1
|
Xia H, Noushahi HA, Khan AH, Liu Y, Cosoveanu A, Cui L, Tang J, Iqbal S, Shu S. Genome sequencing of Colletotrichum gloeosporioides ESO026 reveals plausible pathway of HupA. Mol Biol Rep 2022; 49:11611-11622. [PMID: 36161578 DOI: 10.1007/s11033-022-07850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Colletotrichum gloeosporioides ES026, isolated as an endophytic fungal strain, was found to produce the important medicinal compound HuperzineA (HupA). In a genetic context, ES026 showed potential in elucidating the biosynthetic pathway of HupA. METHODS AND RESULTS The ES026 strain was sequenced using de-novo Illumina sequencing methods in this study. Assembling the cleaned data resulted in 58,594,804bp, consisting of 404 scaffolds. The G + C mol % content of this genome was 52.53%. The genome progressive-alignment with other 4 Colletotrichum strains revealed that ES026 showed closer relation with 030206, SMCG1#C and Nara gc5. More than 60 putative biosynthetic clusters were predicted with the fungal version antiSMASH4.0 program. More than 33 types I polyketide-related biosynthetic gene clusters were distributed, containing PKS and PKS-NRPS (polyketide-nonribosomal peptides) hybrid gene clusters. Another 8 NRPS biosynthetic gene clusters were distributed among the genome of ES026. The prenyltransferases, probably involved in aromatic prenyl-compounds and terpenoid biosynthesis, were analyzed using bioinformatics tools like MEGA. CONCLUSION We predicted a new possible biosynthetic pathway for the HupA from the pipecolic acid, based on the published HupA biosynthesis proposed pathway, the biosynthesis and pipecolic acid-derived compounds. We hypothesize that a hybrid PKS-NRPS mega-enzyme was probably involved in the biosynthesis of HupA with the pipecolic acid, the building block of rapamycin, as a HupA precursor. The rapamycin is produced from a polyketide biosynthesis pathway, and the domain incorporating the pipecolic acid is studied.
Collapse
Affiliation(s)
- Haiyang Xia
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Bio-Pharmaceuticals Institute , Taizhou University, 317000, Taizhou, China
| | - Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ying Liu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Andreea Cosoveanu
- Department of Botany, Ecology & Plant Physiology, CIPEV Group, Faculty of Science, Biology Section, Universidad de La Laguna, 38206, San Cristobal de La Laguna, Tenerife, Spain
| | - Lingli Cui
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jing Tang
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shehzad Iqbal
- Faculty of Agricultural Sciences, University of Talca, 3460000, Talca, Chile
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
2
|
Ishiuchi K, Nagumo A, Kawaguchi M, Furuyashiki H, Nakagawa H, Hirose D. Stereochemistries of Mariannamides C and D, Two Lipohexapeptides, Isolated from Mariannaea elegans NBRC102301. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Daley SK, Cordell GA. Biologically Significant and Recently Isolated Alkaloids from Endophytic Fungi. JOURNAL OF NATURAL PRODUCTS 2021; 84:871-897. [PMID: 33534564 DOI: 10.1021/acs.jnatprod.0c01195] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A selection of the established and recently characterized alkaloids from the exploration of plant- and some marine-associated endophytic fungi is reviewed, with reference to alkaloids of biological significance.
Collapse
Affiliation(s)
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
4
|
Biological Activity of Endophytic Fungi from the Roots of the Medicinal Plant Vernonia anthelmintica. Microorganisms 2020; 8:microorganisms8040586. [PMID: 32316675 PMCID: PMC7232482 DOI: 10.3390/microorganisms8040586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Endophytic fungi were first isolated from the fresh root of the Chinese medicinal plant Vernonia anthelmintica collected from the Hotan Prefecture within the Xinjiang Autonomous region of the People’s Republic of China. This plant has been used in Uyghur traditional medicine to treat vitiligo, a skin condition characterized by patches of the skin losing their pigment. In total, fifteen fungal strains were isolated. Among these, four endophytic fungi were identified by their DNA sequences and registered to GenBank with accession numbers. The isolates were identified as Schizophyllum commune XJA1, Talaromyces sp. XJA4, Aspergillus sp. XJA6, Aspergillus terreus XJA8. Ethyl acetate extracts of all fungal strains were used to quantify melanin content and to identify in vitro biological activity assays including antimicrobial, antioxidant, cytotoxic, antidiabetic and tyrosinase activity on B16 cells. Among the extracts of all four identified strains, the ethyl acetate extract of the Aspergillus sp. XJA6 was chosen for further characterization because it presented the highest biological activity against these tests. In addition, twenty four volatile compounds from the petroleum ether fraction were characterized by GC–MS.
Collapse
|
5
|
Qin Y, Liu X, Lin J, Huang J, Jiang X, Mo T, Xu Z, Li J, Yang R. Two new phthalide derivatives from the endophytic fungus Penicillium vulpinum isolated from Sophora tonkinensis. Nat Prod Res 2019; 35:421-427. [PMID: 31274005 DOI: 10.1080/14786419.2019.1636237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two new phthalide derivatives, (-)-3-carboxypropyl-7-hydroxyphthalide (1) and (-)-3-carboxypropyl-7-hydroxyphthalide methyl ester (2), were isolated from the endophytic fungus Penicillium vulpinum isolated from the Chinese medicinal plant Sophora tonkinensis. Their structures were elucidated using spectroscopic methods, mainly on 1D and 2D NMR. Compound 1 exhibited medium antibacterial activities against Bacillus subtilis, Shigella dysenteriae and Enterobacter areogenes with MIC values of 12.5-25 μg/mL, and 2 showed a medium inhibition to E. areogenes with MIC value of 12.5 μg/mL.
Collapse
Affiliation(s)
- Yuyue Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Xiaobo Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Jing Lin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Jingying Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Xiaofei Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Tuxiang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Zhaolong Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| | - Ruiyun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P. R. China
| |
Collapse
|
6
|
Feng H, Zhang Y, Zhang Z, Chen F, Huang L. Copper-Catalyzed Annulation/A3
-Coupling Cascade: Diastereodivergent Synthesis of Sterically Hindered Monocyclic Oxazolidines Bearing Multiple Stereocenters. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Yazhen Zhang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Zedi Zhang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Fubei Chen
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|
7
|
Ishiuchi K, Kitanaka S, Hirose D, Takahashi Y, Miyagawa R, Watanabe K. Isochromophilol A, a New Azaphilone Isolated from Penicillium sp. RO369, a Leaf Litter Inhabiting Fungus from Tsuga diversifolia. HETEROCYCLES 2019. [DOI: 10.3987/com-19-14164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Ariantari NP, Daletos G, Mándi A, Kurtán T, Müller WEG, Lin W, Ancheeva E, Proksch P. Expanding the chemical diversity of an endophytic fungus Bulgaria inquinans, an ascomycete associated with mistletoe, through an OSMAC approach. RSC Adv 2019; 9:25119-25132. [PMID: 35528664 PMCID: PMC9069884 DOI: 10.1039/c9ra03678d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
An endophytic fungus Bulgaria inquinans (isolate MSp3-1), isolated from mistletoe (Viscum album), was subjected to fermentation on solid Czapek medium. Chromatographic workup of the crude EtOAc extract yielded five new natural products (1–5). Subsequent application of the “One Strain, MAny Compounds” (OSMAC) strategy on this strain by the addition of a mixture of salts (MgSO4, NaNO3 and NaCl) to solid Czapek medium induced the accumulation of nine additional new secondary metabolites (6–13, 16), with most of them (8, 10–12) not detectable in cultures lacking the salt mixture. The structures of the new compounds were established on the basis of the 1D/2D NMR and HRESIMS data. The TDDFT-ECD method was applied to determine the absolute configurations of the new compounds 1, 4 and 6 as well as of the previously reported bulgarialactone B (14), for which the absolute configuration was unknown so far. The modified Mosher's method was performed to assign the absolute configurations of 12 and 13. TDDFT-ECD analysis also allowed determining the absolute configuration of (+)-epicocconone, which had an enantiomeric absolute configuration in the tricyclic moiety compared to that of bulgarialactone B (14). All the isolated metabolites were evaluated for their cytotoxic activity. Compound 2 was found to possess strong cytotoxic activity against the murine lymphoma cell line L5178Y with an IC50 value of 1.8 μM, while the remaining metabolites were shown to be inactive. OSMAC approach on endophytic Bulgaria inquinans by addition of a mixture of salts (MgSO4, NaNO3 and NaCl) to solid Czapek medium induced the accumulation of new secondary metabolites.![]()
Collapse
Affiliation(s)
- Ni P. Ariantari
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
- Department of Pharmacy
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Attila Mándi
- Department of Organic Chemistry
- University of Debrecen
- 4002 Debrecen
- Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry
- University of Debrecen
- 4002 Debrecen
- Hungary
| | - Werner E. G. Müller
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- 100191 Beijing
- China
| | - Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|
9
|
Nilsu T, Thaisaeng W, Thamnarak W, Eurtivong C, Jumraksa A, Thorroad S, Khunnawutmanotham N, Ruchirawat S, Thasana N. Three Lycopodium alkaloids from Thai club mosses. PHYTOCHEMISTRY 2018; 156:83-88. [PMID: 30237134 DOI: 10.1016/j.phytochem.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Phytochemical constituents in alkaloid extracts from three Thai club mosses Huperzia squarrosa, Huperzia phlegmaria and Phlegmariurus nummularifolius were investigated. Squarrosinoxide was an undescribed Lycopodium alkaloid from H. squarrosa possessing an unprecedented 6/5/7 tricyclic spiro system. Acetyllycophlegmarianol was an undescribed N-oxide lycopodine-type alkaloid isolated from H. phlegmaria. 4-Epilycopodine, an undescribed epimer of lycopodine, was first isolated from P. nummularifolius. The structural assignments were established through comprehensive spectroscopic techniques and chemical correlations. All compounds were assayed for their anti-acetylcholinesterase activity in vitro.
Collapse
Affiliation(s)
- Thanasan Nilsu
- Program of Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Laksi, Bangkok, 10210, Thailand
| | - Wachirasak Thaisaeng
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok, 10210, Thailand
| | - Wanlaya Thamnarak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok, 10210, Thailand
| | - Chatchakorn Eurtivong
- Program of Chemical Biology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Laksi, Bangkok, 10210, Thailand
| | - Apiwan Jumraksa
- Program of Chemical Biology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Laksi, Bangkok, 10210, Thailand
| | - Sakornrat Thorroad
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok, 10210, Thailand
| | | | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok, 10210, Thailand; Program of Chemical Biology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Laksi, Bangkok, 10210, Thailand; The Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok, 10400, Thailand
| | - Nopporn Thasana
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok, 10210, Thailand; Program of Chemical Biology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Laksi, Bangkok, 10210, Thailand; The Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|