1
|
Song Y, Liu X, Zhao K, Ma R, Wu W, Zhang Y, Duan L, Li X, Xu H, Cheng M, Qin B, Qi Z. A new endophytic Penicillium oxalicum with aphicidal activity and its infection mechanism. PEST MANAGEMENT SCIENCE 2024; 80:5706-5717. [PMID: 38958097 DOI: 10.1002/ps.8288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Aphid infestation adversely affects the yield and quality of crops. Rapid reproduction and insecticidal resistance have made controlling aphids in the field challenging. Therefore, the present study investigated the insecticidal property of Penicillium oxalicum (QLhf-1) and its mechanism of action against aphids, Hyalopterus arundimis Fabricius. RESULTS Bioassay revealed that the control efficacy of the spores against aphids (86.30% and 89.05% on the third day and fifth day after infection, respectively) were higher than other components, such as the mycelium. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that QLhf-1 invaded the aphid cuticle through spores and used the aphid tissues as a nutrient source for growth and reproduction, causing stiffness and atrophy and a final death. Three extracellular enzymes, lipase, protease, and chitinase had a synergistic effect with spores, and they acted together to complete the infection process by degrading the aphid body wall and accelerating the infection process. CONCLUSION The newly discovered endophytic penicillin strain P. oxalicum 'QLhf-1' can effectively kill aphids. The results provided strong evidence for the biological control of aphids, and lay a foundation for the development and utilization of QLhf-1. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Song
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaoli Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kangbo Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ruyi Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wenjun Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Yuanyuan Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Longfei Duan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xinnuo Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hong Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Min Cheng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baofu Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhijun Qi
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| |
Collapse
|
2
|
Zhang X, Dong Y, Liu X, Wang R, Lu J, Song F. New bisabolane-type sesquiterpenoid from Aspergillus sydowii BTBU20213012. Nat Prod Res 2024; 38:2792-2799. [PMID: 37480345 DOI: 10.1080/14786419.2023.2236764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
A new bisabolane-type sesquiterpenoid, named (+)-8-dehydroxylaustrosene (1), along with ten known compounds, penicibisabolanes E (2) and G (3), (+)-austrosene (4), (S)-(+)-11-dehydrosydonic acid (5), sydonic acid (6), (7S,11S)-(+)-12-hydroxysydonic acid (7), (-)-(R)-hydroxysydonic acid (8), pseudaboydin A (9), (-)-(7 R,10R)-iso-10-hydroxysydowic acid (10), lumichrome (11), were identified from the fungus Aspergillus sydowii BTBU20213012 isolated from a marine sediment sample from the Western Pacific. The structures of the compounds were identified by HRESIMS and NMR data analysis. Compound 11 showed weak antimicrobial activity against Staphylococcus aureus with MIC value of 200 μg/mL.
Collapse
Affiliation(s)
- Xinjun Zhang
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Yifei Dong
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Xinyu Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Jie Lu
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| |
Collapse
|
3
|
Li Q, Lin W, Zhang X, Wang M, Zheng Y, Wang X, Gao G, Li Y, Zhao D, Zhang C. Transcriptomics integrated with metabolomics reveal the competitive relationship between co-cultured Trichoderma asperellum HG1 and Bacillus subtilis Tpb55. Microbiol Res 2024; 280:127598. [PMID: 38176360 DOI: 10.1016/j.micres.2023.127598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Microbial co-culture has proven to be an effective way to improve the ability of microorganisms to biocontrol. However, the interactive mechanisms of co-cultural microbes, especially between fungi and bacteria, have rarely been studied. By comparative analysis of morphology, transcriptomics and metabolomics, the interactive mechanisms of a sequential co-culture system of Trichoderma asperellum HG1 and Bacillus subtilis Tpb55 was explored in this study. The results revealed that co- culture has no significant effect on the growth and cell morphology of the two strains, but lead to mycelium wrinkling of HG1. RNA-seq analysis showed that co-culture significantly upregulated the HG1 genes concerning amino acid degradation and metabolism, proteolysis, resisting environmental stress, cell homeostasis, glycolysis, the glyoxylate cycle, and the citric acid (TCA) cycle, while Tpb55 genes related to cell homeostasis, spore formation and membrane fluidization were significantly upregulated, but genes associating to TCA, glycolytic cycles and fatty acid β-oxidation were significantly downregulated. Metabolomic results revealed that some amino acids related to energy metabolism were significantly altered in HG1, whereas palmitic acid, which is related to cell membrane functions, was upregulated in Tpb55. These results indicated that HG1 could interfere with carbon metabolism and cell membrane fluidity, but accelerate spore formation of Tpb55. Biophysical assays further convinced that co-culture could decrease ATP content and inhibit ATPase activity in HG1, and could promote spore formation and reduce the cell membrane fluidity of Tpb55. In addition, co-culture also accelerated the production of intracellular anti-oomycete compound octhilinone. The above results indicate that HG1 and Tpb55 are mainly in a competitive relationship in the co culture system. These findings provide new insights for understanding the interaction mechanism between co cultured microbes.
Collapse
Affiliation(s)
- Qingyu Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Wei Lin
- Nanping Branch of Fujian Tobacco Company, Nanping 353000, China
| | - Xifen Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Mei Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xianbo Wang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi 563000, China
| | - Gui Gao
- Southwest Guizhou Prefecture Branch of Guizhou Tobacco Company, Xingyi 562400, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
4
|
Yu HY, Chen YS, Wang Y, Zou ZB, Xie MM, Li Y, Li LS, Meng DL, Wu LQ, Yang XW. Anti-necroptosis and anti-ferroptosis compounds from the Deep-Sea-Derived fungus Aspergillus sp. MCCC 3A00392. Bioorg Chem 2024; 144:107175. [PMID: 38335757 DOI: 10.1016/j.bioorg.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Eight undescribed (1-8) and 46 known compounds (9-54) were isolated from the deep-sea-derived Aspergillus sp. MCCC 3A00392. Compounds 1-3 were three novel oxoindolo diterpenoids, 4-6 were three bisabolane sesquiterpenoids, while 7 and 8 were two monocyclic cyclopropanes. Their structures were established by exhaustive analyses of the HRESIMS, NMR, and theoretical calculations of the NMR data and ECD spectra. Compounds 10, 33, 38, and 39 were able to inhibit tumor necrosis factor (TNF)-induced necroptosis in murine L929 cell lines. Functional experiments verified that compounds 10 and 39 inhibited necroptosis by downregulating the phosphorylation of RIPK3 and MLKL. Moreover, compound 39 also reduced the phosphorylation of RIPK1. Compounds 10, 33, and 34 displayed potent inhibitory activities against RSL-3 induced ferroptosis with the EC50 value of 3.0 μM, 0.4 μM, and 0.1 μM, respectively. Compound 10 inhibited ferroptosis by the downregulation of HMOX1, while compounds 33 and 34 inhibited ferroptosis through regulation of NRF2/SLC7A11/GCLM axis. However, these compounds only showed weak effect in either the necroptosis or ferroptosis relative mouse disease models. Further studies of pharmacokinetics and pharmacodynamics might improve their in vivo bioactivities.
Collapse
Affiliation(s)
- Hao-Yu Yu
- School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu-Shi Chen
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - You Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Li-Sheng Li
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China
| | - Da-Li Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Lan-Qin Wu
- The School of Basic Medical Sciences, Fujian Medical University, 1 Xueyuan Road, Fuzhou 350122, China.
| | - Xian-Wen Yang
- School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
5
|
Bogas AC, Cruz FPN, Lacava PT, Sousa CP. Endophytic fungi: an overview on biotechnological and agronomic potential. BRAZ J BIOL 2024; 84:e258557. [DOI: 10.1590/1519-6984.258557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Endophytic fungi colonize the inter- and/or intracellular regions of healthy plant tissues and have a close symbiotic relationship with their hosts. These microorganisms produce antibiotics, enzymes, and other bioactive compounds that enable them to survive in competitive habitats with other microorganisms. In addition, secondary metabolites confer protection to their host plant against other bacterial and fungal pathogens and/or can promote plant growth. Endophytic fungi are viewed as a promising source of bioactive natural products, which can be optimized through changes in growing conditions. The exploration of novel bioactive molecules produced by these microorganisms has been attracting attention from researchers. The chemical and functional diversity of natural products from endophytic fungi exhibits a broad spectrum of applications in medicine, agriculture, industry and the environment. Fungal endophytes can also enhance the photoprotective effects and photochemical efficiency in the host plants. Modern omic approaches have facilitated research investigating symbiotic plant-endophytic fungi interactions. Therefore, research on endophytic fungi can help discovery novel biomolecules for various biotechnological applications and develop a sustainable agriculture.
Collapse
|
6
|
Li C, Qi Y, Sun Z, Jiang M, Li C. Way to efficient microbial paclitaxel mass production. Synth Syst Biotechnol 2023; 8:673-681. [PMID: 37954482 PMCID: PMC10632112 DOI: 10.1016/j.synbio.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The microbial synthesis of paclitaxel is attractive for its short-cycle, cost-effectiveness, and sustainability. However, low paclitaxel productivity, depleted capacity during subculture and storage, and unclear biosynthesis mechanisms restrain industrial microbial synthesis. Along with the isolation of various paclitaxel-producing microorganisms and the development of versatile molecular tools, tremendous promises for microbial paclitaxel synthesis have become increasingly prominent. In this review, we summarize the progress of microbial synthesis of paclitaxel in recent years, focusing on paclitaxel-producing endophytes and representative engineering microorganism hosts that were used as chassis for paclitaxel precursor synthesis. Numerous wide-type microbes can manufacture paclitaxel, and fermentation process optimization and strain improvement can greatly enhance the productivity. Engineered microbes can efficiently synthesize precursors of paclitaxel by introducing exogenous synthetic pathway. Mining paclitaxel synthetic pathways and genetic manipulation of endophytes will accelerate the construction of microbial cell factories, indefinitely contributing to paclitaxel mass production by microbes. This review emphasizes the potential and provides solutions for efficient microbial paclitaxel mass production.
Collapse
Affiliation(s)
- Chenyue Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanli Qi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Nanyang Institute of Medical Plant Technology and Industry, Nanyang, 473005, China
| | - Mengwan Jiang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Wu B, Xu C, Chen J, Chen G. Rhizoaspergillin A and Rhizoaspergillinol A, including a Unique Orsellinic Acid-Ribose-Pyridazinone- N-Oxide Hybrid, from the Mangrove Endophytic Fungus Aspergillus sp. A1E3. Mar Drugs 2023; 21:598. [PMID: 37999422 PMCID: PMC10671915 DOI: 10.3390/md21110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Two new compounds, named rhizoaspergillin A (1) and rhizoaspergillinol A (2), were isolated from the mangrove endophytic fungus Aspergillus sp. A1E3, associated with the fruit of Rhizophora mucronata, together with averufanin (3). The planar structures and absolute configurations of rhizoaspergillinol A (2) and averufanin (3) were established by extensive NMR investigations and quantum-chemical electronic circular dichroism (ECD) calculations. Most notably, the constitution and absolute configuration of rhizoaspergillin A (1) were unambiguously determined by single-crystal X-ray diffraction analysis of its tri-pivaloyl derivative 4, conducted with Cu Kα radiation, whereas those of averufanin (3) were first clarified by quantum-chemical ECD calculations. Rhizoaspergillin A is the first orsellinic acid-ribose-pyridazinone-N-oxide hybrid containing a unique β-oxo-2,3-dihydropyridazine 1-oxide moiety, whereas rhizoaspergillinol A (2) and averufanin (3) are sterigmatocystin and anthraquinone derivatives, respectively. From the perspective of biosynthesis, rhizoaspergillin A (1) could be originated from the combined assembly of three building blocks, viz., orsellinic acid, β-D-ribofuranose, and L-glutamine. It is an unprecedented alkaloid-N-oxide involving biosynthetic pathways of polyketides, pentose, and amino acids. In addition, rhizoaspergillinol A (2) exhibited potent antiproliferative activity against four cancer cell lines. It could dose-dependently induce G2/M phase arrest in HepG2 cells.
Collapse
Affiliation(s)
- Binbin Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| | - Chenglong Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China;
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China;
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| |
Collapse
|
8
|
Lin SH, Yan QX, Zhang Y, Wu TZ, Zou ZB, Liu QM, Jiang JY, Xie MM, Xu L, Hao YJ, Liu Z, Liu GM, Yang XW. Citriquinolinones A and B: Rare Isoquinolinone-Embedded Citrinin Analogues and Related Metabolites from the Deep-Sea-Derived Aspergillus versicolor 170217. Mar Drugs 2023; 21:504. [PMID: 37888439 PMCID: PMC10608187 DOI: 10.3390/md21100504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
A systematic chemical investigation of the deep-sea-derived fungus Aspergillus versicolor 170217 resulted in the isolation of six new (1-6) and 45 known (7-51) compounds. The structures of the new compounds were established on the basis of exhaustive analysis of their spectroscopic data and theoretical-statistical approaches including GIAO-NMR, TDDFT-ECD/ORD calculations, DP4+ probability analysis, and biogenetic consideration. Citriquinolinones A (1) and B (2) feature a unique isoquinolinone-embedded citrinin scaffold, representing the first exemplars of a citrinin-isoquinolinone hybrid. Dicitrinones K-L (3-4) are two new dimeric citrinin analogues with a rare CH-CH3 bridge. Biologically, frangula-emodin (32) and diorcinol (17) displayed remarkable anti-food allergic activity with IC50 values of 7.9 ± 3.0 μM and 13.4 ± 1.2 μM, respectively, while diorcinol (17) and penicitrinol A (20) exhibited weak inhibitory activity against Vibrio parahemolyticus, with MIC values ranging from 128 to 256 μM.
Collapse
Affiliation(s)
- Shui-Hua Lin
- Department of Pharmacy, Quanzhou Medical College, 2 Anji Road, Quanzhou 362000, China;
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| | - Qing-Xiang Yan
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| | - Yong Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| | - Tai-Zong Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| | - Qing-Mei Liu
- College of Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China; (Q.-M.L.); (G.-M.L.)
| | - Jia-Yang Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
- College of Life Sciences, Hainan University, 58 People’s Avenue, Haikou 570228, China;
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| | - You-Jia Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| | - Zhu Liu
- College of Life Sciences, Hainan University, 58 People’s Avenue, Haikou 570228, China;
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen 361021, China; (Q.-M.L.); (G.-M.L.)
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Q.-X.Y.); (Y.Z.); (T.-Z.W.); (Z.-B.Z.); (J.-Y.J.); (M.-M.X.); (L.X.); (Y.-J.H.)
| |
Collapse
|
9
|
Alanzi A, Elhawary EA, Ashour ML, Moussa AY. Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions. Arch Pharm Res 2023; 46:273-298. [PMID: 37032397 DOI: 10.1007/s12272-023-01442-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023]
Abstract
There is an urgent need for novel antibiotics to combat emerging resistant microbial strains. One of the most pressing resources is Aspergillus microbial cocultures. The genome of Aspergillus species comprises a far larger number of novel gene clusters than previously expected, and novel strategies and approaches are essential to exploit this potential source of new drugs and pharmacological agents. This is the first review consulting recent developments and chemical diversity of Aspergillus cocultures and highlighting its untapped richness. The analyzed data revealed that cocultivation of several Aspergillus species with other microorganisms, including bacteria, plants, and fungi, is a source of novel bioactive natural products. Various vital chemical skeleton leads were newly produced or augmented in Aspergillus cocultures, among which were taxol, cytochalasans, notamides, pentapeptides, silibinin, and allianthrones. The possibility of mycotoxin production or complete elimination in cocultivations was detected, which pave the way for better decontamination strategies. Most cocultures revealed a remarkable improvement in their antimicrobial or cytotoxic behavior due to their produced chemical patterns; for instance, weldone and asperterrin whose antitumor and antibacterial activities, respectively, were superior. Microbial cocultivation elicited the upregulation or production of specific metabolites whose importance and significance are yet to be revealed. With more than 155 compounds isolated from Aspergillus cocultures in the last 10 years, showing overproduction, reduction, or complete suppression under the optimized coculture circumstances, this study filled a gap for medicinal chemists searching for new lead sources or bioactive molecules as anticancer agents or antimicrobials.
Collapse
Affiliation(s)
- Abdullah Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt
| | - Mohamed L Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt
- Pharmacy Program, Department of Pharmaceutical Science, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain shams University, Cairo, 11566, Egypt.
| |
Collapse
|
10
|
Selegato DM, Castro-Gamboa I. Enhancing chemical and biological diversity by co-cultivation. Front Microbiol 2023; 14:1117559. [PMID: 36819067 PMCID: PMC9928954 DOI: 10.3389/fmicb.2023.1117559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
In natural product research, microbial metabolites have tremendous potential to provide new therapeutic agents since extremely diverse chemical structures can be found in the nearly infinite microbial population. Conventionally, these specialized metabolites are screened by single-strain cultures. However, owing to the lack of biotic and abiotic interactions in monocultures, the growth conditions are significantly different from those encountered in a natural environment and result in less diversity and the frequent re-isolation of known compounds. In the last decade, several methods have been developed to eventually understand the physiological conditions under which cryptic microbial genes are activated in an attempt to stimulate their biosynthesis and elicit the production of hitherto unexpressed chemical diversity. Among those, co-cultivation is one of the most efficient ways to induce silenced pathways, mimicking the competitive microbial environment for the production and holistic regulation of metabolites, and has become a golden methodology for metabolome expansion. It does not require previous knowledge of the signaling mechanism and genome nor any special equipment for cultivation and data interpretation. Several reviews have shown the potential of co-cultivation to produce new biologically active leads. However, only a few studies have detailed experimental, analytical, and microbiological strategies for efficiently inducing bioactive molecules by co-culture. Therefore, we reviewed studies applying co-culture to induce secondary metabolite pathways to provide insights into experimental variables compatible with high-throughput analytical procedures. Mixed-fermentation publications from 1978 to 2022 were assessed regarding types of co-culture set-ups, metabolic induction, and interaction effects.
Collapse
|
11
|
Matsumoto T, Watanabe T, Okayama M, Yoshikawa H, Maeda S, Kitagawa T. Chemical Structures and Cell Death Inducing Activities of the Metabolites of Aspergillus terreus. HETEROCYCLES 2023. [DOI: 10.3987/com-23-14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Zhao YY, Li YJ, Yu XM, Su QT, Wang LW, Zhu YS, Fu YH, Chen GY, Liu YP. Bisabolane-type sesquiterpenoids with potential anti-inflammatory and anti-HIV activities from the stems and leaves of Morinda citrifolia. Nat Prod Res 2022; 37:1961-1968. [PMID: 35975763 DOI: 10.1080/14786419.2022.2112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The phytochemical study on the stems and leaves of Morinda citrifolia L. resulted in the isolation of a new naturally occurring bisabolane-type sesquiterpenoid, morincitrinoid A (1), together with five known analogues (2-6). The chemical structure of 1 was elucidated by comprehensive spectral analyses. The known compounds 2-6 were identified by comparing their spectral data with those reported in the literature, which were isolated from M. citrifolia for the first time. In addition, the anti-inflammatory and anti-HIV activities of compounds 1-6 were evaluated in vitro. Compounds 1-6 displayed significant inhibitory activities on NO (nitric oxide) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells with IC50 values ranging from 0.98 ± 0.07 to 6.32 ± 0.11 μM, which was comparable to hydrocortisone. Meanwhile, compounds 1-6 showed remarkable anti-HIV-1 reverse transcriptase (RT) effects with the EC50 values ranging from 0.16 to 6.29 μM.
Collapse
Affiliation(s)
- Ying-Ying Zhao
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yu-Jie Li
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Xiao-Mei Yu
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Qin-Ting Su
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Li-Wen Wang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yu-Shu Zhu
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yan-Hui Fu
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yan-Ping Liu
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China.,Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| |
Collapse
|
13
|
Mohamed H, Awad MF, Shah AM, Sadaqat B, Nazir Y, Naz T, Yang W, Song Y. Coculturing of Mucor plumbeus and Bacillus subtilis bacterium as an efficient fermentation strategy to enhance fungal lipid and gamma-linolenic acid (GLA) production. Sci Rep 2022; 12:13111. [PMID: 35908106 PMCID: PMC9338991 DOI: 10.1038/s41598-022-17442-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
This study aimed to improve lipid and gamma-linolenic acid (GLA) production of an oleaginous fungus, Mucor plumbeus, through coculturing with Bacillus subtilis bacteria, optimising the environmental and nutritional culture conditions, and scaling them for batch fermentation. The maximum levels of biomass, lipid, fatty acid, and GLA in a 5 L bioreactor containing cellobiose and ammonium sulfate as the optimal carbon and nitrogen sources, respectively, achieved during the coculturing processes were 14.5 ± 0.4 g/L, 41.5 ± 1.3, 24 ± 0.8, and 20 ± 0.5%, respectively. This strategy uses cellobiose in place of glucose, decreasing production costs. The nutritional and abiotic factor results suggest that the highest production efficiency is achieved at 6.5 pH, 30 °C temperature, 10% (v/v) inoculum composition, 200 rpm agitation speed, and a 5-day incubation period. Interestingly, the GLA concentration of cocultures (20.0 ± 0.5%) was twofold higher than that of monocultures (8.27 ± 0.11%). More importantly, the GC chromatograms of cocultures indicated the presence of one additional peak corresponding to decanoic acid (5.32 ± 0.20%) that is absent in monocultures, indicating activation of silent gene clusters via cocultivation with bacteria. This study is the first to show that coculturing of Mucor plumbeus with Bacillus subtilis is a promising strategy with industrialisation potential for the production of GLA-rich microbial lipids and prospective biosynthesis of new products.
Collapse
Affiliation(s)
- Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Mohamed F Awad
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Aabid Manzoor Shah
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Beenish Sadaqat
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Yusuf Nazir
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Tahira Naz
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Wu Yang
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
14
|
Géry A, Séguin V, Eldin de Pécoulas P, Bonhomme J, Garon D. Aspergilli series Versicolores: importance of species identification in the clinical setting. Crit Rev Microbiol 2022:1-14. [PMID: 35758008 DOI: 10.1080/1040841x.2022.2082267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The moulds of the genus Aspergillus section Nidulantes series Versicolores are ubiquitous and particularly recurrent in indoor air. They are considered present in 70% of the bioaerosols to which we are exposed most of our time spent indoors. With the taxonomic revision proposed in 2012 and the discovery of four new species, the series Versicolores currently includes 18 species. These moulds, although considered as cryptic (except Aspergillus sydowii), are opportunistic pathogens that can exhibit increased minimal inhibitory concentrations to conventional antifungal agents. In this review, we discuss the ecology and clinical implications of each species belonging to the series Versicolores. This survey also highlights the lack of consideration for taxonomic revisions in clinical practice and in scientific studies which greatly limits the acquisition of specific knowledge on species belonging to the series Versicolores.
Collapse
Affiliation(s)
- Antoine Géry
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| | - Virginie Séguin
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| | | | - Julie Bonhomme
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France.,Department of Microbiology, Caen University Hospital, Caen, France
| | - David Garon
- Unicaen and Unirouen, ToxEMAC-ABTE, Centre F. Baclesse, Normandie Univ, Caen, France
| |
Collapse
|
15
|
Orfali R, Perveen S, AlAjmI MF, Ghaffar S, Rehman MT, AlanzI AR, Gamea SB, Essa Khwayri M. Antimicrobial Activity of Dihydroisocoumarin Isolated from Wadi Lajab Sediment-Derived Fungus Penicillium chrysogenum: In Vitro and In Silico Study. Molecules 2022; 27:molecules27113630. [PMID: 35684566 PMCID: PMC9182410 DOI: 10.3390/molecules27113630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotic resistance is considered a major health concern globally. It is a fact that the clinical need for new antibiotics was not achieved until now. One of the most commonly prescribed classes of antibiotics is β-Lactam antibiotics. However, most bacteria have developed resistance against β-Lactams by producing enzymes β-Lactamase or penicillinase. The discovery of new β-Lactamase inhibitors as new antibiotics or antibiotic adjuvants is essential to avoid future catastrophic pandemics. In this study, five dihydroisocoumarin: 6-methoxy mellein (1); 5,6-dihydroxymellein (2); 6-hydroxymellein (3); 4-chloro-6-hydroxymellein (4) and 4-chloro-5,6-di-hydroxymellein (5) were isolated from Wadi Lajab sediment-derived fungus Penicillium chrysogenum, located 15 km northwest of Jazan, KSA. The elucidation of the chemical structures of the isolated compounds was performed by analysis of their NMR, MS. Compounds 1–5 were tested for antibacterial activities against Gram-positive and Gram-negative bacteria. All of the compounds exhibited selective antibacterial activity against Gram-positive bacteria Staphylococcus aureus and Bacillus licheniformis except compound 3. The chloro-dihydroisocoumarin derivative, compound 4, showed potential antimicrobial activities against all of the tested strains with the MIC value between 0.8–5.3 μg/mL followed by compound 5, which exhibited a moderate inhibitory effect. Molecular docking data showed good affinity with the isolated compounds to β-Lactamase enzymes of bacteria; NDM-1, CTX-M, OXA-48. This work provides an effective strategy for compounds to inhibit bacterial growth or overcome bacterial resistance.
Collapse
Affiliation(s)
- Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
- Correspondence: (R.O.); or (S.P.)
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
- Correspondence: (R.O.); or (S.P.)
| | - Mohamed Fahad AlAjmI
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Safina Ghaffar
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Abdullah R. AlanzI
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Saja Bane Gamea
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| | - Mona Essa Khwayri
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.F.A.); (S.G.); (M.T.R.); (A.R.A.); (S.B.G.); (M.E.K.)
| |
Collapse
|
16
|
Cheng X, Wang J, Huang S, He J, Hong B, Yu M, Niu S. Bisabolane Sesquiterpenes with Anti-Inflammatory Activities from the Endophytic Fungus Penicillium citrinum DF47. Chem Biodivers 2022; 19:e202200178. [PMID: 35452170 DOI: 10.1002/cbdv.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Seven new bisabolane-type sesquiterpenes (1-7), namely penicibisabolanes A-G, together with eight known analogs (8-15) were obtained from the AcOEt extract of the millet fermentation broth of the endophytic fungus Penicillium citrinum DF47, which was isolated from the fresh root of Codonopsis pilosula (Franch.) Nannf. The gross structures of new metabolites were determined on the basis of the spectroscopic data (HR-ESI-MS, 1D and 2D NMR spectra), while their absolute configurations were resolved by comparison of the experimental and calculated ECD spectra, in association with specific rotation data. Compound 1 is a rare seco-trinor-bisabolane sesquiterpene found in nature, while 3 is the first example of phenolic bisabolanes bearing a methoxy group at C-1. All the isolates were evaluated their inhibitory effects against NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells. Among them, compounds 7 and 13 showed moderately anti-inflammatory effects with the inhibitory rate more than 50 % at the concentration of 20 μM.
Collapse
Affiliation(s)
- Xue Cheng
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, P. R. China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, P. R. China
| | - Juan Wang
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, P. R. China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, P. R. China
| | - Shuhuan Huang
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, P. R. China
| | - Jianlin He
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, P. R. China
| | - Bihong Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, P. R. China
| | - Miao Yu
- Engineering Research Center for Medicine, Ministry of Education, Harbin University of Commerce, Harbin, 150076, P. R. China
| | - Siwen Niu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, P. R. China
| |
Collapse
|
17
|
Zhao WY, Yi J, Chang YB, Sun CP, Ma XC. Recent studies on terpenoids in Aspergillus fungi: Chemical diversity, biosynthesis, and bioactivity. PHYTOCHEMISTRY 2022; 193:113011. [PMID: 34775270 DOI: 10.1016/j.phytochem.2021.113011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Metabolites from fungi are a major source of natural small molecule drugs in addition to plants, while fungal derived terpenoids have been confirmed to have great potentials in many diseases. Aspergillus fungi are distributed in every corner of the earth, and their terpenoid metabolites exhibit promising diversity in term of both their chemistry and bioactivity. This review attempted to provide timely and comprehensive coverage of chemical, biosynthesis, and biological studies on terpenoids discovered from the genus Aspergillus, including mono-, sesqui-, di-, sester-, tri-, and meroterpenoids, in the last decade. The structural characteristics, biosynthesis, and pharmacological activities of 288 terpenoids were introduced.
Collapse
Affiliation(s)
- Wen-Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jing Yi
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yi-Bo Chang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
18
|
Shang RY, Cui J, Li JX, Miao XX, Zhang L, Xie DD, Zhang L, Lin HW, Jiao WH. Nigerin and ochracenes J−L, new sesquiterpenoids from the marine sponge symbiotic fungus Aspergillus niger. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Gakuubi MM, Munusamy M, Liang ZX, Ng SB. Fungal Endophytes: A Promising Frontier for Discovery of Novel Bioactive Compounds. J Fungi (Basel) 2021; 7:786. [PMID: 34682208 PMCID: PMC8538612 DOI: 10.3390/jof7100786] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
For years, fungi have served as repositories of bioactive secondary metabolites that form the backbone of many existing drugs. With the global rise in infections associated with antimicrobial resistance, in addition to the growing burden of non-communicable disease, such as cancer, diabetes and cardiovascular ailments, the demand for new drugs that can provide an improved therapeutic outcome has become the utmost priority. The exploration of microbes from understudied and specialized niches is one of the promising ways of discovering promising lead molecules for drug discovery. In recent years, a special class of plant-associated fungi, namely, fungal endophytes, have emerged as an important source of bioactive compounds with unique chemistry and interesting biological activities. The present review focuses on endophytic fungi and their classification, rationale for selection and prioritization of host plants for fungal isolation and examples of strategies that have been adopted to induce the activation of cryptic biosynthetic gene clusters to enhance the biosynthetic potential of fungal endophytes.
Collapse
Affiliation(s)
- Martin Muthee Gakuubi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Madhaiyan Munusamy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (M.M.G.); (M.M.)
| |
Collapse
|
20
|
Kim JH, Lee N, Hwang S, Kim W, Lee Y, Cho S, Palsson BO, Cho BK. Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. J Ind Microbiol Biotechnol 2021; 48:6119915. [PMID: 33825906 PMCID: PMC9113425 DOI: 10.1093/jimb/kuaa001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023]
Abstract
Actinomycetes are a rich source of bioactive natural products important for novel drug leads. Recent genome mining approaches have revealed an enormous number of secondary metabolite biosynthetic gene clusters (smBGCs) in actinomycetes. However, under standard laboratory culture conditions, many smBGCs are silent or cryptic. To activate these dormant smBGCs, several approaches, including culture-based or genetic engineering-based strategies, have been developed. Above all, coculture is a promising approach to induce novel secondary metabolite production from actinomycetes by mimicking an ecological habitat where cryptic smBGCs may be activated. In this review, we introduce coculture studies that aim to expand the chemical diversity of actinomycetes, by categorizing the cases by the type of coculture partner. Furthermore, we discuss the current challenges that need to be overcome to support the elicitation of novel bioactive compounds from actinomycetes.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
21
|
Ortega HE, Torres-Mendoza D, Caballero E. Z, Cubilla-Rios L. Structurally Uncommon Secondary Metabolites Derived from Endophytic Fungi. J Fungi (Basel) 2021; 7:570. [PMID: 34356949 PMCID: PMC8308102 DOI: 10.3390/jof7070570] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/25/2023] Open
Abstract
Among microorganisms, endophytic fungi are the least studied, but they have attracted attention due to their high biological diversity and ability to produce novel and bioactive secondary metabolites to protect their host plant against biotic and abiotic stress. These compounds belong to different structural classes, such as alkaloids, peptides, terpenoids, polyketides, and steroids, which could present significant biological activities that are useful for pharmacological or medical applications. Recent reviews on endophytic fungi have mainly focused on the production of novel bioactive compounds. Here, we focus on compounds produced by endophytic fungi, reported with uncommon bioactive structures, establishing the neighbor net and diversity of endophytic fungi. The review includes compounds published from January 2015 to December 2020 that were catalogued as unprecedented, rare, uncommon, or possessing novel structural skeletons from more than 39 different genera, with Aspergillus and Penicillium being the most mentioned. They were reported as displaying cytotoxic, antitumor, antimicrobial, antiviral, or anti-inflammatory activity. The solid culture, using rice as a carbon source, was the most common medium utilized in the fermentation process when this type of compound was isolated.
Collapse
Affiliation(s)
- Humberto E. Ortega
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama; (H.E.O.); (D.T.-M.)
- Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama
| | - Daniel Torres-Mendoza
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama; (H.E.O.); (D.T.-M.)
- Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama
- Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panama City 0824, Panama
| | - Zuleima Caballero E.
- Center of Cellular and Molecular Biology of Diseases, Institute for Scientific Research and Technology Services (INDICASAT-AIP), Clayton 0843-01103, Panama;
| | - Luis Cubilla-Rios
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama; (H.E.O.); (D.T.-M.)
- Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama City 0824, Panama
| |
Collapse
|
22
|
Khattab AR, Farag MA. Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications. Crit Rev Biotechnol 2021; 42:403-430. [PMID: 34266351 DOI: 10.1080/07388551.2021.1940087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endophytic fungi are a kind of fungi that colonizes living plant tissues presenting a myriad of microbial adaptations that have been developed in such a hidden environment. Owing to its large diversity and particular habituation, they present a golden mine for research in the field of drug discovery. Endophytic fungal communities possess unique biocatalytic machinery that furnishes a myriad of complex natural product scaffolds. Xanthone compounds are examples of endophytic secondary metabolic products with pronounced biological activity to include: antioxidant, antimicrobial, anti-inflammatory, antithrombotic, antiulcer, choleretic, diuretic, and monoamine oxidase inhibiting activity.The current review compiles the recent progress made on the microbiological production of xanthones using fungal endophytes obtained from both marine and terrestrial origins, with comparisons being made among both natural resources. The biosynthesis of xanthones in endophytic fungi is outlined along with its decoding enzymes. Biotransformation reactions reported to be carried out using different endophytic microbial models are also outlined for xanthones structural modification purposes and the production of novel molecules.A promising application of novel computational tools is presented as a future direction for the goal of optimizing microbial xanthones production to include establishing metabolic pathway databases and the in silico analysis of microbial interactions. Metagenomics methods and related bioinformatics platforms are highlighted as unexplored tools for the biodiversity analysis of endophytic microbial communities that are difficult to be cultured.
Collapse
Affiliation(s)
- Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
23
|
Antiproliferative Illudalane Sesquiterpenes from the Marine Sediment Ascomycete Aspergillus oryzae. Mar Drugs 2021; 19:md19060333. [PMID: 34200759 PMCID: PMC8230370 DOI: 10.3390/md19060333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
The new asperorlactone (1), along with the known illudalane sesquiterpene echinolactone D (2), two known pyrones, 4-(hydroxymethyl)-5-hydroxy-2H-pyran-2-one (3) and its acetate 4, and 4-hydroxybenzaldehyde (5), were isolated from a culture of Aspergillus oryzae, collected from Red Sea marine sediments. The structure of asperorlactone (1) was elucidated by HR-ESIMS, 1D, and 2D NMR, and a comparison between experimental and DFT calculated electronic circular dichroism (ECD) spectra. This is the first report of illudalane sesquiterpenoids from Aspergillus fungi and, more in general, from ascomycetes. Asperorlactone (1) exhibited antiproliferative activity against human lung, liver, and breast carcinoma cell lines, with IC50 values < 100 µM. All the isolated compounds were also evaluated for their toxicity using the zebrafish embryo model.
Collapse
|
24
|
Wang NN, Liu CY, Wang T, Li YL, Xu K, Lou HX. Two New Quinazoline Derivatives from the Moss Endophytic Fungus Aspergillus sp. and Their Anti-inflammatory Activity. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:105-110. [PMID: 33219498 PMCID: PMC7933300 DOI: 10.1007/s13659-020-00287-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Two new quinazoline derivatives versicomides E (1) and F (2), and 10 known compounds (3-12) were isolated from the moss endophytic fungus Aspergillus sp. Their structures were determined on the basis of extensive spectroscopic data analysis and ECD calculations. Among them, the compound 7 (6-hydroxy-3-methoxyviridicatin) was first reported as a natural product. Inhibition on LPS-induced NO production in RAW 264.7 murine macrophages found that compounds 5, 7 and 8 showed significant inhibitory effects on NO production, with IC50 values of 49.85, 22.14 and 46.02 μM respectively.
Collapse
Affiliation(s)
- Ning-Ning Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Chun-Yu Liu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Tian Wang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Yue-Lan Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Ke Xu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
25
|
Niu S, Yang L, Zhang G, Chen T, Hong B, Pei S, Shao Z. Phenolic bisabolane and cuparene sesquiterpenoids with anti-inflammatory activities from the deep-sea-derived Aspergillus sydowii MCCC 3A00324 fungus. Bioorg Chem 2020; 105:104420. [DOI: 10.1016/j.bioorg.2020.104420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
|
26
|
5,5′-Oxybis(1,3,7-trihydroxy-9H-xanthen-9-one): A New Xanthone from the Stem Bark of Garcinia porrecta (Clusiaceae). MOLBANK 2020. [DOI: 10.3390/m1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new polyoxygenated dimer-type xanthone, namely 5,5′-oxybis(1,3,7-trihydroxy-9H-xanthen-9-one (1), has been isolated from the stem bark of Garcinia porrecta. The structure of 1 was determined based on spectroscopic data, including 1D and 2D-NMR as well as high resolution mass spectroscopy analysis.
Collapse
|
27
|
Perveen S, Alqahtani J, Orfali R, Aati HY, Al-Taweel AM, Ibrahim TA, Khan A, Yusufoglu HS, Abdel-Kader MS, Taglialatela-Scafati O. Antibacterial and Antifungal Sesquiterpenoids from Aerial Parts of Anvillea garcinii. Molecules 2020; 25:molecules25071730. [PMID: 32283756 PMCID: PMC7180898 DOI: 10.3390/molecules25071730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Two new sesquiterpenoids belonging to the guaiane, 4α,9α,10α-trihydroxyguaia-11(13)en-12,6α-olide (1), and germacrane, 9β-hydroxyparthenolide-9-O-β-D-glucopyranoside (2), classes have been isolated from the leaves of the Saudi medicinal plant Anvillea garcinii along with seven known compounds (3–9). The structures of the new metabolites were elucidated by spectroscopic analysis, including one-dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). The antimicrobial properties of 1–9 were screened against seven different pathogenic microbes, and compounds 1–3 showed a potent antifungal activity.
Collapse
Affiliation(s)
- Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University. P. O. Box 22452, Riyadh 11495, Saudi Arabia; (J.A.); (R.O.); (H.Y.A.); (A.M.A.-T.); (T.A.I.)
- Correspondence: (S.P.); (O.T.-S.)
| | - Jawaher Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University. P. O. Box 22452, Riyadh 11495, Saudi Arabia; (J.A.); (R.O.); (H.Y.A.); (A.M.A.-T.); (T.A.I.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University. P. O. Box 22452, Riyadh 11495, Saudi Arabia; (J.A.); (R.O.); (H.Y.A.); (A.M.A.-T.); (T.A.I.)
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University. P. O. Box 22452, Riyadh 11495, Saudi Arabia; (J.A.); (R.O.); (H.Y.A.); (A.M.A.-T.); (T.A.I.)
| | - Areej M. Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University. P. O. Box 22452, Riyadh 11495, Saudi Arabia; (J.A.); (R.O.); (H.Y.A.); (A.M.A.-T.); (T.A.I.)
| | - Taghreed A. Ibrahim
- Department of Pharmacognosy, College of Pharmacy, King Saud University. P. O. Box 22452, Riyadh 11495, Saudi Arabia; (J.A.); (R.O.); (H.Y.A.); (A.M.A.-T.); (T.A.I.)
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan;
| | - Hasan S. Yusufoglu
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (H.S.Y.); (M.S.A.-K.)
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia; (H.S.Y.); (M.S.A.-K.)
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Orazio Taglialatela-Scafati
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (S.P.); (O.T.-S.)
| |
Collapse
|
28
|
Arora D, Gupta P, Jaglan S, Roullier C, Grovel O, Bertrand S. Expanding the chemical diversity through microorganisms co-culture: Current status and outlook. Biotechnol Adv 2020; 40:107521. [PMID: 31953204 DOI: 10.1016/j.biotechadv.2020.107521] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/29/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Natural products (NPs) are considered as a cornerstone for the generation of bioactive leads in drug discovery programs. However, one of the major limitations of NP drug discovery program is "rediscovery" of known compounds, thereby hindering the rate of drug discovery efficiency. Therefore, in recent years, to overcome these limitations, a great deal of attention has been drawn towards understanding the role of microorganisms' co-culture in inducing novel chemical entities. Such induction could be related to activation of genes which might be silent or expressed at very low levels (below detection limit) in pure-strain cultures under normal laboratory conditions. In this review, chemical diversity of compounds isolated from microbial co-cultures, is discussed. For this purpose, chemodiversity has been represented as a chemical-structure network based on the "Tanimoto Structural Similarity Index". This highlights the huge structural diversity induced by microbial co-culture. In addition, the current trends in microbial co-culture research are highlighted. Finally, the current challenges (1 - induction monitoring, 2 - reproducibility, 3 - growth time effect and 4 - up-scaling for isolation purposes) are discussed. The information in this review will support researchers to design microbial co-culture strategies for future research efforts. In addition, guidelines for co-culture induction reporting are also provided to strengthen future reporting in this NP field.
Collapse
Affiliation(s)
- Divya Arora
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu 180001, India; Groupe Mer, Molécules, Santé-EA 2160, Faculté des Sciences pharmaceutiques et biologiques, Université de Nantes, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 01, France
| | - Prasoon Gupta
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu 180001, India
| | - Sundeep Jaglan
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu 180001, India
| | - Catherine Roullier
- Groupe Mer, Molécules, Santé-EA 2160, Faculté des Sciences pharmaceutiques et biologiques, Université de Nantes, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 01, France
| | - Olivier Grovel
- Groupe Mer, Molécules, Santé-EA 2160, Faculté des Sciences pharmaceutiques et biologiques, Université de Nantes, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 01, France
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, Faculté des Sciences pharmaceutiques et biologiques, Université de Nantes, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 01, France.
| |
Collapse
|
29
|
Pang X, Lin X, Zhou X, Yang B, Tian X, Wang J, Xu S, Liu Y. New quinoline alkaloid and bisabolane-type sesquiterpenoid derivatives from the deep-sea-derived fungus Aspergillus sp. SCSIO06786. Fitoterapia 2020; 140:104406. [DOI: 10.1016/j.fitote.2019.104406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
|
30
|
Yu S, Zhu YX, Peng C, Li J. Two new sterol derivatives isolated from the endophytic fungus Aspergillus tubingensis YP-2. Nat Prod Res 2019; 35:3277-3284. [PMID: 31790288 DOI: 10.1080/14786419.2019.1696793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two new sterol derivatives, namely ergosterimide B (1) and demethylincisterol A5 (2), along with eleven known metabolites (3-13), were isolated from the rice fermentation culture of Aspergillus tubingensis YP-2. The chemical structures were elucidated by detailed NMR and MS spectroscopic data and by comparison with reported data. Newly isolated compound 2 and known compound 3 were evaluated for their cytotoxicities against the A549 and HepG2 cell lines. Compound 2 showed weak activities with IC50 values of 11.05 and 19.15 μM, respectively, while 3 exhibited cytotoxicities with IC50 values of 5.34 and 12.03 μM, respectively, against the tested cell lines.
Collapse
Affiliation(s)
- Shui Yu
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, P. R. China
| | - Yuan-Xing Zhu
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, P. R. China
| | - Cheng Peng
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, P. R. China
| | - Jiyang Li
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai, P. R. China
| |
Collapse
|
31
|
Perveen S, Sadler IH, Orfali R, Al-Taweel AM, Murray L, Fry SC. Montbresides A-D: antibacterial p-coumaroyl esters of a new sucrose-based tetrasaccharide from Crocosmia × crocosmiiflora (montbretia) flowers. Fitoterapia 2019; 139:104377. [PMID: 31639407 DOI: 10.1016/j.fitote.2019.104377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Crocosmia × crocosmiiflora (montbretia) flowers yielded four esters (montbresides A-D) of a new sucrose-based tetrasaccharide, 3-O-β-d-glucopyranosyl-4´-O-α-d-rhamnopyranosyl-sucrose [β-d-Glc-(1 → 3)-α-d-Glc-(1↔2)-β-d-Fru-(4 ← 1)-α-d-Rha]. All four possess O-p-coumaroyl residues on C-3 of fructose and C-4 of α-glucose, plus O-acetyl residues on C-2 and C-3 of rhamnose and C-6 of fructose. Montbresides A and B are additionally O-acetylated on C-1 of fructose. The p-coumaroyls are trans- in montbresides A and C and cis- in B and D. Elemental compositions were determined from MS data, and structures from 1D and 2D NMR spectra. Monosaccharide residues were identified from selective 1D TOCSY spectra and TLC, and acylation sites from 2D HMBC spectra. Enantiomers were distinguished by enzymic digestion. Montbretia flower extracts were cytotoxic against six human cancerous cell-lines, but purified montbresides lacked cytotoxicity. Each montbreside displayed antibacterial activity against Staphylococcus aureus (minimal inhibitory concentration ~6 μg/ml). Montbretia is a potential source of new cytotoxins and antibacterial agents.
Collapse
Affiliation(s)
- Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,.
| | - Ian H Sadler
- School of Chemistry, The University of Edinburgh, UK
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Lorna Murray
- School of Chemistry, The University of Edinburgh, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, UK.
| |
Collapse
|
32
|
Antioxidant Nature Adds Further Therapeutic Value: An Updated Review on Natural Xanthones and Their Glycosides. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
33
|
Cai R, Jiang H, Zang Z, Li C, She Z. New Benzofuranoids and Phenylpropanoids from the Mangrove Endophytic Fungus, Aspergillus sp. ZJ-68. Mar Drugs 2019; 17:md17080478. [PMID: 31426620 PMCID: PMC6723808 DOI: 10.3390/md17080478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022] Open
Abstract
Three new benzofuranoids, asperfuranoids A-C (1-3), two new phenylpropanoid derivatives (6 and 7), and nine known analogues (4, 5, and 8-14) were isolated from the liquid substrate fermentation cultures of the mangrove endopytic fungus Aspergillus sp. ZJ-68. The structures of the new compounds were determined by extensive spectroscopic data interpretation. The absolute configurations of 1-3 were assigned via the combination of Mosher's method, and experimental and calculated electronic circular dichroism (ECD) data. Compounds 4 and 5 were a pair of enantiomers and their absolute configurations were established for the first time on the basis of their ECD spectra aided with ECD calculations. All isolated compounds (1-14) were evaluated for their enzyme inhibitory activity against α-glucosidase and antibacterial activities against four pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa). Among them, compound 6 exhibited potent inhibitory activity against α-glucosidase in a standard in vitro assay, with an IC50 value of 12.4 μM, while compounds 8 and 11 showed activities against S. aureus, E. coli, and B. subtilis, with MIC values in the range of 4.15 to 12.5 μg/mL.
Collapse
Affiliation(s)
- Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongming Jiang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenming Zang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunyuan Li
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China.
| |
Collapse
|
34
|
Secondary metabolites from the Aspergillus sp. in the rhizosphere soil of Phoenix dactylifera (Palm tree). BMC Chem 2019; 13:103. [PMID: 31410414 PMCID: PMC6686371 DOI: 10.1186/s13065-019-0624-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/31/2019] [Indexed: 12/03/2022] Open
Abstract
The soil-derived fungus Aspergillus sp. isolated from the rhizospheric soil of Phoenix dactylifera (Date palm tree) and cultured on the large scale solid rice medium yielded a novel compound 1-(4-hydroxy-2,6-dimethoxy-3,5-dimethylphenyl)-2-methyl-1-butanone (1) and four known compounds; citricin (2), dihydrocitrinone (3), 2, 3, 4-trimethyl-5, 7-dihydroxy-2, 3-dihydrobenzofuran (4) and oricinol (5). The structures of the isolated compounds were elucidated by MS, 1H, 13C and 2D NMR spectra. Compound (1) exhibited potent antimicrobial activities against Staphylococcus aureus with MIC values of 2.3 μg mL−1 and significant growth inhibitions of 82.3 ± 3.3 against Candida albicans and of 79.2 ± 2.6 against Candida parapsilosis. This is the first report to isolate metabolites from the fungus Aspergillus found in temperate region date plant rhizospheres.![]()
Collapse
|
35
|
Coumamarin: a first coumarinyl calcium complex isolated from nature. J Antibiot (Tokyo) 2019; 72:729-735. [DOI: 10.1038/s41429-019-0207-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/01/2019] [Accepted: 06/11/2019] [Indexed: 01/28/2023]
|
36
|
Perveen S, Alqahtani J, Orfali R, Al-Taweel AM, Yusufoglu HS, Abdel-Kader MS, Taglialatela-Scafati O. Antimicrobial guaianolide sesquiterpenoids from leaves of the Saudi Arabian plant Anvillea garcinii. Fitoterapia 2019; 134:129-134. [DOI: 10.1016/j.fitote.2019.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/23/2022]
|
37
|
Akone SH, Pham CD, Chen H, Ola ARB, Ntie-Kang F, Proksch P. Epigenetic modification, co-culture and genomic methods for natural product discovery. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Fungi and bacteria are encountered in many habitats where they live in complex communities interacting with one another mainly by producing secondary metabolites, which are organic compounds that are not directly involved in the normal growth, development, or reproduction of the organism. These organisms appear as a promising source for the discovery of novel bioactive natural products that may find their application in medicine. However, the production of secondary metabolites by those organisms when cultured axenically is limited as only a subset of biosynthetic genes is expressed under standard laboratory conditions leading to the search of new methods for the activation of the silent genes including epigenetic modification and co-cultivation. Biosynthetic gene clusters which produce secondary metabolites are known to be present in a heterochromatin state in which the transcription of constitutive genes is usually regulated by epigenetic modification including DNA methylation and histone deacetylation. Therefore, small-molecule epigenetic modifiers which promote changes in the structure of chromatin could control the expression of silent genes and may be rationally employed for the discovery of novel bioactive compounds. Co-cultivation, which is also known as mixed-fermentation, usually implies two or more microorganisms in the same medium in which the resulting competition is known to enhance the production of constitutively present compounds and/or to lead to the induction of cryptic metabolites that were not detected in axenic cultures of the considered axenic microorganism. Genomic strategies could help to identify biosynthetic gene clusters in fungal genomes and link them to their products by the means of novel algorithms as well as integrative pan-genomic approaches. Despite that all these techniques are still in their infancy, they appear as promising sources for the discovery of new bioactive compounds. This chapter presents recent ecological techniques for the discovery of new secondary metabolites that might find application in medicine.
Collapse
|
38
|
Pan R, Bai X, Chen J, Zhang H, Wang H. Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Front Microbiol 2019; 10:294. [PMID: 30863377 PMCID: PMC6399155 DOI: 10.3389/fmicb.2019.00294] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Microbial secondary metabolites (MSMs) have played and continue to play a highly significant role in the drug discovery and development process. Genetically, MSM chemical structures are biologically synthesized by microbial gene clusters. Recently, however, the speed of new bioactive MSM discovery has been slowing down due to consistent employment of conventional cultivation and isolation procedure. In order to alleviate this challenge, a number of new approaches have been developed. The strategy of one strain many compounds (OSMAC) has been shown as a simple and powerful tool that can activate many silent biogenetic gene clusters in microorganisms to make more natural products. This review highlights important and successful examples using OSMAC approaches, which covers changing medium composition and cultivation status, co-cultivation with other strain(s), adding enzyme inhibitor(s) and MSM biosynthetic precursor(s). Available evidences had shown that variation of cultivation condition is the most effective way to produce more MSMs and facilitate the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Rui Pan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jianwei Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
39
|
Özkaya FC, Ebrahim W, El-Neketi M, Tansel Tanrıkul T, Kalscheuer R, Müller WE, Guo Z, Zou K, Liu Z, Proksch P. Induction of new metabolites from sponge-associated fungus Aspergillus carneus by OSMAC approach. Fitoterapia 2018; 131:9-14. [DOI: 10.1016/j.fitote.2018.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
40
|
Inter-Kingdom beach warfare: Microbial chemical communication activates natural chemical defences. ISME JOURNAL 2018; 13:147-158. [PMID: 30116041 DOI: 10.1038/s41396-018-0265-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022]
Abstract
An inter-kingdom beach warfare between a Streptomyces sp. and Aspergillus sp. co-isolated from shallow water beach sand, collected off Heron Island, Queensland, Australia, saw the bacteriostatic Aspergillus metabolite cyclo-(L-Phe-trans-4-hydroxy-L-Pro) (3) stimulate the Streptomyces to produce nitric oxide (NO), which in turn mediated transcriptional activation of a silent biosynthetic gene cluster (BGC) for fungistatic heronapyrrole B (1). Structure activity relationship studies, coupled with the use of NO synthase inhibitors, donors and scavangers, and both genomic and transcriptomic analyses, confirmed the extraordinary chemical cue specificity of 3, and its NO-mediated mechanism of transcriptional action. Our findings reveal the importance of inter-kingdom (fungal-bacterial) chemical communication in the regulation of silent BGCs coding for chemical defenses. We propose that the detection and characterisation of NO mediated transcriptional activation (NOMETA) of silent chemical defences in the environment, may inspire broader application in the field of microbial biodiscovery.
Collapse
|
41
|
Wang W, Gong J, Liu X, Dai C, Wang Y, Li XN, Wang J, Luo Z, Zhou Y, Xue Y, Zhu H, Chen C, Zhang Y. Cytochalasans Produced by the Coculture of Aspergillus flavipes and Chaetomium globosum. JOURNAL OF NATURAL PRODUCTS 2018; 81:1578-1587. [PMID: 29969028 DOI: 10.1021/acs.jnatprod.8b00110] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cocultivation of Aspergillus flavipes and Chaetomium globosum, rich sources of cytochalasans, on solid rice medium, resulted in the production of 13 new, highly oxygenated cytochalasans, aspochalasinols A-D (1-4) and oxichaetoglobosins A-I (5-13), as well as seven known compounds (14-20). Of these compounds, 13 is a novel cytochalasan with an unexpected 2-norindole group. The isolated compounds were characterized by NMR spectroscopy, single-crystal X-ray crystallography, and ECD experiments. Compounds 1-4 represent the first examples of Asp-type cytochalasans with C-12 hydroxy groups, which may be a result of the coculture, as hydroxylated Me-12 groups are frequently found in Chae-type cytochalasans from C. globosum. In addition, 5-10 are unusual cytochalasans with an oxygenated C-10. Interestingly, 13 is the first example of a naturally occurring cytochalasan possessing a uniquely degraded indole ring that is derived from chaetoglobosin W, with 11 and 12 both serving as its biosynthetic intermediates. In the coculture of A. flavipes and C. globosum, most of these cytochalasans are more functionalized than normal cytochalasans, and the underlying causes may attract substantial attention from synthetic biologists. The cytotoxicities against five human cancer cell lines (SW480, HL-60, A549, MCF-7, and SMMC-7721) and the immunomodulatory activities of these new compounds were evaluated in vitro.
Collapse
Affiliation(s)
- Wenjing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Jiaojiao Gong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Xiaorui Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Chong Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yanyan Wang
- First College of Clinical Medical Science , China Three Gorges University & Yichang Central People's Hospital , Yichang 443003 , People's Republic of China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 650204 , People's Republic of China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yuan Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yongbo Xue
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , People's Republic of China
| |
Collapse
|
42
|
Arora D, Chashoo G, Singamaneni V, Sharma N, Gupta P, Jaglan S. Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris. J Appl Microbiol 2018; 124:730-739. [PMID: 29288594 DOI: 10.1111/jam.13683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 01/29/2023]
Abstract
AIMS The discovery of known bioactive chemical leads from microbial monocultures hinders the efficiency of drug discovery programmes. Therefore, in recent years, the use of fungal-bacterial coculture experiments has gained considerable attention due to their ability to generate new bioactive leads. In this work, fungal strain Setophoma terrestris was cocultured with Bacillus amyloliquifaciens to discover novel bioactive compounds. MATERIALS AND METHODS The bioactive methanolic coculture extract was chosen for the isolation of compounds by chromatographic methods. The isolated compounds were characterized by NMR and mass spectrometric techniques. CONCLUSION Coculture extract has resulted in the production of five blennolides. The novel compound, blennolide K was found active against PC-3 (prostate) and MCF-7 (breast) cell lines with an IC50 value of 3·7 ± 0·6 and 4·8 ± 0·4 μmol l-1 respectively. Furthermore, the nuclear morphology study in PC-3 cells after treatment with blennolide K, demonstrated chromatin condensation, formation of apoptotic bodies and shrinkage of cells. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, only few studies have reported the induction of bioactive compounds by coculture having long-distance inhibition morphology. This is principally due to the low occurrences of such morphology. Our study demonstrates the impact of coculture on production of new chemical leads in drug discovery programmes.
Collapse
Affiliation(s)
- D Arora
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Jammu, India
| | - G Chashoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - V Singamaneni
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - N Sharma
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Jammu, India
| | - P Gupta
- Academy of Scientific & Innovative Research (AcSIR), Jammu, India.,Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - S Jaglan
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific & Innovative Research (AcSIR), Jammu, India
| |
Collapse
|
43
|
Induced secondary metabolites from the endophytic fungus Aspergillus versicolor through bacterial co-culture and OSMAC approaches. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Deshmukh SK, Gupta MK, Prakash V, Saxena S. Endophytic Fungi: A Source of Potential Antifungal Compounds. J Fungi (Basel) 2018; 4:E77. [PMID: 29941838 PMCID: PMC6162562 DOI: 10.3390/jof4030077] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 01/27/2023] Open
Abstract
The emerging and reemerging forms of fungal infections encountered in the course of allogeneic bone marrow transplantations, cancer therapy, and organ transplants have necessitated the discovery of antifungal compounds with enhanced efficacy and better compatibility. A very limited number of antifungal compounds are in practice against the various forms of topical and systemic fungal infections. The trends of new antifungals being introduced into the market have remained insignificant while resistance towards the introduced drug has apparently increased, specifically in patients undergoing long-term treatment. Considering the immense potential of natural microbial products for the isolation and screening of novel antibiotics for different pharmaceutical applications as an alternative source has remained largely unexplored. Endophytes are one such microbial community that resides inside all plants without showing any symptoms with the promise of producing diverse bioactive molecules and novel metabolites which have application in medicine, agriculture, and industrial set ups. This review substantially covers the antifungal compounds, including volatile organic compounds, isolated from fungal endophytes of medicinal plants during 2013⁻2018. Some of the methods for the activation of silent biosynthetic genes are also covered. As such, the compounds described here possess diverse configurations which can be a step towards the development of new antifungal agents directly or precursor molecules after the required modification.
Collapse
Affiliation(s)
- Sunil K Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Manish K Gupta
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute (TERI), Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, India.
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Sanjai Saxena
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Deemed to be a University, Patiala, Punjab 147004, India.
| |
Collapse
|
45
|
Zhou R, Liao X, Li H, Li J, Feng P, Zhao B, Xu S. Isolation and Synthesis of Misszrtine A: A Novel Indole Alkaloid From Marine Sponge-Associated Aspergillus sp. SCSIO XWS03F03. Front Chem 2018; 6:212. [PMID: 29951479 PMCID: PMC6008316 DOI: 10.3389/fchem.2018.00212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 11/13/2022] Open
Abstract
A novel indole alkaloid, misszrtine A (1), was isolated from marine sponge-derived fungus Aspergillus sp. SCSIO XWS03F03. The planar structure of 1 was assigned by analysis of spectroscopic data, the absolute configuration of which was unambiguously determined by total synthesis. Compound 1 represents the first example of N-isopentenyl tryptophan methyl ester with a phenylpropanoic amide arm, which exhibited a potent antagonistic activity on HL60 (IC50 = 3.1 μM) and LNCaP (IC50 = 4.9 μM) cell lines. Bioactivity evaluation reveals that functional group on indole nitrogen of 1 has a great effect on its cytotoxity, which provides a mean to probe the structure-activity relationships of 1.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Xiaojian Liao
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Hangbin Li
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Jing Li
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, China
| | - BingXin Zhao
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Shihai Xu
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
46
|
Natural product diversity of actinobacteria in the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1467-1477. [DOI: 10.1007/s10482-018-1030-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
|
47
|
Küppers L, Ebrahim W, El-Neketi M, Özkaya FC, Mándi A, Kurtán T, Orfali RS, Müller WEG, Hartmann R, Lin W, Song W, Liu Z, Proksch P. Lactones from the Sponge-Derived Fungus Talaromyces rugulosus. Mar Drugs 2017; 15:md15110359. [PMID: 29135916 PMCID: PMC5706048 DOI: 10.3390/md15110359] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
The marine-derived fungus Talaromyces rugulosus isolated from the Mediterranean sponge Axinella cannabina and cultured on solid rice medium yielded seventeen lactone derivatives including five butenolides (1–5), seven (3S)-resorcylide derivatives (6–12), two butenolide-resorcylide dimers (13 and 14), and three dihydroisocoumarins (15–17). Among them, fourteen compounds (1–3, 6–16) are new natural products. The structures of the isolated compounds were elucidated by 1D and 2D NMR (Nuclear Magnetic Resonance) spectroscopy as well as by ESI-HRMS (ElectroSpray Ionization-High Resolution Mass Spectrometry). TDDFT-ECD (Time-Dependent Density Functional Theory-Electronic Circular Dichroism) calculations were performed to determine the absolute configurations of chiral compounds. The butenolide-resorcylide dimers talarodilactones A and B (13 and 14) exhibited potent cytotoxicity against the L5178Y murine lymphoma cell line with IC50 values of 3.9 and 1.3 µM, respectively.
Collapse
Affiliation(s)
- Lisa Küppers
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Weaam Ebrahim
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ferhat C Özkaya
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Raha S Orfali
- Department of Pharmacognosy, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Werner E G Müller
- Institute of Physiological Chemistry, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany.
| | - Rudolf Hartmann
- Institute of Complex Systems: Strukturbiochemie, ForschungszentrumJuelich, 52428 Juelich, Germany.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Weiguo Song
- FukangPharma, North-East of Dongwaihuan Road, Dongcheng Industrial Area, Shouguang City 262700, China.
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
48
|
Kamdem RST, Wang H, Wafo P, Ebrahim W, Özkaya FC, Makhloufi G, Janiak C, Sureechatchaiyan P, Kassack MU, Lin W, Liu Z, Proksch P. Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia 2017; 124:132-136. [PMID: 29106994 DOI: 10.1016/j.fitote.2017.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/16/2023]
Abstract
A new alkaloid, 1,2-dihydrophenopyrrozin (1), along with five known compounds (2-6) was isolated from an axenic culture of the endophytic fungus, Bionectria sp., obtained from seeds of the tropical plant Raphia taedigera. Co-cultivation of this fungus either with Bacillus subtilis or with Streptomyces lividans resulted in the production of two new o-aminobenzoic acid derivatives, bionectriamines A and B (7 and 8) as well as of two additional known compounds (9 and 10). None of the latter compounds (7-10) were detected in axenic cultures of the fungus or of the bacteria indicating activation of silent biogenetic gene clusters through co-cultivation with bacteria. The structures of the new compounds were unambiguously determined based on detailed NMR and MS spectroscopic analysis and by comparison with the literature. The crystal structure of agathic acid (6) is reported here for the first time. Penicolinate A (4) exhibited potent cytotoxic activity against the human ovarian cancer cell line A2780 with an IC50 value of 4.1μM.
Collapse
Affiliation(s)
- Ramsay S T Kamdem
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; Department of Organic Chemistry, Higher Teachers' Training College, University of Yaounde I, P. O. Box 47, Yaounde, Cameroon.
| | - Hao Wang
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Pascal Wafo
- Department of Organic Chemistry, Higher Teachers' Training College, University of Yaounde I, P. O. Box 47, Yaounde, Cameroon
| | - Weaam Ebrahim
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ferhat Can Özkaya
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Gamall Makhloufi
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Parichat Sureechatchaiyan
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
49
|
Shi Y, Pan C, Wang K, Chen X, Wu X, Chen CTA, Wu B. Synthetic multispecies microbial communities reveals shifts in secondary metabolism and facilitates cryptic natural product discovery. Environ Microbiol 2017; 19:3606-3618. [DOI: 10.1111/1462-2920.13858] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Yutong Shi
- Ocean College; Zhejiang University; Hangzhou 310058 China
| | - Chengqian Pan
- Ocean College; Zhejiang University; Hangzhou 310058 China
| | - Kuiwu Wang
- Department of Applied Chemistry; Zhejiang Gongshang University; Hangzhou 310058 China
| | - Xuegang Chen
- Ocean College; Zhejiang University; Hangzhou 310058 China
| | - Xiaodan Wu
- Ocean College; Zhejiang University; Hangzhou 310058 China
| | - Chen-Tung Arthur Chen
- Ocean College; Zhejiang University; Hangzhou 310058 China
- Department of Oceanography; National Sun Yat-Sen University; Kaohsiung 80424 Taiwan
| | - Bin Wu
- Ocean College; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
50
|
Wakefield J, Hassan HM, Jaspars M, Ebel R, Rateb ME. Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation. Front Microbiol 2017; 8:1284. [PMID: 28744271 PMCID: PMC5504103 DOI: 10.3389/fmicb.2017.01284] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
The frequent re-isolation of known compounds is one of the major challenges in drug discovery. Many biosynthetic genes are not expressed under standard culture conditions, thus limiting the chemical diversity of microbial compounds that can be obtained through fermentation. On the other hand, the competition during co-cultivation of two or more different microorganisms in most cases leads to an enhanced production of constitutively present compounds or an accumulation of cryptic compounds that are not detected in axenic cultures of the producing strain under different fermentation conditions. Herein, we report the dual induction of newly detected bacterial and fungal metabolites by the co-cultivation of the marine-derived fungal isolate Aspergillus fumigatus MR2012 and two hyper-arid desert bacterial isolates Streptomyces leeuwenhoekii strain C34 and strain C58. Co-cultivation of the fungal isolate MR2012 with the bacterial strain C34 led to the production of luteoride D, a new luteoride derivative and pseurotin G, a new pseurotin derivative in addition to the production of terezine D and 11-O-methylpseurotin A which were not traced before from this fungal strain under different fermentation conditions. In addition to the previously detected metabolites in strain C34, the lasso peptide chaxapeptin was isolated under co-culture conditions. The gene cluster for the latter compound had been identified through genome scanning, but it had never been detected before in the axenic culture of strain C34. Furthermore, when the fungus MR2012 was co-cultivated with the bacterial strain C58, the main producer of chaxapeptin, the titre of this metabolite was doubled, while additionally the bacterial metabolite pentalenic acid was detected and isolated for the first time from this strain, whereas the major fungal metabolites that were produced under axenic culture were suppressed. Finally, fermentation of the MR2012 by itself led to the isolation of the new diketopiperazine metabolite named brevianamide X.
Collapse
Affiliation(s)
- Jennifer Wakefield
- Marine Biodiscovery Centre, Department of Chemistry, University of AberdeenAberdeen, United Kingdom
| | - Hossam M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef UniversityBeni Suef, Egypt
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of AberdeenAberdeen, United Kingdom
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of AberdeenAberdeen, United Kingdom
| | - Mostafa E Rateb
- School of Science and Sport, University of the West of ScotlandPaisley, United Kingdom
| |
Collapse
|