1
|
Li ZW, Song M, Huang L, Wang FX, Wang ZQ, Ye WC, Zhang YW, Wang L, Zhang XQ. Alstomaphylines A-K, monoterpenoid bisindole alkaloids from Alstonia macrophylla with AChE inhibitory activity and cytotoxicity. Bioorg Chem 2024; 151:107664. [PMID: 39079392 DOI: 10.1016/j.bioorg.2024.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/30/2024]
Abstract
Eleven undescribed monoterpenoid bisindole alkaloids, alstomaphyines A-K (1-11), along with three known analogues were isolated from the leaves and stem bark of the Alstonia macrophylla. Compounds 1-3 were unprecedented dimerization alkaloids incorporating a macroline-type motif with an ajmaline-type motif via a C-C linkage. Their structures and absolute configurations were elucidated by extensive spectroscopic analysis, electronic circular dichroism (ECD) calculation, and CD exciton chirality method. Compounds 1-3 displayed potential inhibitory bioactivity against AChE with IC50 values of 4.44 ± 0.35, 3.59 ± 0.18, and 3.71 ± 0.23 μM, respectively. Enzyme kinetic study revealed compounds 1-3 as mixed competitive AChE inhibitors. Besides, compounds 8 and 12-14 exhibited better cytotoxicity against human cancer cell line HT-29 than cisplatin. Flow cytometry data revealed that compounds 8, 13, and 14 significantly induced the HT-29 cells arrest in G0/G1 phase in a concentration-dependent manner.
Collapse
Affiliation(s)
- Zi-Wei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, PR China; Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, PR China; NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, PR China
| | - Min Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, PR China
| | - Lan Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, PR China; Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, PR China
| | - Fang-Xin Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, PR China; Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, PR China
| | - Zi-Qi Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, PR China; Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, PR China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, PR China; Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, PR China; NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, PR China
| | - Yong-Wen Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, PR China.
| | - Lei Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, PR China; Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, PR China; NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, PR China.
| | - Xiao-Qi Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, PR China; Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Provincial Engineering Research Center for Modernization of TCM, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, PR China; NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Hui Z, Wen H, Zhu J, Deng H, Jiang X, Ye XY, Wang L, Xie T, Bai R. Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorg Chem 2024; 142:106957. [PMID: 37939507 DOI: 10.1016/j.bioorg.2023.106957] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Natural products represent a paramount source of novel drugs. Numerous plant-derived natural products have demonstrated potent anti-tumor properties, thereby garnering considerable interest in their potential as anti-tumor drugs. This review compiles an overview of 242 recently discovered natural products, spanning the period from 2018 to the present. These natural products, which include 69 terpenoids, 42 alkaloids, 39 flavonoids, 21 steroids, 14 phenylpropanoids, 5 quinolines and 52 other compounds, are characterized by their respective chemical structures, anti-tumor activities, and mechanisms of action. By providing an essential reference and fresh insights, this review aims to support and inspire researchers engaged in the fields of natural products and anti-tumor drug discovery.
Collapse
Affiliation(s)
- Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
3
|
Wang ZW, Zhang JP, Wei QH, Lu ZY, Jia XH, Zhao XD, Wang XJ. Monoterpene indole alkaloids from the roots of Alstonia rupestris and their anti-inflammatory activity. Fitoterapia 2023; 171:105689. [PMID: 37757920 DOI: 10.1016/j.fitote.2023.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Four new monoterpene indole alkaloids (1-4) together with twelve known alkaloids (5-16) were isolated from the roots of Alstonia rupestris. Compound 1 was the first example of C2-symmetric heteroyohimbine-type indole alkaloid homodimer obtained from natural plant resource. Their structures were elucidated on the basis of spectroscopic data. The absolute configuration of 1 was determined by comparison of its calculated and experimental electronic circular dichroism (ECD) spectra. All compounds were evaluated for their anti-inflammatory activities by measuring their NO inhibitory effects in LPS-stimulated RAW 264.7 cells. Compound 2 showed strong NO inhibition with IC50 value of 4.2 ± 1.3 μM. Moreover, compound 2 could decrease the expressions of cyclooxygenase-2 (COX-2) and transforming growth factor beta-1 (TGF-β1).
Collapse
Affiliation(s)
- Zhi-Wei Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Jin-Ping Zhang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Quan-Hao Wei
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Zhi-Yuan Lu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Xian-Hui Jia
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Xiao-Dong Zhao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Xiao-Jing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| |
Collapse
|
4
|
Li J, Li JX, Jiang H, Li M, Chen L, Wang YY, Wang L, Zhang N, Guo HZ, Ma KL. Phytochemistry and biological activities of corynanthe alkaloids. PHYTOCHEMISTRY 2023:113786. [PMID: 37422009 DOI: 10.1016/j.phytochem.2023.113786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Medicinal plants constitute a source for designing clinically useful drugs targeting diseases through various mechanisms. Plant secondary metabolites can be used as lead compounds of drugs. Corynanthe alkaloids are highly abundant natural bioactive substances of various core structures possessing important properties such as nerve excitation and antimalarial and analgesic effects. In this review, we summarize and review the state-of-the-art corynanthe-type alkaloid research focusing on phytochemistry, pharmacology, and structural chemistry. Approximately 120 articles reporting 231 alkaloids classified into simple corynanthe, yohimbine, oxindole corynanthe, mavacurane, sarpagine, akuammiline, strychnos, and ajmaline-type groups were compiled. Relevant biological properties discussed include antiviral, antibacterial, anti-inflammatory, antimalarial, muscle-relaxant, vasorelaxant, and analgesic activities and activities affecting the main nervous and cardiac systems, as well as NF-κB inhibitory and Na+-glucose cotransporter inhibitory properties. This review provides insights and a reference for future studies, thus paving the way for the discovery of drugs based on corynanthe alkaloids.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jia-Xing Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Hua Jiang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Min Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Lin Chen
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yue-Yue Wang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ning Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - He-Zhe Guo
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Kai-Long Ma
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
5
|
Somnarin T, Krawmanee P, Gleeson MP, Gleeson D. Computational investigation of the radical-mediated mechanism of formation of difluoro methyl oxindoles: Elucidation of the reaction selectivity and yields. J Comput Chem 2023; 44:670-676. [PMID: 36398747 DOI: 10.1002/jcc.27031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Oxindoles are an important class of heterocyclic alkaloids with demonstrated pharmacological activity at multiple biological targets. Preparation of new analogs through novel synthetic routes is therefore highly attractive. In this work, we report a computational study to investigate the synthesis of ethoxycarbonyldifluoromethylated oxindoles from N-arylmethacrylamides. The reaction tolerates a diverse range of acrylamides, shows yields ranging from approximately 38%-96%. We have applied density functional theory (DFT) to explore the reaction mechanism, kinetics and thermodynamics to gain further understanding. We demonstrate that a radical-based ring closure reaction is energetically more favorable than a heterolytic process, that the rate-determining step is the formation of the arylmethacrylamide radical, and that the product yields and selectivities are consistent with experiment. The results demonstrate that theoretical methods can prove useful to understand how such reaction and could be potentially employed to rapidly explore the reaction scope further.
Collapse
Affiliation(s)
- Thanachon Somnarin
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Pacharaporn Krawmanee
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Matthew Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Duangkamol Gleeson
- Applied Computational Chemistry Research Unit & Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
6
|
Xu M, Peng R, Min Q, Hui S, Chen X, Yang G, Qin S. Bisindole natural products: A vital source for the development of new anticancer drugs. Eur J Med Chem 2022; 243:114748. [PMID: 36170798 DOI: 10.1016/j.ejmech.2022.114748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Currently, the number of new cancer cases and deaths worldwide is increasing year on year. In addition to the requirement for cancer prevention, the top priority is still to seek the effective cure of cancer. In over a half century of constant exploration, increasing attention has been paid to the excellent anticancer activity of natural products, with more and more natural products isolated, identified and detected. For this study, the focus lies the natural products of bisindole, where two indole molecules are indirectly linked or directly polymerized, developing the diversity of structure and mechanism, accompanied with the better anticancer activity than monomers. There has been a long history of applying indirubin and vincristine in cancer treatment, verifying the anticancer effect of bisindoles. Vincribine, midostaurin and other anticancer drugs have also been developed and commercialized. In this paper, a review regarding the potential therapeutic effect of bisindole alkaloids extracted from various natural products was carried out, in which the progress made in research of 242 bisindole alkaloids for cancer treatment was introduced. These compounds may be applicable as medicinal products for clinical research in the future.
Collapse
Affiliation(s)
- Mengwei Xu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Rui Peng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Qing Min
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Siwen Hui
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, PR China
| | - Xin Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, PR China.
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, PR China.
| |
Collapse
|
7
|
Monoterpene Indole Alkaloids with Ca v3.1 T-Type Calcium Channel Inhibitory Activity from Catharanthus roseus. Molecules 2021; 26:molecules26216516. [PMID: 34770935 PMCID: PMC8587030 DOI: 10.3390/molecules26216516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Catharanthus roseus is a well-known traditional herbal medicine for the treatment of cancer, hypertension, scald, and sore in China. Phytochemical investigation on the twigs and leaves of this species led to the isolation of two new monoterpene indole alkaloids, catharanosines A (1) and B (2), and six known analogues (3–8). Structures of 1 and 2 were established by 1H-, 13C- and 2D-NMR, and HREIMS data. The absolute configuration of 1 was confirmed by single-crystal X-ray diffraction analysis. Compound 2 represented an unprecedented aspidosperma-type alkaloid with a 2-piperidinyl moiety at C-10. Compounds 6–8 exhibited remarkable Cav3.1 low voltage-gated calcium channel (LVGCC) inhibitory activity with IC50 values of 11.83 ± 1.02, 14.3 ± 1.20, and 14.54 ± 0.99 μM, respectively.
Collapse
|
8
|
Mei L, Moutet J, Stull SM, Gianetti TL. Synthesis of CF 3-Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade. J Org Chem 2021; 86:10640-10653. [PMID: 34255497 DOI: 10.1021/acs.joc.1c01313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A red-light-mediated nPr-DMQA+-catalyzed cascade intramolecular trifluoromethylation and dearomatization of indole derivatives with Umemoto's reagent has been developed. This protocol provides a facile and efficient approach for the construction of functionalized and potentially biologically important CF3-containing 3,3-spirocyclic indolines with moderate to high yields and excellent diastereoselectivities under mild conditions. The success of multiple gram-scale (1 and 10 g) experiments further highlights the robustness and practicality of this protocol and the merit of the employment of red light. Mechanistic studies support the formation of a crucial CF3 radical species and a dearomatized benzyl carbocation intermediate.
Collapse
Affiliation(s)
- Liangyong Mei
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jules Moutet
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Savannah M Stull
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
9
|
Affiliation(s)
- Jan Gierok
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| | - Lars Benedix
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| | - Martin Hiersemann
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| |
Collapse
|
10
|
Xie J, Zou X, Sang C, Song M, Chen Q, Zhang J. Three new monoterpenoid indole alkaloids from Alstonia rostrata. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Tan CH, Yeap JSY, Lim SH, Low YY, Sim KS, Kam TS. The Bisindole Alkaloids Angustilongines M and A from Alstonia penangiana Induce Mitochondrial Apoptosis and G0/G1 Cell Cycle Arrest in HT-29 Cells through Promotion of Tubulin Polymerization. JOURNAL OF NATURAL PRODUCTS 2021; 84:1524-1533. [PMID: 33872002 DOI: 10.1021/acs.jnatprod.1c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new linearly fused macroline-sarpagine bisindole, angustilongine M (1), was isolated from the methanolic extract of Alstonia penangiana. The structure of the alkaloid was elucidated based on analysis of the spectroscopic data, and its biological activity was evaluated together with another previously reported macroline-akuammiline bisindole from the same plant, angustilongine A (2). Compounds 1 and 2 showed pronounced in vitro growth inhibitory activity against a wide panel of human cancer cell lines. In particular, the two compounds showed potent and selective antiproliferative activity against HT-29 cells, as well as strong growth inhibitory effects against HT-29 spheroids. Cell death mechanistic studies revealed that the compounds induced mitochondrial apoptosis and G0/G1 cell cycle arrest in HT-29 cells in a time-dependent manner, while in vitro tubulin polymerization assays and molecular docking analysis showed that the compounds are microtubule-stabilizing agents, which are predicted to bind at the β-tubulin subunit at the Taxol-binding site.
Collapse
Affiliation(s)
- Chun-Hoe Tan
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Siew-Huah Lim
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun-Yee Low
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae-Shin Sim
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Mohammed AE, Abdul-Hameed ZH, Alotaibi MO, Bawakid NO, Sobahi TR, Abdel-Lateff A, Alarif WM. Chemical Diversity and Bioactivities of Monoterpene Indole Alkaloids (MIAs) from Six Apocynaceae Genera. Molecules 2021; 26:488. [PMID: 33477682 PMCID: PMC7831967 DOI: 10.3390/molecules26020488] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023] Open
Abstract
By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Zainab H. Abdul-Hameed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Modhi O. Alotaibi
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Tariq R. Sobahi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Walied M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Wang X, Zhong Y, Mo Z, Wu S, Xu Y, Tang H, Pan Y. Synthesis of Seleno Oxindoles
via
Electrochemical Cyclization of
N
‐arylacrylamides with Diorganyl Diselenides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001192] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xin‐Yu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yuan‐Fang Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zu‐Yu Mo
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Shi‐Hong Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yan‐Li Xu
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
14
|
Xu D, Xu Z. Indole Alkaloids with Potential Anticancer Activity. Curr Top Med Chem 2020; 20:1938-1949. [DOI: 10.2174/1568026620666200622150325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023]
Abstract
Indole alkaloids, which are abundant in nature, are a significant source of pharmacologically
active compounds. Indole alkaloids have the potential to exert anticancer activity via various antiproliferative
mechanisms, and some of them, such as Vinblastine and Vincristinem, have already used in clinics
or under clinical evaluations for the treatment of cancers. Therefore, indole alkaloids occupy an important
position in the discovery of novel anticancer agents. This review emphasizes the recent development
of indole alkaloids as potential anticancer agents, their structure-activity relationship, and
mechanisms of action covering the articles published from 2015 to 2020.
Collapse
Affiliation(s)
- Dan Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
15
|
Osyanin VA, Osipov DV, Semenova IA, Korzhenko KS, Lukashenko AV, Demidov OP, Klimochkin YN. Eco-friendly synthesis of fused pyrano[2,3- b]pyrans via ammonium acetate-mediated formal oxa-[3 + 3]cycloaddition of 4 H-chromene-3-carbaldehydes and cyclic 1,3-dicarbonyl compounds. RSC Adv 2020; 10:34344-34354. [PMID: 35514419 PMCID: PMC9056786 DOI: 10.1039/d0ra06450e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022] Open
Abstract
Various substituted polycyclic pyrano[2,3-b]pyrans were synthesized via the condensation of 4H-chromene-3-carbaldehydes and their areno-condensed analogues with hetero- and carbocyclic 1,3-dicarbonyl compounds in acetic acid. Ammonium acetate was used as a green catalyst for the reaction. The process also involves the subsequent Knoevenagel condensation and 6π-electrocyclization of the 1-oxatriene intermediates formed. Fused pyridines were isolated as the products of the conjugated addition of ammonia to 1-oxatriene intermediates while using carbocyclic 1,3-dicarbonyl compounds and increasing the reaction time, indicating the reversibility of the electrocyclization stage. The calculated values of the Gibbs free energies and reaction rate constants for the 1-oxatriene - 2H-pyran equilibrium also testified to the irreversibility of pyrano[2,3-b]pyran formation in the case of using of heterocyclic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Vitaly A Osyanin
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Dmitry V Osipov
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Irina A Semenova
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Kirill S Korzhenko
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - A V Lukashenko
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| | - Oleg P Demidov
- Department of Chemistry, North Caucasus Federal University 1 Pushkin St. Stavropol 355009 Russia
| | - Yuri N Klimochkin
- Department of Organic Chemistry, Chemical Technological Faculty, Samara State Technical University 244 Molodogvardeyskaya St. Samara 443100 Russia
| |
Collapse
|
16
|
Yeap JSY, Tan CH, Yong KT, Lim KH, Lim SH, Low YY, Kam TS. Macroline, talpinine, and sarpagine alkaloids from Alstonia penangiana. An NMR-based method for differentiating between A. penangiana and A. macrophylla. PHYTOCHEMISTRY 2020; 176:112391. [PMID: 32387883 DOI: 10.1016/j.phytochem.2020.112391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Fourteen previously undescribed alkaloids comprising two N-1-hydroxymethylmacroline alkaloids, one talpinine-type oxindole acetal, a pair of equilibrating talpinine-type oxindole hemiacetals, eight oxidized derivatives of sarpagine- and akuammiline-type indole alkaloids, in addition to alstochalotine a diastereomer of gelsochalotine recently isolated from Gelsemium elegans, were isolated from the leaf and stem-bark extracts of Alstonia penangiana. The structures and relative configurations of these alkaloids were established using NMR, MS, and in one instance, confirmed by X-ray diffraction analysis. An NMR-based method is described as a useful chemotaxonomic tool for differentiating between A. penangiana and A. macrophylla. Several of the alkaloids isolated showed appreciable growth inhibitory effects when tested against a number of human cancer cell lines.
Collapse
Affiliation(s)
- Joanne Soon-Yee Yeap
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chun-Hoe Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kien-Thai Yong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yun-Yee Low
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Zhang Y, Hu C. Anticancer activity of bisindole alkaloids derived from natural sources and synthetic bisindole hybrids. Arch Pharm (Weinheim) 2020; 353:e2000092. [PMID: 32468606 DOI: 10.1002/ardp.202000092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
The bisindole moiety, as a versatile pharmacophore, is one of the widespread heterocycles in naturally occurring and synthetic bioactive compounds. The bisindole alkaloids derived from natural sources possess structural and mechanistic diversity, and they were found to be generally more active than monoindole alkaloids against various cancer cell lines. Moreover, some bisindole alkaloids such as the tubulin inhibitors, vinorelbine and vinblastine, have already been approved for cancer therapy, suggesting that bisindole alkaloids are a significant source of anticancer agents and lead hits. Bisindole hybrids have the potential to overcome drug resistance, enhance efficiency, and reduce severe side effects. The bisindole-lactam hybrid midostaurin has already been approved for the treatment of adult patients with newly diagnosed acute myeloid leukemia who are FLT3 mutation-positive, highlighting the importance of bisindole hybrids in the development of novel anticancer agents. In this review, we present a brief account of the bisindole alkaloids derived from nature and of synthetic hybrids with potential anticancer activity developed in the recent 10 years.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Jia Y, Wen X, Gong Y, Wang X. Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur J Med Chem 2020; 200:112359. [PMID: 32531682 DOI: 10.1016/j.ejmech.2020.112359] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Cancer chemotherapy is frequently hampered by drug resistance, so the resistance to anticancer agents represents one of the major obstacles for the effective cancer treatment. Indole derivatives have the potential to act on diverse targets in cancer cells and exhibit promising activity against drug-resistant cancers. Moreover, some indole-containing compounds such as Semaxanib, Sunitinib, Vinorelbine, and Vinblastine have already been applied in clinics for various kinds of cancer even drug-resistant cancer therapy. Thus, indole derivatives are one of significant resources for the development of novel anti-drug-resistant cancer agents. This review focuses on the recent development of indole derivatives with potential therapeutic application for drug-resistant cancers, and the mechanisms of action, the critical aspects of design as well as structure-activity relationships, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
- Yanshu Jia
- Chongqing Institute of Engineering, Chongqing, 400056, China
| | - Xiaoyue Wen
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Yufeng Gong
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Xuefeng Wang
- Department of Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhejiang Province, 311800, China.
| |
Collapse
|
19
|
Grugel CP, Breit B. Rhodium-Catalyzed Diastereo- and Enantioselective Tandem Spirocyclization/Reduction of 3-Allenylindoles: Access to Functionalized Vinylic Spiroindolines. Org Lett 2019; 21:9672-9676. [PMID: 31769696 DOI: 10.1021/acs.orglett.9b03835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A highly selective rhodium-catalyzed tandem spirocyclization/reduction of 3-allenylindoles is reported. By employing a Hantzsch ester as reductant, vinylic spiroindolines are obtained in excellent yields as well as diastereo- and enantioselectivity. In addition, the reaction's synthetic utility is highlighted by broad functional group compatibility and exemplified by a gram scale reaction with subsequent assorted transformations.
Collapse
Affiliation(s)
- Christian P Grugel
- Institut für Organische Chemie , Albert-Ludwigs-Universität Freiburg , Albertrstr. 21 , 79104 Freiburg , Germany
| | - Bernhard Breit
- Institut für Organische Chemie , Albert-Ludwigs-Universität Freiburg , Albertrstr. 21 , 79104 Freiburg , Germany
| |
Collapse
|
20
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2018. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1129-1150. [PMID: 31736363 DOI: 10.1080/10286020.2019.1684474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The new natural products reported in 2018 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2018 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
21
|
Yeap JSY, Saad HM, Tan CH, Sim KS, Lim SH, Low YY, Kam TS. Macroline-Sarpagine Bisindole Alkaloids with Antiproliferative Activity from Alstonia penangiana. JOURNAL OF NATURAL PRODUCTS 2019; 82:3121-3132. [PMID: 31642315 DOI: 10.1021/acs.jnatprod.9b00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A methanol extract of the stem bark of the Malayan Alstonia penangiana provided seven new bisindole alkaloids, comprising six macroline-sarpagine alkaloids (angustilongines E-K, 1-6) and one macroline-pleiocarpamine bisindole alkaloid (angustilongine L, 7). Analysis of the spectroscopic data (NMR and MS) of these compounds led to the proposed structures of these alkaloids. The macroline-sarpagine alkaloids (1-6) showed in vitro growth inhibitory activity against a panel of human cancer cell lines, inclusive of KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, HCT 116, and A549 cells (IC50 values: 0.02-9.0 μM).
Collapse
Affiliation(s)
- Joanne Soon-Yee Yeap
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Hazwani Mat Saad
- Institute of Biological Sciences, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Chun-Hoe Tan
- Institute of Biological Sciences, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Kae-Shin Sim
- Institute of Biological Sciences, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Yun-Yee Low
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| |
Collapse
|
22
|
Feng H, Zhang Y, Zhang Z, Chen F, Huang L. Copper-Catalyzed Annulation/A3
-Coupling Cascade: Diastereodivergent Synthesis of Sterically Hindered Monocyclic Oxazolidines Bearing Multiple Stereocenters. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huangdi Feng
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Yazhen Zhang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Zedi Zhang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Fubei Chen
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering; Shanghai University of Engineering Science; 333 Longteng Road 201620 Shanghai China
| |
Collapse
|