1
|
Daniel FL, Srinivasan K. Intramolecular 1,2-Aroyl Migration in Spiro Donor-Acceptor Cyclopropanes: Formation of 1,4-Naphthoquinones and 1-Naphthols as Ring-Expansion Products. J Org Chem 2024; 89:5304-5313. [PMID: 38593430 DOI: 10.1021/acs.joc.3c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Most of the known rearrangement reactions of donor-acceptor cyclopropanes (DACs) involve the migration of cationic carbon atom to anionic carbon or heteroatoms in 1,3- or 1,4-positions. In the present work, we observed that spiro DACs based on 1,3-indanedione or 1-indanone moiety undergo intramolecular 1,2-aroyl migration when treated with titanium(IV) chloride to afford 1,4-naphthoquinones and α-naphthols readily. The reactions take place through the formation of putative 1,3-dipolar intermediates, followed by cleavage and migration of the aroyl group to the adjacent carbon to afford the ring-expansion products.
Collapse
Affiliation(s)
- Franklin Leslin Daniel
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
2
|
Xie F, Sun Y, Zi ZF, Wang WJ, Wan DY, Zhou H, Ding ZT. Discovery of pyranonaphthoquinones and an eighteen-membered ring macrolide from the rhizospheric soil-derived fungus Phialocephala sp. YUD18001 by OSMAC strategy. Fitoterapia 2023; 171:105690. [PMID: 37757923 DOI: 10.1016/j.fitote.2023.105690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Two new pyranonaphthoquinones, phialoyxinones A (1) and B (2), a new eighteen-membered ring lactone, phialoyxtone (3), and five known pyranonaphthoquinone derivatives were identified from the fungus Phialocephala sp. YUD18001, which was isolated from the rhizospheric soil associated with Gastrodia elata. Their structures were unequivocally established by a comprehensive interpretation of the spectroscopic data, with the stereochemistry for 1-3 was defined by a combination of TDDFT calculations, and the DP4+ probability analysis based on NMR chemical shift calculations. All of the new compounds 1-3 were evaluated for cytotoxicity and acetylcholinesterase inhibitory, compound 2 exhibited in vitro cytotoxic activities against five human cancer cell lines (HL-60, SMMC-7721, A549, MCF-7 and SW480) with IC50 values ranging from 11.80 to 19.32 μM. Compounds 2 and 3 exhibited moderate AChE inhibitory activities. A putative biosynthetic pathway for the pyranonaphthoquinones was proposed.
Collapse
Affiliation(s)
- Fei Xie
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
| | - Yue Sun
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhi-Feng Zi
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Wen-Jing Wang
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Dai-Yu Wan
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Hao Zhou
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Zhong-Tao Ding
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
3
|
Shcherbinin VA, Nasibullina ER, Mendogralo EY, Uchuskin MG. Natural epoxyquinoids: isolation, biological activity and synthesis. An update. Org Biomol Chem 2023; 21:8215-8243. [PMID: 37812083 DOI: 10.1039/d3ob01141k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Epoxyquinoids are of continuing interest due to their wide natural distribution and diverse biological activities, including, but not limited to, antibacterial, antifungal, anticancer, enzyme inhibitory, and others. The last review on their total synthesis was published in 2017. Since then, almost 100 articles have been published on their isolation from nature and their biological profile. In addition, the review specifically considers synthesis, including total and enantioselective, as well as the development of shorter approaches for the construction of epoxyquinoids with complex chemical architecture. Thus, this review focuses on progress in this area in order to stimulate further research.
Collapse
Affiliation(s)
- Vitaly A Shcherbinin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, 119334 Moscow, Russian Federation
| | - Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russian Federation.
| |
Collapse
|
4
|
Saisin S, Panthong K, Hongthong S, Kuhakarn C, Thanasansurapong S, Chairoungdua A, Suksen K, Akkarawongsapat R, Napaswad C, Prabpai S, Nuntasaen N, Reutrakul V. Pyranonaphthoquinones and Naphthoquinones from the Stem Bark of Ventilago harmandiana and Their Anti-HIV-1 Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:498-507. [PMID: 36787536 PMCID: PMC10043937 DOI: 10.1021/acs.jnatprod.2c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 06/18/2023]
Abstract
Seven previously undescribed compounds, including five pyranonaphthoquinones (ventilanones L-P) and two naphthoquinones (ventilanones Q and R), along with 15 known compounds were isolated from the stem bark of Ventilago harmandiana (Rhamnaceae). The structures were established by extensive analysis of their spectroscopic data. The absolute configuration of ventilanone L was established from single crystal X-ray crystallographic analysis using Cu Kα radiation and from its electronic circular dichroism data. Anti-HIV-1 activity using a syncytium inhibition assay and the cytotoxic activities of some isolated compounds were evaluated. Compounds 12, 13, 15, and 16 showed activity against syncytium formation with half maximal effective concentration (EC50) values ranging from 9.9 to 47 μM (selectivity index (SI) 2.4-4.5).
Collapse
Affiliation(s)
- Suwannee Saisin
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Kanda Panthong
- Division
of Physical Sciences and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Prince
of Songkla University, Songkhla 90112, Thailand
| | - Sakchai Hongthong
- Division
of Chemistry, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao 24000, Thailand
| | - Chutima Kuhakarn
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Sariyarach Thanasansurapong
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Arthit Chairoungdua
- Department
of Physiology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Kanoknetr Suksen
- Department
of Physiology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Radeekorn Akkarawongsapat
- Department
of Microbiology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Chanita Napaswad
- Department
of Microbiology, Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Samran Prabpai
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| | - Narong Nuntasaen
- The Forest
Herbarium National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Bangkok 10900, Thailand
| | - Vichai Reutrakul
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
6
|
Zeng HT, Yu YH, Zeng X, Li MM, Li X, Xu SS, Tu ZC, Yuan T. Anti-inflammatory Dimeric Benzophenones from an Endophytic Pleosporales Species. JOURNAL OF NATURAL PRODUCTS 2022; 85:162-168. [PMID: 35007071 DOI: 10.1021/acs.jnatprod.1c00900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eight new polyketides, including three dimeric benzophenones, named dipleosporones A-C (1-3), three benzophenones (4-6), one xanthone (7), and one phenylbenzoate (8), along with seven known polyketides (9-15) were isolated from the fungus Pleosporales sp. YY-4. The structures of the new compounds were established on the basis of spectroscopic methods, including high-resolution electrospray ionization mass spectrometry and one- and two-dimensional nuclear magnetic resonance. This is the first report of a benzophenone dimer connection via a C bridge from natural sources. An anti-inflammatory assay indicated that the dimeric benzophenones (1-3) inhibited lipopolysaccharide-induced NO production in RAW 264.7 cells, with half-maximal inhibitory concentration (IC50) values ranging from 8.8 to 18.1 μM, being more potent than the positive control, dexamethasone (IC50 = 22.2 μM).
Collapse
Affiliation(s)
- Hui-Ting Zeng
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi330022, People's Republic of China
| | - Yi-Hu Yu
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi330022, People's Republic of China
| | - Xi Zeng
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi330022, People's Republic of China
| | - Miao-Miao Li
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi330022, People's Republic of China
| | - Xia Li
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi330022, People's Republic of China
| | - Shan-Shan Xu
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi330022, People's Republic of China
| | - Zong-Cai Tu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi330022, People's Republic of China
| | - Tao Yuan
- The Laboratory of Effective Substances of Jiangxi Genuine Medicinal Materials, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi330022, People's Republic of China
| |
Collapse
|
7
|
Deng MR, Li Y, Luo X, Zheng XL, Chen Y, Zhang YL, Zhang W, Zhou H, Zhu H. Discovery of Mycothiogranaticins from Streptomyces vietnamensis GIMV4.0001 and the Regulatory Effect of Mycothiol on the Granaticin Biosynthesis. Front Chem 2021; 9:802279. [PMID: 35004619 PMCID: PMC8733708 DOI: 10.3389/fchem.2021.802279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Granaticins are benzoisochromanequinone polyketides with remarkable antibacterial and anticancer activities. Three sulfur-containing granaticin congeners, mycothiogranaticins A (1), B (2) and granaticin MA (3) were discovered from a granaticin-producing strain of Streptomyces vietnamensis GIMV4.0001. Two of them were structurally determined with mycothiol or N-acetylcysteine moieties and found to be bio-actively reluctant. Disruption of the mshA gene (SVTN_RS20640) that encodes the D-inositol-3-phosphate glycosyltransferase crucial for mycothiol biosynthesis, fully abolished the production of mycothiogranaticins. The result substantiated that the newly discovered mycothiogranaticins are consequences of the combination of the granaticin and mycothiol biosynthetic pathways. The overall granaticin production of the ΔmshA mutant strain was unexpectedly decreased by at least more than 50%, while similar production level of granaticins to that of the wild type strain was observed in an mycothiol-S transferase gene (SVTN_RS22215) disruptant Δmst. These results indicated that the mycothiol deficiency was responsible for the decreased production of granaticins. Mycothiol may positively regulate the biosynthesis of granaticin possibly by maintaining the cellular redox balance. To the best of our knowledge, this is the first report that mycothiol can not only be a direct building block of polyketides but also play a regulatory role in the polyketide biosynthesis.
Collapse
Affiliation(s)
- Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application — Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yan Li
- Key Laboratory of Agricultural Microbiomics and Precision Application — Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao Luo
- Key Laboratory of Agricultural Microbiomics and Precision Application — Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiang-Ling Zheng
- Key Laboratory of Agricultural Microbiomics and Precision Application — Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Yu-Lian Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application — Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Hao Zhou
- Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application — Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Synthesis and antifungal and antibacterial evaluation of novel pyrimidine derivatives with glycoside scaffolds. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01907-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Sansano JM, de Gracia Retamosa M, Döndaş HA, Sobhani S, Nájera C, Yus MA. Photocatalytic Homocoupling Transformations. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1517-7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractHomocoupling reactions promoted by photocatalysts are not very abundant in the literature. However, the products generated from such processes are very interesting. In this review, we highlight the most relevant reports concerning photocatalyzed dimerizations covering the literature until the middle of 2020. Reactions will be classified according to the type of starting material employed, with an emphasis being placed on the corresponding mechanism. 1 Introduction2 Arenes and Heteroarenes3 Alkenes4 Alkanes5 Alkynes6 Aldehydes, Ketones, Alcohols, Amines and Imines7 Carboxylic Acids8 Nitro Compounds9 Conclusions
Collapse
Affiliation(s)
- José M. Sansano
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
| | - María de Gracia Retamosa
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica, Universidad de Alicante
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
| | - Haci Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
| | - Miguel A. Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
| |
Collapse
|
10
|
Xue Z, Wang Y, Yu W, Zhang Z, Kou X. Research Advancement of Natural Active Components in Alleviating Lung Damage Induced by PM2.5. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
11
|
Pleiotropic effects of ActVI-ORFA as an unusual regulatory factor identified in the biosynthetic pathway of actinorhodin in Streptomyces coelicolor. Microbiol Res 2021; 250:126792. [PMID: 34082307 DOI: 10.1016/j.micres.2021.126792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/22/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Regulatory networks play critical roles in controlling the the biosynthesis of natural products in Streptomyces. ActVI-ORFA, a regulatory factor encoded by the actinorhodin biosynthetic gene cluster (act cluster), positively controls the production of actinorhodin (ACT) in Streptomyces coelicolor, although its regulatory mechanism remains obscure. This study aimed to identify the regulatory targets of ActVI-ORFA. Deletion of ActVI-ORFA caused the differential expression of hundreds of proteins, as determined by two-dimensional electrophoresis and peptide mass fingerprinting analysis. qRT-PCR analysis of some genes encoding these differentially expressed proteins, including act genes and non-act genes, confirmed that ActVI-ORFA could control their transcriptional levels. In an electrophoretic mobility shift assay with a promoter region of a target gene located in the act cluster, no binding was detected, consistent with the lack of a recognizable DNA-binding domain in ActVI-ORFA. Overall, our findings suggest that ActVI-ORFA is a pleiotropic regulatory factor that controls multiple physiological pathways, including secondary metabolite production, probably via an indirect mode.
Collapse
|
12
|
Chen M, Zhang X, Lu D, Luo H, Zhou Z, Qin X, Wu W, Zhang G. Synthesis and Bioactivities of Novel 1,3,4-Thiadiazole Derivatives of Glucosides. Front Chem 2021; 9:645876. [PMID: 33842434 PMCID: PMC8032861 DOI: 10.3389/fchem.2021.645876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1,3,4-thiadiazole derivatives of glucosides were synthesized by the starting materials d-glucose and 5-amino-1,3,4-thiadiazole-2-thiol in good yields with employing a convergent synthetic route. The results of bioactivities showed that some of the target compounds exhibited good antifungal activities. Especially, compounds 4i showed higher bioactivities against Phytophthora infestans (P. infestans), with the EC50 values of 3.43, than that of Dimethomorph (5.52 μg/ml). In addition, the target compounds exhibited moderate to poor antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas campestris pv. citri (Xcc).
Collapse
Affiliation(s)
- Meihang Chen
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Xun Zhang
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Daowang Lu
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Hairong Luo
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Zengyan Zhou
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Xufeng Qin
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Wenneng Wu
- Colleges of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Guoping Zhang
- Colleges of Chemistry and Material Science, Huaibei Normal University, Huaibei, China
| |
Collapse
|
13
|
Chen M, Lu D, Zhang X, Chen M, Dong C, Wang X, Wu W, Zhang G, Luo H. Synthesis and biological activities of novel S-β-D-glucopyranoside derivatives of 1,2,4-triazole. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1901704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Meihang Chen
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Daowang Lu
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Xun Zhang
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Meiyun Chen
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Changjun Dong
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Xian Wang
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| | - Wenneng Wu
- Colleges of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Guoping Zhang
- Colleges of Chemistry and Material Science, Huaibei Normal University, Huaibei, China
| | - Hairong Luo
- Colleges of Material and Chemistry Engineering, Tongren University, Tongren, China
| |
Collapse
|
14
|
Imrat, Labala RK, Velhal S, Bhagat S, Patel V, Jeyaram K. Small double-stranded RNA with anti-HIV activity abundantly produced by Bacillus subtilis MTCC5480 isolated from fermented soybean. Int J Biol Macromol 2020; 161:828-835. [PMID: 32553954 DOI: 10.1016/j.ijbiomac.2020.06.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022]
Abstract
Anti-viral RNA therapy is on high demand nowadays due to the emergence of several new viral infections. The small non-coding regulatory RNAs (dsRNA) from the microbial sources are not yet explored for anti-viral activity. In this study, we assessed the anti-HIV activity of the small dsRNA produced by 12 different microbial species isolated from naturally fermented foods of North-East India. For this, we selectively extracted the dsRNA from the microbial culture, confirmed its double-stranded nature by immunoblotting, and deep sequenced the cDNA library using Illumina platform. Further, we used conventional algorithms to predict the potential targets of the dsRNA sequences within the 3'-UTR region of HIV-1. A small dsRNA fragment with 34 bases in size with a sequence of 3'-UUGGUACACGAGAUGGUUCGACUCGAUGAAGGGC-5' produced abundantly (9.17% of the total dsRNA fraction) by Bacillus subtilis MTCC5480 showed a much higher base complementarity values than previously reported miRNAs analysed against HIV-1. We separated the dsRNA fraction and validated the anti-HIV activity against human peripheral blood mononuclear cells (PBMC) infected with JRCSF strain of HIV-1 virus and the EC50 value ranges from 0.2-0.3 μM. This small dsRNA abundantly produced by B. subtilis could be studied further for its application as an anti-viral therapeutic agent.
Collapse
Affiliation(s)
- Imrat
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795001, Manipur, India; Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India
| | - Rajendra Kumar Labala
- Distributed Information Sub-Centre (DISC), Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795001, Manipur, India
| | - Shilpa Velhal
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai 400012, India
| | - Sharad Bhagat
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai 400012, India
| | - Vainav Patel
- Department of Biochemistry and Virology, National Institute for Research in Reproductive Health (ICMR), Mumbai 400012, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795001, Manipur, India; Institute of Bioresources and Sustainable Development (IBSD), Mizoram Center, Nursery Veng, Khatla, Aizawl 796005, Mizoram, India.
| |
Collapse
|
15
|
Yuan J, Wang L, Ren J, Huang JP, Yu M, Tang J, Yan Y, Yang J, Huang SX. Antibacterial Pentacyclic Polyketides from a Soil-Derived Streptomyces. JOURNAL OF NATURAL PRODUCTS 2020; 83:1919-1924. [PMID: 32519857 DOI: 10.1021/acs.jnatprod.0c00161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nine new pentacyclic polyketides, fasamycins G-K (1-5) and formicamycins N-Q (6-9), along with 10 known analogues (10-19), were isolated from a rhizospheric soil-derived Streptomyces sp. KIB-1414. Their structures and absolute configurations were elucidated by interpretation of NMR and HRMS data and comparisons of CD data. The compounds were active against methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Bacillus subtilis, and Escherichia coli strains, with MIC values ranging from 0.20 to 50.00 μg/mL.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinqiu Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Mingming Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| |
Collapse
|
16
|
Yu Z, Jiang H, Wang L, Yang FX, Huang JP, Liu C, Guo X, Xiang W, Huang SX. Dimeric Pimprinine Alkaloids From Soil-Derived Streptomyces sp. NEAU-C99. Front Chem 2020; 8:95. [PMID: 32133345 PMCID: PMC7040024 DOI: 10.3389/fchem.2020.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/31/2020] [Indexed: 02/05/2023] Open
Abstract
Six new pimprinine alkaloids (1–6), including four dimers, dipimprinines A–D (1–4), and two monomers, (±)-Pimprinol D (5), and pimprinone A (6), along with six known congeners (7–12), were isolated from a soil-derived actinomycete Streptomyces sp. NEAU-C99. Structures of the new compounds were elucidated by extensive spectroscopic analyses, single-crystal X-ray diffractions, and ECD calculations. Dipimprinines A–D (1–4) showed weak cytotoxic activities against five tumor cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW-480, with IC50 values ranging from 12.7 to 30.7 μM.
Collapse
Affiliation(s)
- Zhiyin Yu
- Heilongjiang Provincial Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hao Jiang
- Heilongjiang Provincial Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Feng-Xian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chongxi Liu
- Heilongjiang Provincial Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaowei Guo
- Heilongjiang Provincial Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wensheng Xiang
- Heilongjiang Provincial Key Laboratory of Agricultural Microbiology, Northeast Agricultural University, Harbin, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|