that photodegradation occurred in the field. Moreover, myrigalone A photoinduced the oxidation of terpenes that in turn protected it against photolysis. This highlights the need for additional research on the effect of terpenes on the photodegradation of pesticides on vegetation.
Collapse
Affiliation(s)
- Amina Khaled
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , Université Clermont Auvergne , F-63000 Clermont-Ferrand , France
| | - Mohamad Sleiman
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , Université Clermont Auvergne , F-63000 Clermont-Ferrand , France
| | - Etienne Darras
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , Université Clermont Auvergne , F-63000 Clermont-Ferrand , France
| | - Aurélien Trivella
- UMR CNRS 5805 EPOC - OASU, Equipe LPTC, IUT de Périgueux , Rue du Doyen Lajugie , 24000 Périgueux , France
| | - Cédric Bertrand
- USR 3278 CRIOBE, PSL Research University, EPHE-UPVD-CNRS, Université de Perpignan Via Domitia, Laboratoire d'Excellence ≪ CORAIL ≫ , Bâtiment T, 58 avenue P. Alduy , 66860 Perpignan , France
- AkiNaO SAS , F-66860 Perpignan , France
| | - Nicolas Inguimbert
- USR 3278 CRIOBE, PSL Research University, EPHE-UPVD-CNRS, Université de Perpignan Via Domitia, Laboratoire d'Excellence ≪ CORAIL ≫ , Bâtiment T, 58 avenue P. Alduy , 66860 Perpignan , France
| | - Pascale Goupil
- INRA, PIAF , Université Clermont Auvergne , F-63000 Clermont-Ferrand , France
| | - Claire Richard
- CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , Université Clermont Auvergne , F-63000 Clermont-Ferrand , France
| |
Collapse
|
15
|
Brachyanins A-C, pinene-derived meroterpenoids and phloroglucinol derivative from Leptospermum brachyandrum. Fitoterapia 2018; 130:184-189. [DOI: 10.1016/j.fitote.2018.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 01/24/2023]
|
16
|
Abstract
Hyperjapones F–I are tetracyclic meroterpenoids recently isolated from Hypericum japonicum. All four of these natural products have been synthesised using oxidative, intermolecular hetero-Diels–Alder reactions to couple their common biosynthetic precursor, norflavesone, to the appropriate monoterpene building blocks: sabinene, β-pinene, and α-pinene. The synthesis of enantiomerically pure hyperjapones H and I and comparison of their optical rotations to those of the natural samples indicated that these meroterpenoids are probably biosynthesised as either racemic or scalemic mixtures.
Collapse
|
17
|
Wicaksono WA, Sansom CE, Eirian Jones E, Perry NB, Monk J, Ridgway HJ. Arbuscular mycorrhizal fungi associated with Leptospermum scoparium (mānuka): effects on plant growth and essential oil content. Symbiosis 2017. [DOI: 10.1007/s13199-017-0506-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
|
19
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
20
|
Dumas E, Giraudo M, Goujon E, Halma M, Knhili E, Stauffert M, Batisson I, Besse-Hoggan P, Bohatier J, Bouchard P, Celle-Jeanton H, Costa Gomes M, Delbac F, Forano C, Goupil P, Guix N, Husson P, Ledoigt G, Mallet C, Mousty C, Prévot V, Richard C, Sarraute S. Fate and ecotoxicological impact of new generation herbicides from the triketone family: An overview to assess the environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2017; 325:136-156. [PMID: 27930998 DOI: 10.1016/j.jhazmat.2016.11.059] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/21/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Triketones, derived chemically from a natural phytotoxin (leptospermone), are a good example of allelochemicals as lead molecules for the development of new herbicides. Targeting a new and key enzyme involved in carotenoid biosynthesis, these latest-generation herbicides (sulcotrione, mesotrione and tembotrione) were designed to be eco-friendly and commercialized fifteen-twenty years ago. The mechanisms controlling their fate in different ecological niches as well as their toxicity and impact on different organisms or ecosystems are still under investigation. This review combines an overview of the results published in the literature on β-triketones and more specifically, on the commercially-available herbicides and includes new results obtained in our interdisciplinary study aiming to understand all the processes involved (i) in their transfer from the soil to the connected aquatic compartments, (ii) in their transformation by photochemical and biological mechanisms but also to evaluate (iii) the impacts of the parent molecules and their transformation products on various target and non-target organisms (aquatic microorganisms, plants, soil microbial communities). Analysis of all the data on the fate and impact of these molecules, used pure, as formulation or in cocktails, give an overall guide for the assessment of their environmental risks.
Collapse
Affiliation(s)
- E Dumas
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Giraudo
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - E Goujon
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Halma
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - E Knhili
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Stauffert
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France; Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - I Batisson
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Besse-Hoggan
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France.
| | - J Bohatier
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Bouchard
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - H Celle-Jeanton
- Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6524, LMV, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - M Costa Gomes
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - F Delbac
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Forano
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - P Goupil
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - N Guix
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, 63039 Clermont-Ferrand, France; VetAgro Sup, 89 avenue de l'Europe, BP 35, 63370 Lempdes, France; UMR Génétique Diversité et Ecophysiologie des Céréales, INRA-UBP, UMR 1095, 63000 Clermont-Ferrand, France
| | - P Husson
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - G Ledoigt
- Clermont Université, Université Blaise Pascal, Physique et Physiologie Intégratives de l'Arbre Fruitier et Forestier, 63000 Clermont-Ferrand, France; INRA, UMR PIAF 547, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Mallet
- Clermont Université, Université Blaise Pascal-Université d'Auvergne, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont Ferrand, France; CNRS, UMR 6023, LMGE, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Mousty
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - V Prévot
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - C Richard
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| | - S Sarraute
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, TSA 60026, CS 60026, 63178 Aubière Cedex, France
| |
Collapse
|
21
|
Liu F, Yuan T, Liu W, Ma H, Seeram NP, Li Y, Xu L, Mu Y, Huang X, Li L. Phloroglucinol Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activities from Eugenia jambolana Seeds. JOURNAL OF NATURAL PRODUCTS 2017; 80:544-550. [PMID: 28134521 DOI: 10.1021/acs.jnatprod.6b01073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fifteen new phloroglucinol derivatives, jamunones A-O (1-8 and 10-16, respectively), along with one known analogue spiralisone C (9), were isolated from Eugenia jambolana seeds. Their structures were elucidated by detailed nuclear magnetic resonance and mass spectrometry spectroscopic data interpretation. Compounds 1-9, 11, 12, and 14-16 inhibited protein tyrosine phosphatase 1B activity with IC50 values ranging from 0.42 to 3.2 μM.
Collapse
Affiliation(s)
- Feifei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Tao Yuan
- Key Laboratory of Plant Resources and Chemistry of Arid Zone and State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi 830011, People's Republic of China
| | - Wei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Li Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| |
Collapse
|
22
|
Lam HC, Spence JTJ, George JH. Biomimetic Total Synthesis of Hyperjapones A–E and Hyperjaponols A and C. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiu C. Lam
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| | | | - Jonathan H. George
- Department of Chemistry University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
23
|
Lam HC, Spence JTJ, George JH. Biomimetic Total Synthesis of Hyperjapones A-E and Hyperjaponols A and C. Angew Chem Int Ed Engl 2016; 55:10368-71. [PMID: 27461748 DOI: 10.1002/anie.201606091] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 11/08/2022]
Abstract
Hyperjapones A-E and hyperjaponols A-C are complex natural products of mixed aromatic polyketide and terpene biosynthetic origin that have recently been isolated from Hypericum japonicum. We have synthesized hyperjapones A-E using a biomimetic, oxidative hetero-Diels-Alder reaction to couple together dearomatized acylphloroglucinol and cyclic terpene natural products. Hyperjapone A is proposed to be the biosynthetic precursor of hyperjaponol C through a sequence of: 1) epoxidation; 2) acid-catalyzed epoxide ring-opening; and 3) a concerted, asynchronous alkene cyclization and 1,2-alkyl shift of a tertiary carbocation. Chemical mimicry of this proposed biosynthetic sequence allowed a concise total synthesis of hyperjaponol C to be completed in which six carbon-carbon bonds, six stereocenters, and three rings were constructed in just four steps.
Collapse
Affiliation(s)
- Hiu C Lam
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Justin T J Spence
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jonathan H George
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|