1
|
Wang Q, Wu Z, Li C, Qin G, Hu X, Guo P, Ding A, Xu W, Wang W, Xuan L. Haperforatones A-M, thirteen undescribed limonoids from Harrisonia perforata with anti-inflammatory activity. Bioorg Chem 2024; 151:107631. [PMID: 39018800 DOI: 10.1016/j.bioorg.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
UPLC-Q-TOF-MS combined with mass defect filtering strategies were applied for the phytochemical investigation of Harrisonia perforata, leading to the isolation of thirteen undescribed limonoids named haperforatones A-M (1-13) and seventeen known compounds (14-30). Particularly, haperforatones D-E (4-5) have an unprecedented A, B, C, D-seco-6, 7-nor-C-24-limonoid skeleton, structurally stripped of the five-membered lactone ring B and formed a double bond at the C-5 and C-10 positions. Their 2D structures and relative configurations were identified using spectroscopic data. The absolute configurations of 1, 4, and 6 were established via X-ray diffraction crystallography. All 30 compounds were evaluated for anti-inflammatory potential in LPS-induced Raw 264.7 cell lines. Among those tested compounds, the most potent activity against LPS-induced NO generation was demonstrated by haperforatone F (6), with the IC50 value of inhibition NO production of 7.2 µM. Additionally, 6 could significantly inhibit IL-1β and IL-6 release and markedly downregulate the protein expression level of iNOS in the LPS-stimulated RAW264.7 cells at 10 µM. The possible mechanism of NO inhibition of 6 was also investigated using molecular docking, which revealed the interaction of compound 6 with the iNOS protein.
Collapse
Affiliation(s)
- Qing Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Zhitao Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Chenyue Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guoqing Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Xianggang Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Pengju Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Aoxue Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Wenjing Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China
| | - Wenqiong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| | - Lijiang Xuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
2
|
Wang S, Hou J, Jiang H, Lee D, Xu J, Guo Y. Sesquiterpene dimers with a rare skeleton from Chloranthus holostegius exhibiting multidrug resistance reversal activity in vitro and in vivo. Fitoterapia 2024; 177:106125. [PMID: 39019239 DOI: 10.1016/j.fitote.2024.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/20/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Two previously unreported lindenane sesquiterpene dimers (1 and 2) with a rare skeleton containing an oxaspiro[4.5]decane moiety were isolated from the roots of Chloranthus holostegius var. trichoneurus. Their structures were elucidated by HRESIMS, NMR, ECD, and NMR quantum chemical calculations, along with DP4+ probability analysis. In bioassay, compound 1 exhibited significant activity to reverse the multidrug resistance (MDR)in MCF-7/ADR cells, with an IC50 value of 4.4 μM. Further mechanistic studies revealed that compound 1 combined with doxorubicin could induce apoptosis of MCF-7/ADR cells and block the cell cycle in the G2/M phase. Mechanistically, compound 1 could inhibit the efflux function of P-glycoprotein (P-gp) using the zebrafish model. Finally, the enhanced chemotherapeutic effects of doxorubicin were further confirmed by in vivo zebrafish xenograft experiments.
Collapse
Affiliation(s)
- Sibei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Haojing Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
3
|
Jang AY, Kim M, Rod-In W, Nam YS, Yoo TY, Park WJ. In vitro immune-enhancing effects of Platycodon grandiflorum combined with Salvia plebeian via MAPK and NF-κB signaling in RAW264.7 cells. PLoS One 2024; 19:e0297512. [PMID: 38306362 PMCID: PMC10836713 DOI: 10.1371/journal.pone.0297512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/30/2023] [Indexed: 02/04/2024] Open
Abstract
The immune-enhancing activity of the combination of Platycodon grandiflorum and Salvia plebeian extracts (PGSP) was evaluated through macrophage activation using RAW264.7 cells. PGSP (250-1000 μg/mL) showed a higher release of NO in a dose-dependent manner. The results showed that PGSP could significantly stimulate the production of PGE2, COX-2, TNF-α, IL-1β, and IL-6 in RAW264.7 cells and promote iNOS, COX-2, TNF-α, IL-1β, IL-4, and IL-6 mRNA expression. Western blot analysis demonstrated that the protein expression of iNOS and COX-2 and the phosphorylation of ERK, JNK, p38, and NF-κB p65 were greatly increased in PGSP-treated cells. PGSP also promoted the phagocytic activity of RAW264.7 cells. All these results indicated that PGSP might activate macrophages through MAPK and NF-κB signaling pathways. Taken together, PGSP may be considered to have immune-enhancing activity and might be used as a potential immune-enhancing agent.
Collapse
Affiliation(s)
- A-Yeong Jang
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Minji Kim
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| | - Weerawan Rod-In
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | | | | | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
- Department of Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
| |
Collapse
|
4
|
Wang S, Shi Z, Zhang H, Hou J, Lee D, Xu J, Guo Y. Cycloartane-type triterpenoids and steroids from Trichilia connaroides and their multidrug resistance reversal activities. PHYTOCHEMISTRY 2023; 216:113867. [PMID: 37757926 DOI: 10.1016/j.phytochem.2023.113867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Four undescribed cycloartane-type triterpenoids (1-4) and seven undescribed steroids (6-12), along with five known analogues (5 and 13-16), were isolated from the leaves of Trichilia connaroides. Their structures were identified based on the NMR data and HRESIMS, and the absolute configurations were determined through single-crystal X-ray diffraction analysis, Mosher's method, and ECD calculations. The multidrug resistance (MDR) reversal activities of all the isolates were assessed, and compounds 10 and 11 showed significant activities to reverse the MDR of MCF-7/DOX cells with IC50 values of 2.90 and 3.76 μM, respectively. These bioactive compounds may bring fresh insights into the research and development of MDR reversal agents.
Collapse
Affiliation(s)
- Sibei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Zhaoyu Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Jiantong Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Xing H, Song Z, Guo R, Liu F, An L, Hu P, Guo Y. Secotrijugins A-D, four highly oxidized and rearranged limonoids from Trichilia sinensis and their anti-inflammatory activity. PHYTOCHEMISTRY 2023; 205:113502. [PMID: 36356672 DOI: 10.1016/j.phytochem.2022.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Four undescribed highly oxidized and rearranged limonoids, secotrijugins A-D, were purified from the leaves and twigs of Trichilia sinensis. Within them, secotrijugin A was characterized as a rare 30-nortrijugin-type limonoid with an unusual cleavage of 1,14-ether bond, secotrijugins B and C represented new examples with the cleavage of δ-lactone ring D, and secotrijugin D was a rare trijugin-type limonoid with an unusual 2,6-oxygen bridge. The structures of limonoids were characterized by means of spectroscopic analysis and ECD calculations. The cellular screening revealed that secotrijugin B was the most active against LPS-stimulated NO production in BV-2 cells, which played an anti-inflammatory role by downregulating COX-2 and iNOS protein expression. The further in vivo experiments confirmed that secotrijugin B had strong in vivo anti-inflammatory effect via suppressing NO and ROS generation.
Collapse
Affiliation(s)
- Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Ruichen Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Feng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Ping Hu
- Key Laboratory of Research on Pathogenesis of Allergen Provoked Allergic Disease in Liaoning Province, Shenyang Medical College, Shenyang, 110034, China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Caseatardies A-K, eleven undescribed clerodane diterpenoids isolated from Casearia tardieuae and their anti-inflammatory activity. Fitoterapia 2022; 163:105328. [DOI: 10.1016/j.fitote.2022.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
|
7
|
Zhang E, Chen J, Li X, Luo L, Ma Y, Zhang Q, Wang X. An improved ultra-high performance liquid chromatography-tandem mass spectrometry method determining hispidulin and homoplantaginin in rat plasma and associated pharmacokinetic studies. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Flavonoids are the most abundant components in Salvia plebeia, with significant pharmacological antioxidant and hepatoprotective properties. Hispidulin and homoplantaginin are the main flavonoid components in S. Plebeia. In this study, we established an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to determine hispidulin and homoplantaginin in rat plasma samples, which were precipitated using acetonitrile-methanol (9:1, v/v). We used a UPLC HSS T3 (100 mm × 2.1 mm, 1.7 μm diameter) chromatographic column, an acetonitrile-water (containing 0.1% formic acid) mobile phase, and a gradient elution flow rate of 0.4 mL min−1 in an elution time of 4 min. We used electrospray ionization (ESI) detection in positive ion mode, and multiple reaction monitoring mode (MRM) for quantitative analysis: m/z 301 → 286 for hispidulin, m/z 463 → 301 for homoplantaginin, and m/z 465 → 303 for internal standard (IS). In pharmacokinetic studies, 24 rats were orally administered hispidulin and homoplantaginin (5 mg kg−1) and received sublingual intravenous injections (1 mg kg−1) at two different doses, four groups with six rats/group. Differences in hispidulin and homoplantaginin pharmacokinetics in rat plasma were evaluated. The calibration curve showed good linearity in the 0.5–1,000 ng mL−1 range, with r > 0.99. Precision, accuracy, recovery, matrix effects, and stability results all met standard biological sample detection requirements. Our pharmacokinetic studies showed hispidulin bioavailability was much higher than homoplantaginin at 17.8% and 0.1%, respectively.
Collapse
Affiliation(s)
- En Zhang
- Clinical Laboratory, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, China
| | - Junying Chen
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xia Li
- Clinical Laboratory, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, China
| | - Lvqi Luo
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yizhe Ma
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingwei Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., Shanghai, China
| | - Xianqin Wang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Ge J, Liu Z, Zhong Z, Wang L, Zhuo X, Li J, Jiang X, Ye XY, Xie T, Bai R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorg Chem 2022; 124:105817. [DOI: 10.1016/j.bioorg.2022.105817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
9
|
Vrubliauskas D, Gross BM, Vanderwal CD. Stereocontrolled Radical Bicyclizations of Oxygenated Precursors Enable Short Syntheses of Oxidized Abietane Diterpenoids. J Am Chem Soc 2021; 143:2944-2952. [PMID: 33555176 DOI: 10.1021/jacs.0c13300] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The power of cation-initiated cyclizations of polyenes for the synthesis of polycyclic terpenoids cannot be overstated. However, a major limitation is the intolerance of many relevant reaction conditions toward the inclusion in the substrate of polar functionality, particularly in unprotected form. Radical polycyclizations are important alternatives to bioinspired cationic variants, in part owing to the range of possible initiation strategies, and in part for the functional group tolerance of radical reactions. In this article, we demonstrate that Co-catalyzed MHAT-initiated radical bicyclizations are not only tolerant of oxidation at virtually every position in the substrate, oftentimes in unprotected form, but these functional groups can also contribute to high levels of stereochemical control in these complexity-generating transformations. Specifically, we show the effects of protected or unprotected hydroxy groups at six different positions and their impact on stereoselectivity. Further, we show how multiply oxidized substrates perform in these reactions, and finally, we document the utility of these reactions in the synthesis of three aromatic abietane diterpenoids.
Collapse
Affiliation(s)
- Darius Vrubliauskas
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Benjamin M Gross
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Christopher D Vanderwal
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
10
|
|
11
|
Sadeghi Z, Masullo M, Cerulli A, Nazzaro F, Farimani MM, Piacente S. Terpenoid Constituents of Perovskia artemisioides Aerial Parts with Inhibitory Effects on Bacterial Biofilm Growth. JOURNAL OF NATURAL PRODUCTS 2021; 84:26-36. [PMID: 33378620 DOI: 10.1021/acs.jnatprod.0c00832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perovskia artemisioides is a perennial and aromatic plant distributed in the Baluchestan region of Iran. In the present work, an n-hexane extract of P. artemisioides aerial parts showed excellent capabilities to both inhibit the formation of biofilms by different Gram-positive and Gram-negative pathogens and block the cell metabolism within microbial biofilms. To correlate the activity of the extract with the biologically active compounds present, first an analytical approach based on LC-HRMS/MSn was carried out. The metabolite profile obtained guided the isolation of 21 compounds, among which two sesquiterpenes (8 and 9) and one diterpene (10) were found to be new. The antimicrobial activity of the isolated compounds was evaluated by determining how they were able not only to reduce the growth of different Gram-positive and Gram-negative human bacteria and phytopathogens but also to inhibit the formation of biofilms by these bacteria and affect the metabolism of microbial cells present within the biofilms. With the aim of correlating the activity exhibited by the extract with the concentration levels of the constituent compounds, a quantitative determination was carried out by an analytical approach based on LC-ESI/QTrap/MS.
Collapse
Affiliation(s)
- Zahra Sadeghi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, 1983969411 Tehran, Iran
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084 SA, Italy
| | - Milena Masullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084 SA, Italy
| | - Antonietta Cerulli
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084 SA, Italy
| | - Filomena Nazzaro
- Istituto di Scienze dell'Alimentazione CNR-ISA, Via Roma 64, 83100 Avellino, Italy
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, 1983969411 Tehran, Iran
| | - Sonia Piacente
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084 SA, Italy
| |
Collapse
|
12
|
Tewari D, Sah AN, Bawari S, Nabavi SF, Dehpour AR, Shirooie S, Braidy N, Fiebich BL, Vacca RA, Nabavi SM. Role of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr Neuropharmacol 2020; 19:114-126. [PMID: 32348225 PMCID: PMC8033982 DOI: 10.2174/1570159x18666200429001549] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive nitrogen species (RNS) and reactive oxygen species (ROS), collectively known as reactive oxygen and nitrogen species (RONS), are the products of normal cellular metabolism and interact with several vital biomolecules including nucleic acid, proteins, and membrane lipids and alter their function in an irreversible manner which can lead to cell death. There is an imperative role for oxidative stress in the pathogenesis of cognitive impairments and the development and progression of neural injury. Elevated production of higher amounts of nitric oxide (NO) takes place in numerous pathological conditions, such as neurodegenerative diseases, inflammation, and ischemia, which occur concurrently with elevated nitrosative/oxidative stress. The enzyme nitric oxide synthase (NOS) is responsible for the generation of NO in different cells by conversion of L-arginine (Arg) to L-citrulline. Therefore, the NO signaling pathway represents a viable therapeutic target. Naturally occurring polyphenols targeting the NO signaling pathway can be of major importance in the field of neurodegeneration and related complications. Here, we comprehensively review the importance of NO and its production in the human body and afterwards highlight the importance of various natural products along with their mechanisms against various neurodegenerative diseases involving their effect on NO production.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand 263136, India
| | - Sweta Bawari
- School of Pharmacy, Sharda University, Knowledge Park-III, Greater Noida, Uttar Pradesh, 201310, India
| | - Seyed F Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Ahmad R Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rosa A Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| |
Collapse
|
13
|
Chen Y, Liu H, Zou G, Yang W, Zhang L, Yan Z, Long Y, She Z. Bioactive sesquiterpene derivatives from mangrove endophytic fungus Phomopsis sp. SYSU-QYP-23: Structures and nitric oxide inhibitory activities. Bioorg Chem 2020; 107:104530. [PMID: 33323272 DOI: 10.1016/j.bioorg.2020.104530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Eight new sesquiterpene derivatives (2, 4-6 and 10-13), along with five known analogues were isolated from the mangrove endophytic fungus Phomopsis sp. SYSU-QYP-23. Their structures of new compounds were established by spectroscopic methods, and the absolute configurations were confirmed by single-crystal X-ray diffraction analysis and comparison of the experimental ECD spectra. The absolute configuration of the side chain in 1 was first defined by modified Mosher's method. Compounds 1-7 showed potent inhibitory activities against nitric oxide (NO) production in lipopolysaccharides (LPS) induced RAW 264.7 cells with IC50 values ranging from 8.6 to 14.5 μM. The molecular docking results implied that the bioactive sesquiterpenes may directly bind with targeting residues in the active cavity of iNOS protein.
Collapse
Affiliation(s)
- Yan Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China; National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Hongju Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Ge Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Wencong Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lishan Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Zhangyuan Yan
- School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Yuhua Long
- School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|
14
|
Ma Q, Wei R, Lu Q, Huang H, Guo D, Jiang L. Two New Flavones from Salvia plebeia and Their Anti-Angiogenic Activities. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Xing H, An L, Song Z, Li S, Wang H, Wang C, Zhang J, Tuerhong M, Abudukeremu M, Li D, Lee D, Xu J, Lall N, Guo Y. Anti-Inflammatory ent-Kaurane Diterpenoids from Isodon serra. JOURNAL OF NATURAL PRODUCTS 2020; 83:2844-2853. [PMID: 32993289 DOI: 10.1021/acs.jnatprod.9b01281] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ten new ent-kaurane diterpenoids, including two pairs of epimers 1/2 and 4/5 and a 6,7-seco-ent-kauranoid 10, were obtained from the aerial parts of Isodon serra. The structures of the new compounds were confirmed by extensive spectroscopic methods and electronic circular dichroism (ECD) data analysis. An anti-inflammatory assay was applied to evaluate their nitric oxide (NO) inhibitory activities by using LPS-stimulated BV-2 cells. Compounds 1 and 9 exhibited notable NO production inhibition with IC50 values of 15.6 and 7.3 μM, respectively. Moreover, the interactions of some bioactive diterpenoids with inducible nitric oxide synthase (iNOS) were explored by employing molecular docking studies.
Collapse
Affiliation(s)
- Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
16
|
Zhan R, Li D, Liu YL, Xie XY, Chen L, Shao LD, Wang WJ, Chen YG. Structural elucidation, bio-inspired synthesis, and biological activities of cyclic diarylpropanes from Horsfieldia kingii. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Du M, An L, Xu J, Guo Y. Euphnerins A and B, Diterpenoids with a 5/6/6 Rearranged Spirocyclic Carbon Skeleton from the Stems of Euphorbia neriifolia. JOURNAL OF NATURAL PRODUCTS 2020; 83:2592-2596. [PMID: 32822173 DOI: 10.1021/acs.jnatprod.0c00249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Euphnerins A (1) and B (2), two extremely modified diterpenoids possessing an unprecedented 5/6/6 rearranged spirocyclic carbon skeleton, and a biosynthetically related known diterpenoid (3) were purified from the stems of Euphorbia neriifolia. Their structures were identified by NMR experiments and X-ray diffraction analysis, as well as experimental and calculated electronic circular dichroism data comparison. A putative biosynthetic relationship of 1 and 2 with their presumed precursor 3 is proposed. Compound 1 showed NO inhibitory effects in lipopolysaccharide-stimulated BV-2 cells with an IC50 value of 22.4 μM.
Collapse
Affiliation(s)
- Min Du
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
18
|
Liu W, Song Z, Wang H, Yang X, Joubert E, Zhang J, Li S, Tuerhong M, Abudukeremu M, Jin J, Xu J, Lee D, Guo Y. Diterpenoids as potential anti-inflammatory agents from Ajuga pantantha. Bioorg Chem 2020; 101:103966. [DOI: 10.1016/j.bioorg.2020.103966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
|
19
|
Zhang J, Ye Q, Yin C, Wu A, Xu X. xOPBE: A Specialized Functional for Accurate Prediction of 13C Chemical Shifts. J Phys Chem A 2020; 124:5824-5831. [PMID: 32579357 DOI: 10.1021/acs.jpca.0c02873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, we present a new hybrid functional denoted as xOPBE, which is optimized at the 6-311+G(2d,p) basis set and designed with a specific aim of providing accurate 13C chemical shifts. By mixing the Hartree-Fock exchange into the OPBE functional, xOPBE provides a significantly improved overall performance as compared to its parent OPBE functional, while OPBE was shown previously as an excellent functional for 13C chemical shifts. Even in the case of the 1-adamantyl cation, for which OPBE completely fails in reproducing the experimental results, xOPBE still performs very well with similar accuracy as the standard CCSD(T) method with a large basis set. Our results also demonstrate that xOPBE not only can improve quantitatively the description of the correct assignments given by OPBE but also can revert OPBE's incorrect assignments qualitatively. Thus, we would like to recommend the use of xOPBE for routine evaluations of 13C chemical shifts.
Collapse
Affiliation(s)
- Jinkun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Qing Ye
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Chao Yin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Anan Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
20
|
Dong B, Yang X, Liu W, An L, Zhang X, Tuerhong M, Du Q, Wang C, Abudukeremu M, Xu J, Lee D, Shuai L, Lall N, Guo Y. Anti-inflammatory neo-Clerodane Diterpenoids from Ajuga pantantha. JOURNAL OF NATURAL PRODUCTS 2020; 83:894-904. [PMID: 32216313 DOI: 10.1021/acs.jnatprod.9b00629] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eight new neo-clerodane diterpenoids (1-8) were acquired from the aerial parts of Ajuga pantantha. Spectroscopic data analysis permitted the definition of their structures, and experimental and calculated electronic circular dichroism data were used to define their absolute configurations. Compounds 2 and 4-8 were found to have NO inhibitory effects with IC50 values of 20.2, 45.5, 34.0, 27.0, 45.0, and 25.8 μM, respectively. The more potent compounds 2, 6, and 8 were analyzed to establish their anti-inflammatory mechanism, including regulation of the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins as well as their binding interactions with the two proteins.
Collapse
Affiliation(s)
- Bangjian Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenpei Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Qing Du
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining 810007, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
21
|
Liu F, Ma J, Shi Z, Zhang Q, Wang H, Li D, Song Z, Wang C, Jin J, Xu J, Tuerhong M, Abudukeremu M, Shuai L, Lee D, Guo Y. Clerodane Diterpenoids Isolated from the Leaves of Casearia graveolens. JOURNAL OF NATURAL PRODUCTS 2020; 83:36-44. [PMID: 31916761 DOI: 10.1021/acs.jnatprod.9b00515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A phytochemical survey aiming to acquire pharmacologically active substances has resulted in the isolation of nine new clerodane diterpenoids, named graveospenes A-I (1-9), from the leaves of Casearia graveolens. Spectroscopic methods were employed to establish the structures with their absolute configurations being confirmed by ECD data analysis. A biological evaluation was performed, and compound 1 was found to be cytotoxic to both human lung cancer cells (A549) and human hepatocellular carcinoma cells (HepG2). A mechanism-of-action study on 1 revealed this compound to induce apoptosis of A549 cells and impede them at the G0/G1 stage.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Jun Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Zhaoyu Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Qi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine , Nankai Hospital Affiliated to Nankai University , Tianjin 300100 , People's Republic of China
| | - Zhaohui Song
- State Key Laboratory of Core Technology in Innovative Chinese Medicine , Tasly Pharmaceutical Group Co., Ltd. , Tianjin 300410 , People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital , Tianjin 300192 , People's Republic of China
| | - Jin Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences , Kashgar University , Kashgar 844000 , People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences , Kashgar University , Kashgar 844000 , People's Republic of China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
22
|
Liu XY, Zhang YB, Yang XW, Yang YF, Xu W, Zhao W, Peng KF, Gong Y, Liu NF, Zhang P. Anti-Inflammatory Activity of Some Characteristic Constituents from the Vine Stems of Spatholobus suberectus. Molecules 2019; 24:molecules24203750. [PMID: 31627460 PMCID: PMC6832230 DOI: 10.3390/molecules24203750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The dried vine stems of Spatholobus suberectus are commonly used in traditional Chinese medicine for treating gynecological and cardiovascular diseases. In this study, five new compounds named spasuberol A (2), homovanillyl-4-oxo-nonanoate (5), spasuberol C (6), spasuberoside A (14), and spasuberoside B (15), together with ten known compounds (1, 3, 4, 7–13), were isolated from the dried vine stems of S. suberectus. Their chemical structures were analyzed using spectroscopic assays. This is the first study interpreting the detailed structural information of 4. The anti-inflammatory activity of these compounds was evaluated by reducing nitric oxide overproduction in RAW264.7 macrophages stimulated by lipopolysaccharide. Compounds 1 and 8–10 showed strong inhibitory activity with half maximal inhibitory concentration (IC50) values of 5.69, 16.34, 16.87, and 6.78 μM, respectively, exhibiting higher activity than the positive drug l-N6-(1-iminoethyl)-lysine (l-NIL) with an IC50 value of 19.08 μM. The IC50 values of inhibitory activity of compounds 2 and 4–6 were 46.26, 40.05, 45.87, and 28.29 μM respectively, which were lower than l-NIL, but better than that of positive drug indomethacin with an IC50 value of 55.44 μM. Quantitative real-time polymerase chain reaction analysis revealed that assayed compounds with good anti-inflammatory activity, such as 1, 6, 9, and 10 at different concentrations, can reduce the messenger RNA (mRNA) expression of some pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2). The anti-inflammatory activity and the possible mechanism of the compounds mentioned in this paper were studied preliminarily.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - You-Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan-Fang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Zhao
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Kai-Feng Peng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Ni-Fu Liu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| |
Collapse
|
23
|
Liang Y, An L, Shi Z, Zhang X, Xie C, Tuerhong M, Song Z, Ohizumi Y, Lee D, Shuai L, Xu J, Guo Y. Bioactive Diterpenoids from the Stems of Euphorbia antiquorum. JOURNAL OF NATURAL PRODUCTS 2019; 82:1634-1644. [PMID: 31180680 DOI: 10.1021/acs.jnatprod.9b00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A total of 18 diterpenoids, including 10 new analogues (1-10), were isolated from Euphorbia antiquorum. The structures were characterized by spectroscopic techniques, and circular dichroism data analysis was adopted to confirm the absolute configurations of 1-10. Compounds 1-9 were classified as ent-atisane diterpenoids, and 10 was assigned as an ent-kaurane diterpenoid. The biological evaluation of nitric oxide (NO) production inhibition was conducted, and all of these isolates showed the property of inhibiting NO generation in lipopolysaccharide-induced BV-2 cells. Further research on molecular docking disclosed the affinities between the diterpenoids obtained and inducible nitric oxide synthase.
Collapse
Affiliation(s)
- Yue Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Zhaoyu Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Xuke Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences , Kashgar University , Kashgar 844000 , People's Republic of China
| | - Zhaohui Song
- State Key Laboratory of Core Technology in Innovative Chinese Medicine , Tasly Pharmaceutical Group Co., Ltd. , Tianjin 300410 , People's Republic of China
| | | | - Dongho Lee
- College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources , Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
24
|
Xi Y, An L, Yang X, Song Z, Zhang J, Tuerhong M, Jin DQ, Ohizumi Y, Lee D, Xu J, Guo Y. NO inhibitory phytochemicals as potential anti-inflammatory agents from the twigs of Trigonostemon heterophyllus. Bioorg Chem 2019; 87:417-424. [DOI: 10.1016/j.bioorg.2019.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/14/2019] [Accepted: 03/13/2019] [Indexed: 11/17/2022]
|
25
|
Cytotoxic clerodane diterpenoids from the leaves of Casearia kurzii. Bioorg Chem 2019; 85:558-567. [DOI: 10.1016/j.bioorg.2019.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
|
26
|
Shi Z, An L, Yang X, Xi Y, Zhang C, Shuo Y, Zhang J, Jin DQ, Ohizumi Y, Lee D, Xu J, Guo Y. Nitric oxide inhibitory limonoids as potential anti-neuroinflammatory agents from Swietenia mahagoni. Bioorg Chem 2019; 84:177-185. [DOI: 10.1016/j.bioorg.2018.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/28/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023]
|
27
|
Wang P, Xie C, An L, Yang X, Xi Y, Yuan S, Zhang C, Tuerhong M, Jin DQ, Lee D, Zhang J, Ohizumi Y, Xu J, Guo Y. Bioactive Diterpenoids from the Stems of Euphorbia royleana. JOURNAL OF NATURAL PRODUCTS 2019; 82:183-193. [PMID: 30730729 DOI: 10.1021/acs.jnatprod.8b00493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two ingenane- (1 and 2), two ent-atisane- (3 and 4), two ent-kaurane- (5 and 6), two ent-abietane- (7 and 8), and one ent-isopimarane-type (9) diterpenoid and 12 known analogues have been isolated from the methanolic extract of the stems of Euphorbia royleana. Their structures, including absolute configurations, were determined by extensive spectroscopic methods and ECD data analysis. The nitric oxide inhibitory activities of those diterpenoids were examined biologically in lipopolysaccharide-stimulated BV-2 cells, with compounds 1, 2, 5-7, 10, and 12 having IC50 values lower than 40 μM. Molecular docking was used to investigated the possible mechanism of compounds 1, 2, 5-7, 10, and 12.
Collapse
Affiliation(s)
- Peixia Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yaru Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Shuo Yuan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Chenyue Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry , Kashgar University , Kashgar 844000 , People's Republic of China
| | - Da-Qing Jin
- School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering , Shihezi University , Shihezi 832003 , People's Republic of China
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute , Tohoku Fukushi University , Sendai 989-3201 , Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
28
|
Zhang X. Mechanistic study on the intramolecular oxa-[4 + 2] cycloaddition of substituted o-divinylbenzenes. J Mol Model 2019; 25:14. [PMID: 30607638 DOI: 10.1007/s00894-018-3883-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
|
29
|
Bioactive seco-abietane rearranged diterpenoids from the aerial parts of Salvia prionitis. Bioorg Chem 2018; 81:454-460. [DOI: 10.1016/j.bioorg.2018.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023]
|
30
|
Wang Q, Hu Z, Li X, Wang A, Wu H, Liu J, Cao S, Liu Q. Salviachinensines A-F, Antiproliferative Phenolic Derivatives from the Chinese Medicinal Plant Salvia chinensis. JOURNAL OF NATURAL PRODUCTS 2018; 81:2531-2538. [PMID: 30370766 DOI: 10.1021/acs.jnatprod.8b00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Six new phenolic acid derivatives, salviachinensines A-F (1-6), together with 14 known compounds (7-20) were isolated from the Chinese medicinal plant Salvia chinensis. The structures of salviachinensines A-F (1-6) were elucidated by NMR spectroscopy, bioinspired chemical synthesis, ECD analysis, and quantum chemical calculation methods. Compounds 2 and 3 are a pair of cis- trans isomers, and compounds 5 and 6 a pair of epimers. The solvent-induced isomerization of compounds 5 and 6 and the hypothetical biogenetic pathway of compounds 1-6, as well as the antiproliferative property and the ability of 1 to induce apoptosis and arrest cell cycle progression of MOLM-13 cells, were also investigated.
Collapse
Affiliation(s)
- Qi Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
- Institutes of Chronic Disease , Qingdao University , Qingdao 266003 , People's Republic of China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Xixiang Li
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Aoli Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Hong Wu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Jing Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy , University of Hawai'i at Hilo , Hilo , Hawaii 96720 , United States
| | - Qingsong Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , People's Republic of China
- Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , People's Republic of China
| |
Collapse
|
31
|
Carpescernolides A and B, rare oxygen bridge-containing sesquiterpene lactones from Carpesium cernuum. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Yu HF, Zhao H, Liu RX, Ma LF, Zhan ZJ. Salpleflavone, A New Flavone Glucoside from Salvia Plebeia. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15287191770216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salpleflavone, a new flavone glucoside bearing a sinapinoyl moiety, was isolated from the aerial parts of Salvia plebeia R. Br., together with three known compounds, salplebeone A, salplebeone D and 6- O-methyl-scutellarein. The structure of the new compound was established by detailed analyses of the spectroscopic data, especially 1D and 2D NMR and HR-ESI-MS.
Collapse
Affiliation(s)
- Hang-Fei Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Hong Zhao
- First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, P.R. China
| | - Ruo-Xi Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
33
|
Sun X, Liu F, Yang X, Wang J, Dong B, Xie C, Jin DQ, Zhang J, Lee D, Ohizumi Y, Xu J, Guo Y. Seco-labdane diterpenoids from the leaves of Callicarpa nudiflora showing nitric oxide inhibitory activity. PHYTOCHEMISTRY 2018; 149:31-41. [PMID: 29455054 DOI: 10.1016/j.phytochem.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Nine previously undescribed seco-labdane diterpenoids, nudiflopenes A-I, were isolated from the leaves of Callicarpa nudiflora. Their structures were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by the modified Mosher's method and experimental and calculated electronic circular dichroism spectra. Nudiflopenes A-I belong to the class of seco-labdane diterpenoids. All of the isolates showed inhibitory activities on lipopolysaccharide-induced nitric oxide (NO) production in murine microglial BV-2 cells. The possible mechanism of NO inhibition of some bioactive compounds was also investigated using molecular docking, which revealed interactions of bioactive compounds with the inducible nitric oxide synthase (iNOS) protein.
Collapse
Affiliation(s)
- Xiaocong Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Feng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jinghan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Bangjian Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yasushi Ohizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
34
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
35
|
Liu F, Yang X, Liang Y, Dong B, Su G, Tuerhong M, Jin DQ, Xu J, Guo Y. Daphnane diterpenoids with nitric oxide inhibitory activities and interactions with iNOS from the leaves of Trigonostemon thyrsoideus. PHYTOCHEMISTRY 2018; 147:57-67. [PMID: 29289737 DOI: 10.1016/j.phytochem.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/18/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
A phytochemical investigation to search for new nitric oxide (NO) inhibitors resulted in the isolation of seven previously undescribed daphnane diterpenoids, thyrsoidpenes A-G, from the leaves of Trigonostemon thyrsoideus. Their structures including absolute configurations were elucidated on the basis of extensive NMR spectroscopic data analysis and the time-dependent density functional theory (TDDFT) electronic circular dichroism (ECD) calculations. Thyrsoidpenes B-G feature rare polycyclic caged structures of daphnane diterpenoid orthoester. The NO inhibitory effects were examined and all of the compounds showed inhibitory activities toward LPS-induced NO production in murine microglial BV-2 cells. The possible mechanism of NO inhibition of some bioactive compounds was also investigated using molecular docking, which revealed the interactions of bioactive compounds with the iNOS protein.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yue Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Bangjian Dong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Guochen Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashgar University, Kashgar 844000, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
36
|
Wang P, Yang X, Liu F, Liang Y, Su G, Tuerhong M, Jin DQ, Xu J, Lee D, Ohizumi Y, Guo Y. Nitric oxide inhibitors with a spiro diterpenoid skeleton from Scutellaria formosana : Structures, NO inhibitory effects, and interactions with iNOS. Bioorg Chem 2018; 76:53-60. [DOI: 10.1016/j.bioorg.2017.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023]
|
37
|
Ma J, Ren Q, Dong B, Shi Z, Zhang J, Jin DQ, Xu J, Ohizumi Y, Lee D, Guo Y. NO inhibitory constituents as potential anti-neuroinflammatory agents for AD from Blumea balsamifera. Bioorg Chem 2018; 76:449-457. [DOI: 10.1016/j.bioorg.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 12/03/2017] [Indexed: 01/14/2023]
|
38
|
Wang P, Liu F, Yang X, Liang Y, Li S, Su G, Jin DQ, Ohizumi Y, Xu J, Guo Y. Clerodane diterpenoids from Scutellaria formosana with inhibitory effects on NO production and interactions with iNOS protein. PHYTOCHEMISTRY 2017; 144:141-150. [PMID: 28934646 DOI: 10.1016/j.phytochem.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/13/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
A phytochemical study on Scutellaria formosana afforded five previously undescribed spiro-diterpenoids, scutellapenes A-E. The structures were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis, and the absolute configurations of these compounds were established by the time-dependent density functional theory (TDDFT) electronic circular dichroism (ECD) calculations. Scutellapenes B-E possess a spiro-diterpenoid skeleton. All of the compounds showed inhibitory effects on LPS-induced nitric oxide (NO) production in murine microglial BV-2 cells. The further molecular docking studies revealed that these bioactive compounds had strong interactions with the iNOS protein.
Collapse
Affiliation(s)
- Peixia Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Feng Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Xueyuan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Yue Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Shen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Guochen Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Yasushi Ohizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
39
|
Liu F, Yang X, Ma J, Yang Y, Xie C, Tuerhong M, Jin DQ, Xu J, Lee D, Ohizumi Y, Guo Y. Nitric oxide inhibitory daphnane diterpenoids as potential anti-neuroinflammatory agents for AD from the twigs of Trigonostemon thyrsoideus. Bioorg Chem 2017; 75:149-156. [DOI: 10.1016/j.bioorg.2017.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/14/2023]
|
40
|
Phytochemicals with NO inhibitory effects and interactions with iNOS protein from Trigonostemon howii. Bioorg Chem 2017; 75:71-77. [DOI: 10.1016/j.bioorg.2017.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023]
|
41
|
Liu Q, Wang J, Li D, Gao GL, Yang C, Gao Y, Xia W. Synthesis of Oxatricyclooctanes via Photoinduced Intramolecular Oxa-[4+2] Cycloaddition of Substituted o-Divinylbenzenes. J Org Chem 2017; 82:7856-7868. [PMID: 28699349 DOI: 10.1021/acs.joc.7b01055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photolysis of substituted o-divinylbenzenes promotes a one-step and metal-free conversion to oxatricycles at room temperature. Irradiation o-divinylbenzenes results in an pericyclic reaction to form cyclic o-quinodiemthane intermediates, which subsequently undergo intramolecular oxa-[4+2] cycloaddition to form oxacyclic derivatives.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen) , Shenzhen 518055, China
| | - Junlei Wang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen) , Shenzhen 518055, China
| | - Dazhi Li
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen) , Shenzhen 518055, China
| | - Guo-Lin Gao
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen) , Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen) , Shenzhen 518055, China
| | - Yuan Gao
- School of Chemistry and chemical Engineering, Yantai University , #30 Qingquan RD, Laishan District, Yantai 264005, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen) , Shenzhen 518055, China
| |
Collapse
|
42
|
Ma LF, Wang PF, Wang JD, Tong XM, Shan WG, Zhang H, Zhan ZJ. New Eudesmane Sesquiterpenoids from Salvia plebeia
R. Br
. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Lie-Feng Ma
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Peng-Fei Wang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Ji-Dong Wang
- Department of New Drug Screening; Zhejiang Hisun Pharmaceutical Co., Ltd.; Taizhou 318000 P. R. China
| | - Xiang-Min Tong
- Clinical Research Institute; Zhejiang Provincial People's Hospital; Hangzhou 310014 P. R. China
| | - Wei-Guang Shan
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Hui Zhang
- Department of New Drug Screening; Zhejiang Hisun Pharmaceutical Co., Ltd.; Taizhou 318000 P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| |
Collapse
|
43
|
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial as opposed to marine sources and includes labdanes, clerodanes, abietanes, pimaranes, kauranes, cembranes and their cyclization products. The literature from January to December, 2016 is reviewed.
Collapse
|