1
|
Li J, Liu S, Chen J, Wang H, Feng X, Jia C, Li J, Yin H, Li J, Liu C, Cao Y, Ma C. Uncovering the underlying mechanism of yuanhuacine against colorectal cancer by transcriptomics and experimental investigations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156570. [PMID: 40023971 DOI: 10.1016/j.phymed.2025.156570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) holds the third position in terms of incidence and ranks behind lung cancer in terms of mortality worldwide. Yuanhuacine, one of the main active ingredients of genkwa flos, has demonstrated promising application prospects in the field of cancer treatment. However, its underlying mechanism against CRC has not been fully clarified. PURPOSE This study aimed to investigate anti-tumor activity of yuanhuacine and clarify its underlying mechanism in CRC. METHODS CRC HCT116, HT-29, Caco-2, SW480, and LS174T cells were used to assess the in vitro anti-tumor activity of yuanhuacine by cell viability, proliferation, apoptosis, cycle distribution, migration, and colony formation assays. Meanwhile, an HT-29 xenograft mouse model was successfully constructed to investigate the anti-tumor effect of yuanhuacine in vivo. Transcriptomic assay and network pharmacology were applied to explore the underlying mechanism of yuanhuacine in combating CRC, which was further verified by quantitative reverse transcription polymerase chain reaction, western blot. The interaction of yuanhuacine with protein was performed by molecular docking, molecular dynamics simulation, and cell thermal shift assays. RESULTS Yuanhuacine significantly induced apoptosis and reduced viability of CRC cells with IC50 values ranging from 28.09 to 56.16 μM. Moreover, it suppressed the colony formation ability of CRC cells and inhibited the expression of proliferation marker Ki67 in CRC cells and tissues. Meanwhile, the impairment of cell migration by yuanhuacine has been identified by wound healing assay and transwell migration assay. Furthermore, cell cycle assay showed that yuanhuacine resulted in significant G2/M phase arrest. Yuanhuacine significantly inhibited the tumor growth of HT-29 xenograft mice without obvious pathological changes in major organs. Mechanistically, the differentially expressed genes were enriched in cell cycle by both Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses. The mRNA and protein expressions of PLK1, CCNA2, and TTK were inhibited by yuanhuacine. Cell thermal shift assay further validated the direct interactions between yuanhuacine and each of PLK1, CCNA2, and TTK. The anti-proliferation activity and cell cycle arrest induced by yuanhuacine were reversed by overexpression of PLK1. CONCLUSIONS Yuanhuacine is a promising candidate compound in combating CRC by inhibiting proliferation of CRC cells. The major underlying mechanism involves regulating PLK1, which results in G2/M phase arrest.
Collapse
Affiliation(s)
- Jingchu Li
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Shanshan Liu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Hanxue Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Xia Feng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Chenglin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Jiacheng Li
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Hao Yin
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Jie Li
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, People's Liberation Army Navy, 325 Guohe Road, Shanghai 200433, China.
| | - Yongbing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China.
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China; Department of Oncology, Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
2
|
Ding K, Pan X, Yin W, Li L, Bai H, Bai M, Xu J, He J, Zhang W. Natural promising daphnane diterpenoids: An integrated review of their sources, structural classification, biological activities, and synthesis. PHYTOCHEMISTRY 2025; 233:114376. [PMID: 39814091 DOI: 10.1016/j.phytochem.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Daphnane diterpenoids, as one of the representative types of diterpenoid compounds with rich structural diversity and significant biological activities, have an uncommon 5/7/6 tricyclic skeleton mainly found in species of Thymelaeaceae and Euphorbiaceae families. Due to the unique peculiarity of the framework and remarkable pharmacological activities, over the past three decades, novel structures have been continuously discovered and more structural subtypes have been derived. However, there is always a lack of a unified and convincing structural classification strategy for the summary of daphnane diterpenoids, which affects the in-depth and systematic research of pharmaceutical chemists and pharmacologists. In addition, the distinctive skeleton, continuous chiral centers, and prominent bioactivities of daphnane diterpenoids have attracted widespread interest among synthetic chemists. However, there are currently only a few reports of complete synthesis of compounds with low overall yields. Given the broad attention paid to daphnane diterpenoids in recent years, this review summarized the sources, structural classification, biological activities, and synthesis of around 300 natural daphnane diterpenoids discovered from 1993 to 2023, providing a reference for further discovery of novel structures, chemical and biological synthesis, and drug research.
Collapse
Affiliation(s)
- Kang Ding
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xuege Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weifeng Yin
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongjin Bai
- College of Life Sciences, Tarim University, Alar, 843300, China
| | - Maoli Bai
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiekun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Weiku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Otsuki K, Zhang M, Tan L, Komaki M, Shimada A, Kikuchi T, Zhou D, Li N, Li W. Isomer Differentiation by UHPLC-Q-Exactive-Orbitrap MS led to Enhanced Identification of Daphnane Diterpenoids in Daphne tangutica. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39698894 DOI: 10.1002/pca.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Liquid chromatography-mass spectrometry (LC-MS) has enhanced the rapid, accurate analysis of complex plant extracts, eliminating the need for extensive isolation. Tandem mass spectrometry (MS/MS) further enhances this process by providing detailed structural information. However, differentiating structural isomers remains a challenge due to their minor spectral and structural differences. OBJECTIVE This study aimed to extend the applicability of LC-MS/MS for the structural identification of daphnane diterpenoids, with a particular focus on distinguishing functional isomers. METHODS LC-MS analyses were performed using an UHPLC-Q-Exactive-Orbitrap MS. The MS conditions for distinguishing isomers were optimized using in-source CID and HCD modes with reference compounds. A qualitative analysis was then conducted on the extract of Daphne tangutica. The chemical structures of the detected daphnane diterpenoids were estimated by analyzing the fragmentation patterns in both the mass spectra and product ion spectra. These identifications were further validated by isolation and comparison with an in-house daphnane diterpenoid library. RESULTS By optimizing MS conditions, especially in the negative ion mode, it was possible to accurately distinguish structural isomers such as yuanhuajine and gniditrin. Qualitative analysis of D. tangutica identified a total of 28 daphnanes, including seven previously unreported compounds. Furthermore, a novel geometric isomer of gniditrin was isolated by conducting isolation on the crude diterpenoid fraction. CONCLUSION This study demonstrated that LC-MS/MS analysis can effectively distinguish functional isomers of daphnane diterpenoids, thereby enhancing the identification of daphnanes in plant extracts and highlighting its potential as a powerful tool for phytochemical analysis.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Lingjian Tan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Masayoshi Komaki
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Akane Shimada
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
4
|
Onder A, Otsuki K, Zhang M, Avci E, Kikuchi T, Li W. Qualitative Analysis of Daphnane Diterpenoids in Various Parts of Daphne pontica L. by UHPLC-Q-Exactive-Orbitrap MS. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39508400 DOI: 10.1002/pca.3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Daphne pontica L. is an evergreen shrub that is recorded as an anti-diarrheic plant in Turkish folk medicine. Previous studies on D. pontica have reported, albeit slightly, the isolation of daphnane diterpenoids, but no systematic phytochemical analysis of daphnane diterpenoids has been conducted. OBJECTIVE This study aimed to comprehensively investigate daphnane diterpenoids in the extracts from the different parts (stems, leaves, and fruits) of D. pontica. METHODS An ultra-high-performance liquid chromatography coupled with Q-Exactive hybrid quadrupole Orbitrap mass spectrometer (UHPLC-Q-Exactive-Orbitrap MS) was used for the qualitative analysis of D. pontica. The stems, leaves, and fruits of D. pontica were extracted with diethyl ether. Each extract was then pretreated by a solid phase extraction cartridge and subjected to LC-MS/MS analysis. Detected daphnane diterpenoids were tentatively identified by comparison with an in-house daphnane library, and their chemical structures were estimated in detail by MS/MS fragmentation evaluation. RESULTS A total of 33 kinds of daphnanes were identified from the different parts of D. pontica, and were classified into three subtypes: daphnane orthoester, polyhydroxy daphnane, and macrocyclic daphnane orthoester. Among them, six daphnanes were postulated to be previously unreported compounds based on MS/MS fragmentation elucidation. Furthermore, the three plant parts showed similar daphnane diterpenoid profiles, with the stems containing the most abundant daphnane diterpenoids. CONCLUSION This is the first study to perform qualitative analysis of daphnane diterpenoids systematically and comprehensively in different parts of D. pontica. The results revealed that D. pontica is a plant resource rich in a variety of daphnane diterpenoids.
Collapse
Affiliation(s)
- Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Eda Avci
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara Medipol University, Ankara, Türkiye
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
5
|
Hu Y, Pan R, Wang Y, Ma M, Peng Y, Fan W, Zhang R, Nian H, Zhu J. Daphne genkwa: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Fitoterapia 2024; 177:106089. [PMID: 38906384 DOI: 10.1016/j.fitote.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Daphne genkwa, as a traditional medicine, is widely distributed in China, Korea and Vietnam. In China, the dried flower buds of this plant are named "Yuanhua". It has the ability to effectively promote urination, eliminate phlegm and alleviate cough, eliminate parasites and cure of scabies, with a broad spectrum of pharmacological effects and considerable clinical efficacy. This paper provides a summary and classification of the main chemical constituents of D. genkwa based on a review of relevant domestic and foreign literature. It also outlines the current research status of traditional clinical usage, pharmacological effects, and toxicity of D. genkwa. The aim is to provide a theoretical basis for further study of D. genkwa and its potential new clinical applications.
Collapse
Affiliation(s)
- Yue Hu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Rongrong Pan
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ying Peng
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weiqing Fan
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ruoxi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Jianyong Zhu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
6
|
Song JY, Sun XY, Wang BL, Zhou SS, Song JX, Zhang BH, Wang XW. COAP-Pd Catalyzed Asymmetric Formal [3+2] Cycloaddition for Optically Active Multistereogenic Spiro Cyclopentane-Indandiones Bearing Cyclic N-Sulfonyl Ketimine Skeletons. Chem Asian J 2024; 19:e202400184. [PMID: 38628038 DOI: 10.1002/asia.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Indexed: 05/21/2024]
Abstract
We reported a chiral oxamide-phosphine ligand (COAP-Ph)-Pd-catalyzed asymmetric [3+2] cycloaddition reaction between vinyl cyclopropane compounds derived from 1,3-indanedione and 2-vinylcyclopropane-1,1-dicarboxylates with cyclic sulfonyl 1-azadienes. The corresponding reactions provided a series of enantiomerically active spiro cyclopentane-indandione and cyclopentane structures bearing three consecutive stereogenic centers in good yields with good diastereo- and enantioselectivity. The COAP-Pd complex serves not only to promote generation of chiral π-allyl-palladium intermediates and induce the asymmetry of the reaction, but also depress the background reaction.
Collapse
Affiliation(s)
- Jia-Yu Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xing-Yun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Bai-Lin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Sheng-Suo Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Jia-Xin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Bu-Hong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xing-Wang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| |
Collapse
|
7
|
Sun Y, Feng J, Qin S, Fu S, Liu B. Asymmetric Construction of the Core of C 6, C 7-Epoxy Daphnane Diterpenoid Orthoesters. Org Lett 2023; 25:8072-8076. [PMID: 37916924 DOI: 10.1021/acs.orglett.3c03136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Asymmetric construction of the core of C6, C7-epoxy daphnane diterpenoid orthoesters is developed through a convergent synthetic strategy. The salient features include a diastereoselective nucleophilic assembly of two bulky cyclic fragments, an oxidative cleavage/transesterification/aldol cascade to fashion the seven-membered ring, and a base-mediated transesterification/retro-aldol/aldol/epoxidation cascade to install the epoxy moiety with proper stereochemistry.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Feng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Ezzanad A, De los Reyes C, Macías-Sánchez AJ, Hernández-Galán R. Isolation and Identification of 12-Deoxyphorbol Esters from Euphorbia resinifera Berg Latex: Targeted and Biased Non-Targeted Identification of 12-Deoxyphorbol Esters by UHPLC-HRMS E. PLANTS (BASEL, SWITZERLAND) 2023; 12:3846. [PMID: 38005743 PMCID: PMC10674858 DOI: 10.3390/plants12223846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Diterpenes from the Euphorbia genus are known for their ability to regulate the protein kinase C (PKC) family, which mediates their ability to promote the proliferation of neural precursor cells (NPCs) or neuroblast differentiation into neurons. In this work, we describe the isolation from E. resinifera Berg latex of fifteen 12-deoxyphorbol esters (1-15). A triester of 12-deoxy-16-hydroxyphorbol (4) and a 12-deoxyphorbol 13,20-diester (13) are described here for the first time. Additionally, detailed structural elucidation is provided for compounds 3, 5, 6, 14 and 15. The absolute configuration for compounds 3, 4, 6, 13, 14 and 15 was established by the comparison of their theoretical and experimental electronic circular dichroism (ECD) spectra. Access to the above-described collection of 12-deoxyphorbol derivatives, with several substitution patterns and attached acyl moieties, allowed for the study of their fragmentation patterns in the collision-induced dissociation of multiple ions, without precursor ion isolation mass spectra experiments (HRMSE), which, in turn, revealed a correlation between specific substitution patterns and the fragmentation pathways in their HRMSE spectra. In turn, this allowed for a targeted UHPLC-HRMSE analysis and a biased non-targeted UHPLC-HRMSE analysis of 12-deoxyphorbols in E. resinifera latex which yielded the detection and identification of four additional 12-deoxyphorbols not previously isolated in the initial column fractionation work. One of them, identified as 12-deoxy-16-hydroxyphorbol 20-acetate 13-phenylacetate 16-propionate (20), has not been described before.
Collapse
Affiliation(s)
- Abdellah Ezzanad
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Carolina De los Reyes
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Antonio J. Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
9
|
Zhang M, Otsuki K, Takahashi R, Kikuchi T, Zhou D, Li N, Li W. Identification of Daphnane Diterpenoids from Wikstroemia indica Using Liquid Chromatography with Tandem Mass Spectrometry. PLANTS (BASEL, SWITZERLAND) 2023; 12:3620. [PMID: 37896083 PMCID: PMC10609749 DOI: 10.3390/plants12203620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for the rapid identification of compounds within natural resources. Daphnane diterpenoids, a class of natural compounds predominantly found in plants belonging to the Thymelaeaceae and Euphorbiaceae families, have attracted much attention due to their remarkable anticancer and anti-HIV activities. In the present study, the presence of daphnane diterpenoids in Wikstroemia indica, a plant belonging to the Thymelaeaceae family, was investigated by LC-MS/MS analysis. As a result, 21 daphnane diterpenoids (1-21) in the stems of W. indica were detected. Among these, six major compounds (12, 15, 17, 18, 20, and 21) were isolated and their structures were unequivocally identified through a comprehensive analysis of the MS and NMR data. For the minor compounds (1-11, 13, 14, 16, and 19), their structures were elucidated by in-depth MS/MS fragmentation analysis. This study represents the first disclosure of structurally diverse daphnane diterpenoids in W. indica, significantly contributing to our understanding of bioactive diterpenoids in plants within the Thymelaeaceae family.
Collapse
Affiliation(s)
- Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Reo Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| | - Di Zhou
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (D.Z.); (N.L.)
| | - Ning Li
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (D.Z.); (N.L.)
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan; (M.Z.); (T.K.)
| |
Collapse
|
10
|
Otsuki K, Li W. Tigliane and daphnane diterpenoids from Thymelaeaceae family: chemistry, biological activity, and potential in drug discovery. J Nat Med 2023; 77:625-643. [PMID: 37294498 PMCID: PMC10465420 DOI: 10.1007/s11418-023-01713-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
Tigliane and daphnane diterpenoids are characteristically distributed in plants of the Thymelaeaceae family as well as the Euphorbiaceae family and are structurally diverse due to the presence of polyoxygenated functionalities in the polycyclic skeleton. These diterpenoids are known as toxic components, while they have been shown to exhibit a wide variety of biological activities, such as anti-cancer, anti-HIV, and analgesic activity, and are attracting attention in the field of natural product drug discovery. This review focuses on naturally occurring tigliane and daphnane diterpenoids from plants of the Thymelaeaceae family and provides an overview of their chemical structure, distribution, isolation, structure determination, chemical synthesis, and biological activities, with a prime focus on the recent findings.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
11
|
Mi H, Zhang P, Yao L, Gao H, Wei F, Lu T, Ma S. Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics. Molecules 2023; 28:molecules28103990. [PMID: 37241730 DOI: 10.3390/molecules28103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Crude herbs of Daphne genkwa (CHDG) are often used in traditional Chinese medicine to treat scabies baldness, carbuncles, and chilblain owing to their significant purgation and curative effects. The most common technique for processing DG involves the use of vinegar to reduce the toxicity of CHDG and enhance its clinical efficacy. Vinegar-processed DG (VPDG) is used as an internal medicine to treat chest and abdominal water accumulation, phlegm accumulation, asthma, and constipation, among other diseases. In this study, the changes in the chemical composition of CHDG after vinegar processing and the inner components of the changed curative effects were elucidated using optimized ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Untargeted metabolomics, based on multivariate statistical analyses, was also used to profile differences between CHDG and VPDG. Eight marker compounds were identified using orthogonal partial least-squares discrimination analysis, which indicated significant differences between CHDG and VPDG. The concentrations of apigenin-7-O-β-d-methylglucuronate and hydroxygenkwanin were considerably higher in VPDG than those in CHDG, whereas the amounts of caffeic acid, quercetin, tiliroside, naringenin, genkwanines O, and orthobenzoate 2 were significantly lower. The obtained results can indicate the transformation mechanisms of certain changed compounds. To the best of our knowledge, this study is the first to employ mass spectrometry to detect the marker components of CHDG and VPDG.
Collapse
Affiliation(s)
- Hongying Mi
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Ping Zhang
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Lingwen Yao
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Huiyuan Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Wei
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Tulin Lu
- School of Chinese Material Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - Shuangcheng Ma
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| |
Collapse
|
12
|
Ma C, Li D, Dang R, Gu Y, Li A, Zhao Y, Qi F, Liu J. Metabolism, pharmacokinetics, and bioavailability of yuanhuacine in rat using LC-MS. Biomed Chromatogr 2023; 37:e5540. [PMID: 36316300 DOI: 10.1002/bmc.5540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/02/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Yuanhuacine is a Daphne-type diterpene ortho-ester and is one of the main active ingredients of genkwa flos. Anticancer activity of yuanhuacine has been well investigated in various tumor cells and animal models, but information on metabolism and pharmacokinetics is limited. The aims of the present study were to investigate the metabolic and pharmacokinetic profiles of yuanhuacine in rat. The metabolic profile of yuanhuacine was obtained from rat plasma, urine, and feces using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. A total of seven metabolites were detected, and the proposed metabolic pathways involved oxidation and glucuronidation. A simple and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the determination of yuanhuacine in rat plasma. The linear range of yuanhuacine was 1-1000 ng/ml (R2 = 0.998). The intra- and inter-precision (coefficient of variation %) of the assay was 3.86-6.18% and 2.65-5.75%, respectively, and the intra- and inter-accuracy (relative error %) was -3.83-4.77% and -3.03-5.11%, respectively. The extraction recovery, matrix effect, stability, and incurred sample reanalysis of yuanhuacine were within acceptable levels. The established method was validated and successfully applied to the preclinical pharmacokinetic study of yuanhuacine. The absolute oral bioavailability of yuanhuacine was calculated as 1.14%, and it reached the maximum plasma concentration of 28.21 ± 2.79 ng/ml in rat plasma at 2 h in the oral dosing group. The apparent volume of distribution of intravenous and intragastric administrations was 26.07 ± 6.45 and 21.83 ± 3.54 L/kg, respectively. The half-life of elimination of yuanhuacine was 9.64 ± 1.53 h in the intravenous dosing group.
Collapse
Affiliation(s)
- Chao Ma
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Aixue Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu Qi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Xu Z, Eichler B, Klausner EA, Duffy-Matzner J, Zheng W. Lead/Drug Discovery from Natural Resources. Molecules 2022; 27:8280. [PMID: 36500375 PMCID: PMC9736696 DOI: 10.3390/molecules27238280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have been shown to be effective drug candidates against various diseases for many years. Over a long period of time, nature has produced an abundant and prosperous source pool for novel therapeutic agents with distinctive structures. Major natural-product-based drugs approved for clinical use include anti-infectives and anticancer agents. This paper will review some natural-product-related potent anticancer, anti-HIV, antibacterial and antimalarial drugs or lead compounds mainly discovered from 2016 to 2022. Structurally typical marine bioactive products are also included. Molecular modeling, machine learning, bioinformatics and other computer-assisted techniques that are very important in narrowing down bioactive core structural scaffolds and helping to design new structures to fight against key disease-associated molecular targets based on available natural products are considered and briefly reviewed.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
- Institute of Interventional & Vascular Surgery, Tongji University, Shanghai 200072, China
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Barrett Eichler
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Eytan A. Klausner
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Jetty Duffy-Matzner
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville St., Durham, NC 27707, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Guo R, Li Q, Mi SH, Jia SH, Yao GD, Lin B, Huang XX, Liu YY, Song SJ. Target isolation of cytotoxic diterpenoid esters and orthoesters from Daphne tangutica maxim based on molecular networking. PHYTOCHEMISTRY 2022; 203:113358. [PMID: 35977604 DOI: 10.1016/j.phytochem.2022.113358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/19/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Guiding by LC-MS/MS analysis and the GNPS Molecular Networking, five undescribed daphnane diterpenoids, tanguticanines A-E, and eleven known analogues were discovered from the whole plants of Daphne tangutica Maxim. Their structures and absolute configurations were determined via extensive NMR spectroscopic analysis, ECD calculations, and X-ray diffraction crystallography. Tanguticanine E (5) exhibited promising cytotoxicity against the HepG2 cell line with an IC50 value of 9.93 ± 0.10 μM. Further flow cytometry experiment was performed to detect cell apoptosis, and the results indicated that cytotoxic diterpenoids (tanguticanines B, D and E, altadaphnan C, gniditrin, hirsein A and simplexin) exert their effects through induction of apoptosis.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-He Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yu-Yang Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
15
|
Huang JL, Yan XL, Li W, Fan RZ, Li S, Chen J, Zhang Z, Sang J, Gan L, Tang GH, Chen H, Wang J, Yin S. Discovery of Highly Potent Daphnane Diterpenoids Uncovers Importin-β1 as a Druggable Vulnerability in Castration-Resistant Prostate Cancer. J Am Chem Soc 2022; 144:17522-17532. [DOI: 10.1021/jacs.2c06449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia-Luo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Xue-Long Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
- School of Pharmacy, Guizhou Medical University, Guian New District, Guizhou 550025, P.R. China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Run-Zhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jianghe Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jun Sang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Hongwu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California 95817, United States
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
16
|
He X, Abulizi X, Li X, Ma G, Sun Z, Wei H, Xu X, Shi L, Zhang J. Daphnane-Type Diterpenes from Stelleropsis tianschanica and Their Antitumor Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175701. [PMID: 36080468 PMCID: PMC9458044 DOI: 10.3390/molecules27175701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
Four new daphnane-type diterpenes named tianchaterpenes C-F (1–4) and six known ones were isolated from Stelleropsis tianschanica. Their structures were elucidated based on chemical and spectral analyses. The comparisons of calculated and experimental electronic circular dichroism (ECD) methods were used to determine the absolute configurations of new compounds. Additionally, compounds 1–10 were evaluated for their cytotoxic activities against HGC-27 cell lines; the results demonstrate that compound 2 had strong cytotoxic activities with IC50 values of 8.8 µM, for which activity was better than that of cisplatin (13.2 ± 0.67 µM).
Collapse
Affiliation(s)
- Xiaoyan He
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 130118, China
| | - Xiatiguli Abulizi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Xiaowan Li
- Xinjiang Agricultural Vocational and Technical College Biological Technology Branch, Changji 831100, China
| | - Guoxu Ma
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhaocui Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hongyan Wei
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Leiling Shi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
- Correspondence: (L.S.); (J.Z.)
| | - Jing Zhang
- College of Chinese Medicine Material, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (L.S.); (J.Z.)
| |
Collapse
|
17
|
Mi SH, Zhao P, Li Q, Zhang H, Guo R, Liu YY, Lin B, Yao GD, Song SJ, Huang XX. Guided isolation of daphnane-type diterpenes from Daphne genkwa by molecular network strategies. PHYTOCHEMISTRY 2022; 198:113144. [PMID: 35283165 DOI: 10.1016/j.phytochem.2022.113144] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
A molecular networking-guided study on the Daphne genkwa Sieb. et Zucc led to the isolation of twelve daphnane-type diterpenoids including four undescribed compounds, yuanhuakines A-D. Their structures were elucidated by spectroscopic analyses, ECD calculations, and single-crystal X-ray diffraction analysis. All isolates were evaluated for their inhibitory activity against the A549, Hep3B, and MCF-7 cell lines. The majority of compounds inhibited A549 cells with IC50 values ranging from 7.77 to 20.56 μM, and their structure-activity relationship is preliminarily discussed. Five of these compounds were selected for further experiments, and they appear to inhibit A549 cell lines by inducing apoptosis.
Collapse
Affiliation(s)
- Si-Hui Mi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Peng Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qian Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Hao Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Rui Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yu-Yang Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
18
|
Popović-Djordjević J, Quispe C, Giordo R, Kostić A, Katanić Stanković JS, Tsouh Fokou PV, Carbone K, Martorell M, Kumar M, Pintus G, Sharifi-Rad J, Docea AO, Calina D. Natural products and synthetic analogues against HIV: A perspective to develop new potential anti-HIV drugs. Eur J Med Chem 2022; 233:114217. [DOI: 10.1016/j.ejmech.2022.114217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022]
|
19
|
Bailly C. Yuanhuacin and Related Anti-Inflammatory and Anticancer Daphnane Diterpenes from Genkwa Flos-An Overview. Biomolecules 2022; 12:192. [PMID: 35204693 PMCID: PMC8961543 DOI: 10.3390/biom12020192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
The dried flower buds of the plant Daphne genkwa Sieb. et Zucc. have been largely used in traditional Chinese medicine for the treatment of inflammatory diseases. Numerous diterpenoids have been isolated from the Genkwa Flos (yuanhua in Chinese), including a series of daphnane-type diterpene designated as yuanhuacin (YC, often improperly designated as yuanhuacine) and analogues with a patronymic name. The series includes ten daphnane-type diterpenes: yuanhuacin, yuanhuadin (YD), yuanhuafin (YF), yuanhuagin (YG), yuanhuahin (YH), yuanhuajin (YJ), yuanhualin (YL), yuanhuamin (YM), yuanhuapin (YP), and yuanhuatin (YT). They are distinct from the rare flavonoid yuanhuanin. The series comprises several anticancer agents, such as the lead compound YC, which has revealed potent activity in vitro and in vivo against models of lung and breast cancers. The main signaling pathways implicated in the antitumor effects have been delineated. Protein kinase C is a key factor of activity for YC, but in general the molecular targets at the origin of the activity of these compounds remain little defined. Promising anticancer effects have been reported with analogues YD and YT, whereas compounds YF and YP are considered more toxic. The pharmacological activity of each compound is presented, as well as the properties of Genkwa Flos extracts. The potential toxic effects associated with the use of these compounds are also underlined.
Collapse
|
20
|
Nie YW, Li Y, Luo L, Zhang CY, Fan W, Gu WY, Shi KR, Zhai XX, Zhu JY. Phytochemistry and Pharmacological Activities of the Diterpenoids from the Genus Daphne. Molecules 2021; 26:6598. [PMID: 34771007 PMCID: PMC8588408 DOI: 10.3390/molecules26216598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023] Open
Abstract
There are abundant natural diterpenoids in the plants of the genus Daphne from the Thymelaeaceae family, featuring a 5/7/6-tricyclic ring system and usually with an orthoester group. So far, a total of 135 diterpenoids has been isolated from the species of the genus Daphne, which could be further classified into three main types according to the substitution pattern of ring A and oxygen-containing functions at ring B. A variety of studies have demonstrated that these compounds exert a wide range of bioactivities both in vitro and in vivo including anticancer, anti-inflammatory, anti-HIV, antifertility, neurotrophic, and cholesterol-lowering effects, which is reviewed herein. Meanwhile, the fascinating structure-activity relationship is also concluded in this review in the hope of providing an easy access to available information for the synthesis and optimization of efficient drugs.
Collapse
Affiliation(s)
- Yi-Wen Nie
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Yuan Li
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Lan Luo
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Chun-Yan Zhang
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Wei Fan
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Wei-Ying Gu
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Kou-Rong Shi
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Xiao-Xiang Zhai
- Department of Dermatology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Jian-Yong Zhu
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| |
Collapse
|
21
|
Otsuki K, Zhang M, Kikuchi T, Tsuji M, Tejima M, Bai ZS, Zhou D, Huang L, Chen CH, Lee KH, Li N, Koike K, Li W. Identification of anti-HIV macrocyclic daphnane orthoesters from Wikstroemia ligustrina by LC-MS analysis and phytochemical investigation. J Nat Med 2021; 75:1058-1066. [PMID: 34287744 DOI: 10.1007/s11418-021-01551-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
Macrocyclic daphnane orthoesters (MDOs) have attracted significant research interest for the drug discovery to cure HIV infection based on the "Shock and Kill" strategy. In the present study, the first chemical study on Wikstroemia ligustrina (Thymelaeaceae) was carried out by LC-MS analysis and phytochemical investigation. Nine daphnane diterpenoids (1-9) including seven MDOs were detected by LC-MS analysis. Further phytochemical investigation resulted in the isolation and structural elucidation of five daphnanes (1, 2, 5, 8, and 9) with potent anti-HIV activity. Taking the isolated MDO (1) as a model compound, the MS/MS fragmentation pathway was also elucidated.
Collapse
Affiliation(s)
- Kouharu Otsuki
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Mi Zhang
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Minami Tsuji
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Miyuko Tejima
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Zi-Song Bai
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Li Huang
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, 404, Taiwan
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
22
|
Pan RR, Zhang CY, Li Y, Zhang BB, Zhao L, Ye Y, Song YN, Zhang M, Tie HY, Zhang H, Zhu JY. Daphnane Diterpenoids from Daphne genkwa Inhibit PI3K/Akt/mTOR Signaling and Induce Cell Cycle Arrest and Apoptosis in Human Colon Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:1238-1248. [PMID: 32223193 DOI: 10.1021/acs.jnatprod.0c00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Seven new daphnane-type diterpenoids, daphgenkins A-G (1-7), and 15 known analogues (8-22) were isolated from the flower buds of Daphne genkwa. Their structures and absolute configurations were elucidated by spectroscopic data and calculated ECD analyses. The cytotoxicities of all daphnane-type diterpenoids (1-22) obtained were evaluated against three human colon cancer cell lines (SW620, RKO, and LoVo). Compounds 1, 12, and 13 exhibited cytotoxic effects against the SW620 and RKO cell lines, with IC50 values in the range of 3.0-9.7 μM. The most active new compound, 1, with an IC50 value of 3.0 μM against SW620 cells, was evaluated further for its underlying molecular mechanism. Compound 1 induced G0/G1 cell cycle arrest, leading to the induction of apoptosis in SW620 cells. Also, it induced cancer cell apoptosis by an increased ratio of Bax/Bcl-2, activated cleaved caspase-3 and caspase-9, and upregulated PARP. Finally, compound 1 significantly inhibited PI3K/Akt/mTOR signaling in SW620 cells. Together, the results suggest that compound 1 may be a suitable lead compound for further biological evaluation.
Collapse
Affiliation(s)
- Rong-Rong Pan
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Chun-Yan Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Yuan Li
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Bing-Bing Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Liang Zhao
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Ya-Nan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Hong-Yun Tie
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Jian-Yong Zhu
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, People's Republic of China
| |
Collapse
|
23
|
Xu C, Xin Y, Chen M, Ba M, Guo Q, Zhu C, Guo Y, Shi J. Discovery, synthesis, and optimization of an N-alkoxy indolylacetamide against HIV-1 carrying NNRTI-resistant mutations from the Isatis indigotica root. Eur J Med Chem 2020; 189:112071. [PMID: 32004936 PMCID: PMC7111291 DOI: 10.1016/j.ejmech.2020.112071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
From an aqueous decoction of the traditional Chinese medicine "ban lan gen" (the Isatis indigotica root), an antiviral natural product CI - 39 was isolated as an NNRTI (non-nucleoside reverse transcriptase inhibitor) (EC50 = 3.40 μM). Its novel structure was determined as methyl (1-methoxy-1H-indol-3-yl)acetamidobenzoate by spectroscopic data and confirmed by single crystal X-ray diffraction. Through synthesis and structure-activity relationship (SAR) investigation of CI - 39 and 57 new derivatives (24 with EC50 values of 0.06-8.55 μM), two optimized derivatives 10f and 10i (EC50: 0.06 μM and 0.06 μM) having activity comparable to that of NVP (EC50 = 0.03 μM) were obtained. Further evaluation verified that 10f and 10i were RT DNA polymerase inhibitors and exhibited better activities and drug resistance folds compared to NVP against seven NNRTI-resistant strains carrying different mutations. Especially, 10i (EC50 = 0.43 μM) was more active to the L100I/K103N double-mutant strain as compared to both NVP (EC50 = 0.76 μM) and EFV (EC50 = 1.08 μM). The molecular docking demonstrated a possible binding pattern between 10i and RT and revealed activity mechanism of 10i against the NNRTI-resistant strains.
Collapse
Affiliation(s)
- Chengbo Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yijing Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Minghua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingyu Ba
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|