1
|
Tošović J, Kolenc Z, Hostnik G, Bren U. Exploring antioxidative properties of xanthohumol and isoxanthohumol: An integrated experimental and computational approach with isoxanthohumol pKa determination. Food Chem 2025; 463:141377. [PMID: 39342736 DOI: 10.1016/j.foodchem.2024.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
This study explores the antioxidative activities of xanthohumol (XN) and isoxanthohumol (IXN), prenylated flavonoids from Humulus lupulus (family Cannabaceae), utilizing the oxygen radical absorption capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays along with computational Density Functional Theory methods. Experimentally, XN demonstrated significantly higher antioxidative capacities than IXN. Moreover, we determined IXN pKa values using the UV/Vis spectrophotometric method for the first time, facilitating its accurate computational modeling under physiological conditions. Through a thermodynamic approach, XN was found to efficiently scavenge HOO• and CH3O• radicals via Hydrogen Atom Transfer (HAT) and Radical Adduct Formation (RAF) mechanisms, while CH3OO• scavenging was feasible only through the HAT pathway. IXN exhibited its best antioxidative activity against CH3O• via both HAT and RAF mechanisms and could also scavenge HOO• through RAF. Both Single Electron Transfer (SET) and Sequential Proton Loss-Electron Transfer (SPLET) mechanisms were thermodynamically unfavorable for all radicals and both compounds.
Collapse
Affiliation(s)
- Jelena Tošović
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Zala Kolenc
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Gregor Hostnik
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- University of Maribor, Faculty of Chemistry and Chemical Technology, Smetanova ulica 17, SI-2000 Maribor, Slovenia; University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška ulica 8, SI-6000 Koper, Slovenia; Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Balci M, Arikan‐Abdulveli B, Yildiztugay E, Ozfidan‐Konakci C. Role of syringic acid in enhancing growth, photosynthesis, and antioxidant defense in lettuce exposed to arsenic stress. PHYSIOLOGIA PLANTARUM 2025; 177:e70051. [PMID: 39812165 PMCID: PMC11744429 DOI: 10.1111/ppl.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Heavy metal pollution, especially arsenic toxicity, significantly impairs plant growth and development. Phenolic acids, known for their antioxidant properties and involvement in stress signaling, are gaining increased attention as plant secondary metabolites with the potential to enhance plant resistance to these stressors. This study aimed to investigate the effects of different concentrations of syringic acid (SA1, 10 μM; SA2, 250 μM; SA3, 500 μM) on growth, photosynthetic parameters, and antioxidant activity in lettuce seedlings subjected to arsenic stress (As, 100 μM). Arsenic stress reduced growth by 56.7%, water content by 7.39%, and osmotic potential by 26.2% in lettuce leaves compared to control. Conversely, SA1 and SA2 treatments mitigated the adverse effects of arsenic on growth and preserved the water balance in plants. However, the SA3 treatment led to a decrease in growth by 18.9% and 39.5% in the SA3 and As+SA3 groups, respectively, indicating that high-dose SA treatment adversely affected lettuce leaves under both control and stress conditions. Exogenous SA1 treatment significantly improved photosynthesis, whereas SA2 provided milder benefits and SA3 did not reduce the adverse effects of arsenic exposure. Arsenic stress increased H2O2 content by 47.3% and lipid peroxidation by 33.4% in lettuce seedlings. SA1 treatment effectively reduced oxidative stress by enhancing the activities of key antioxidant enzymes, such as superoxide dismutase (SOD) and peroxidase (POX). Moreover, SA1 was successful in maintaining the glutathione (GSH) pool, whereas SA2 primarily promoted ascorbate (AsA) regeneration. In conclusion, 10 μM of syringic acid (SA1) was identified as the optimal dose for reducing arsenic stress in lettuce by enhancing antioxidant activity and supporting growth. Overall, the findings underscore the potential of SA1 treatment in enhancing the resilience of lettuce to heavy metal toxicity.
Collapse
Affiliation(s)
- Melike Balci
- Department of Biotechnology, Faculty of ScienceSelcuk UniversitySelcukluKonyaTURKEY
| | | | - Evren Yildiztugay
- Department of Biotechnology, Faculty of ScienceSelcuk UniversitySelcukluKonyaTURKEY
| | - Ceyda Ozfidan‐Konakci
- Department of Molecular Biology and Genetics, Faculty of ScienceNecmettin Erbakan UniversityMeramKonyaTURKEY
| |
Collapse
|
3
|
Thuy PT, Ha NX. Theoretical studies on the antioxidant activity of potential marine xanthones. Free Radic Res 2024; 58:826-840. [PMID: 39676294 DOI: 10.1080/10715762.2024.2438918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
In this study, a quantum chemical exploration was conducted to assess the antioxidant activity of xanthones isolated from marine sources, focusing on thermodynamics and kinetics within simulated physiological environments. DFT analysis revealed that xanthones such as 1,4,7-trihydroxy-6-methylxanthone (1), 1,4,5-trihydroxy-2-methylxanthone (2), arthone C (3), 2,3,4,6,8-pentahydroxy-1-methylxanthone (4), sterigmatocystin (5), oxisterigmatocystin C (6), and oxisterigmatocystin D (7) favor the SPLET pathway in water and the FHT pathway in lipid environments. The kinetic study of these xanthones reacting with the hydroperoxyl radical (HOO•) was conducted using the formal hydrogen atom transfer (FHT) mechanism and the single electron transfer (SET) mechanism. The results showed that compounds 1-4 exhibited antioxidant activities in aqueous environments surpassing that of the reference compound Trolox, with rate constants ranging from 2.02 x 105 to 9.44 x 107 M-1·s-1. In lipid environments, compounds 1 and 2 also demonstrated higher rate constants than Trolox. Additionally, molecular docking and molecular dynamics analysis suggested that xanthones 1-7 potentially inhibit the pro-oxidant effect of the Keap1 enzyme, highlighting their promise as both antiradicals and enzyme inhibitors.
Collapse
Affiliation(s)
- Phan Thi Thuy
- Department of Chemistry, Vinh University, Vinh, Vietnam
| | - Nguyen Xuan Ha
- Graduate University of Science and Technology, VAST, Hanoi, Vietnam
| |
Collapse
|
4
|
Vo QV, Hoa NT, Mechler A. The radical scavenging activity of 1-methyl-1,4-dihydronicotinamide: theoretical insights into the mechanism, kinetics and solvent effects. RSC Adv 2024; 14:37196-37201. [PMID: 39569110 PMCID: PMC11578042 DOI: 10.1039/d4ra07184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
1,4-Dihydronicotinamide derivatives, including 1-methyl-1,4-dihydronicotinamide (MNAH), are derivatives of the active center of nicotinamide coenzyme (NADH) and are therefore potent radical scavengers. MNAH serves as a useful model of NADH that allows for modeling studies to address the activity of this important biomolecule. In this work, MNAH activity was evaluated against typical free radicals using quantum chemical calculations in physiological environments, with a secondary aim of comparing activity against two physiologically relevant radicals of markedly different stability, HO˙, and HOO˙, to establish which of these is a better model for assessing antioxidant capacity in physiological environments. The HO˙ + MNAH reaction exhibited diffusion-limited overall rate constants in all media, including the gas phase. The HOO˙ antiradical activity of MNAH was also good, with overall rate constants of 2.00 × 104 and 2.44 × 106 M-1 s-1, in lipid and aqueous media, respectively. The calculated rate constant in water (k overall(MNAH + HOO˙) = 3.84 × 105 M-1 s-1, pH = 5.6) is in good agreement with the experimental data (k exp(NADH + HOO˙) = (1.8 ± 0.2)×105 M-1 s-1). In terms of mechanism, the H-abstraction of the C4-H bond characterized the HOO˙ radical scavenging activity of MNAH, whereas HO˙ could react with MNAH at several sites and following either of SET (in polar media), RAF, and FHT reactions, which could be ascribed to the high reactivity of HO˙. For this reason the results suggest that activity against HOO˙ is a better basis for comparison of anti-radical potential. In the broader context, the HOO˙ scavanging activity of MNAH is better than that of reference antioxidants such as trans-resveratrol and ascorbic acid in the nonpolar environment, and Trolox in the aqueous physiological environment. Therefore, in the physiological environment, MNAH functions as a highly effective radical scavenger.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia
| |
Collapse
|
5
|
Vo QV. Reactions of Diphenylamine with OH Radicals in the Environment: Theoretical Insights into the Mechanism, Kinetics, Temperature, and pH Effects. J Phys Chem B 2024; 128:11216-11228. [PMID: 39479903 DOI: 10.1021/acs.jpcb.4c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Diphenylamine (DPL) has been widely utilized in industrial chemicals, but its degradation by HO• radicals in the environment has not been fully studied yet. The present study uses quantum chemical calculations to evaluate the reaction of DPL with HO• radicals in atmospheric and aqueous environments. The results showed that, in the atmosphere, the diphenylamine reacted with the HO• radical rapidly, with an overall rate constant of 9.24 × 1011 to 1.34 × 1011 M-1 s-1 and a lifetime of 0.17 to 1.55 h at 253-323 K. The calculated overall rate constant in water (koverall = 1.95 × 1010 M-1 s-1, pH = 3-14) is in excellent agreement with the experimental value (koverall = 1.00 × 1010-1.36 × 1010 M-1 s-1). The HO• + DPL reaction in water could occur following the hydrogen transfer (15.4%), single electron transfer (41.6%), and radical adduct formation (41.7%) mechanisms, clarifying that addition products were not exclusive products. Nevertheless, variations in temperature and pH within aqueous environments had an impact on the mechanisms, kinetics, and degradation products of the reaction of DPL with HO• radicals.
Collapse
Affiliation(s)
- Quan V Vo
- Faculty of Chemical Technology - Environment, The University of Danang - University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
6
|
Vo QV, Thao LTT, Manh TD, Bay MV, Truong-Le BT, Hoa NT, Mechler A. Reaction of methylene blue with OH radicals in the aqueous environment: mechanism, kinetics, products and risk assessment. RSC Adv 2024; 14:27265-27273. [PMID: 39193277 PMCID: PMC11348493 DOI: 10.1039/d4ra05437g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Methylene Blue (MB) is an industrial chemical used in a broad range of applications, and hence its discharge is a concern. Yet, the environmental effects of its degradation by HO˙ radicals have not been fully studied yet. This study employs quantum chemical calculations to investigate the two-step degradation of MB by HO˙ radicals in aqueous environments. It was found that MB undergoes a rapid reaction with the HO˙ radical, with an overall rate constant of 5.51 × 109 to 2.38 × 1010 M-1 s-1 and has a rather broad lifetime range of 11.66 hours to 5.76 years in water at 273-383 K. The calculated rate constants are in good agreement with the experimental values (k calculation/k experimental = 2.62, pH > 2, 298 K) attesting to the accuracy of the calculation method. The HO˙ + MB reaction in water followed the formal hydrogen transfer and radical adduct formation mechanisms, yielding various intermediates and products. Based on standard tests these intermediates and some of the products can pose a threat to aquatic organisms, including fish, daphnia, and green algae, they have poor biodegradability and have the potential to induce developmental toxicity. Hence MB in the environment is of moderate concern depending on the ratio of safe to harmful breakdown products.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Luu Thi Thu Thao
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Tran Duc Manh
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Mai Van Bay
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Bich-Tram Truong-Le
- Department of Science and International Cooperation, The University of Danang Danang 550000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia
| |
Collapse
|
7
|
Carlos de Sousa W, Alves Morais R, Damian Giraldo Zuniga A. Buriti (Mauritia flexuosa) shell flour: Nutritional composition, chemical profile, and antioxidant potential as a strategy for valuing waste from native Brazilian fruits. Food Res Int 2024; 190:114578. [PMID: 38945600 DOI: 10.1016/j.foodres.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
The Cerrado is one of the most biodiverse biomes in the world, characterized by a wealth of native fruits with unique nutritional characteristics. In this sense, the social, economic, and environmental importance of fully utilizing food is widely recognized. Therefore, generally considered waste, fruit shells can be transformed into a coproduct with high added value. The objective of this work was to carry out a comprehensive assessment of the physicochemical properties, carbohydrate and fatty acid profile, phytochemical compounds, phenolic profile, and antioxidant potential of the recovered extracts of buriti (Mauritia flexuosa) shells in natura and dehydrated at 55 °C (flour). In addition, the functional properties were verified by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) from buriti shell flour. The results indicated high fiber content and energy value for the sample processed at 55 °C (58.95 g/100 g and 378.91 kcal/100 g, respectively) and low lipid and protein content (1.03 g/100 g and 1.39 g/100 g, respectively). Regardless of the sample analyzed, maltose was the majority sugar (37.33 - 281.01 g/100 g). The main fatty acids detected were oleic acid (61.33 - 62.08 %) followed by palmitic acid (33.91 - 34.40 %). The analysis of the mineral profile demonstrated that the samples did not differ significantly from each other, showing that the drying process did not interfere with the results obtained (p ≤ 0.05). The analysis of individual phenolics allowed the identification of six phenolic compounds in buriti shells. However, it is possible to observe that the drying method had a positive and significant influence on the phenolic profile (p ≤ 0.05), with chlorogenic acid (2.63 - 8.27 mg/100 g) and trigonelline (1.06 - 41.52 mg/100 g), the majority compounds. On the other hand, it is important to highlight that buriti shells have a high content of carotenoids, mainly β-carotene (27.18 - 62.94 µg/100 g) and α-carotene (18.23 - 60.28 µg/100 g), also being positively influenced by the drying process at 55 °C (p ≤ 0.05). The dried shells showed a high content of phytochemical compounds and high antioxidant activity based on the different methods tested. The results show that buriti shell flour can be fully utilized and has nutritional and chemical aspects that can be applied to develop new sustainable, nutritious, and functional food formulations.
Collapse
Affiliation(s)
- Wallace Carlos de Sousa
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil
| | - Romulo Alves Morais
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil.
| | - Abraham Damian Giraldo Zuniga
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil
| |
Collapse
|
8
|
Nguyen TQ, Mechler A, Vo QV. Computational assessment of the radical scavenging activity of cleomiscosin. RSC Adv 2024; 14:23629-23637. [PMID: 39077313 PMCID: PMC11284531 DOI: 10.1039/d4ra03260h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Coumarinolignans such as cleomiscosin A (CMA), cleomiscosin B (CMB), and cleomiscosin C (CMC) are secondary metabolites that were isolated from diverse plant species. Cleomiscosins (CMs) have numerous interesting biological activities, including noteworthy cytotoxicity of cancer cell lines along with hepatoprotective and assumed antioxidant activities. In this present study, the antioxidant properties of three cleomiscosins were investigated with a focus on the structure-activity relationship using thermodynamic and kinetic calculations with the M06-2X/6-311++G(d,p) method. The results show that CMs, including CMA, CMB, and CMC, are weak antioxidants in apolar environments, with k overall of 7.52 × 102 to 6.28 × 104 M-1 s-1 for the HOO˙ radical scavenging reaction in the gas phase and 3.47 × 102 to 6.44 × 104 M-1 s-1 in pentyl ethanoate. Remarkably, the difference in the fusion of phenylpropanoid structure with coumarin via two ortho-hydroxyl groups (CMA and CMB) does not cause any noticeable effect on their antioxidant activity, while the presence of a methoxy substitute on the aromatic ring of phenylpropanoid units (CMC) increases the reaction rate to about 61 to 84 times faster than that of CMA. In contrast, the studied CMs exhibit a good antioxidant capacity in polar environments, with a k overall range from 4.03 × 107 to 8.66 × 107 M-1 s-1, 102-103 times faster than that of Trolox, equal to that of ascorbic acid and resveratrol. The angular fusion of the phenylpropanoid and coumarin structures, as well as the methoxy substitution on the aromatic ring of the phenylpropanoid unit of the studied CMs, do not have any considerable effect on their antioxidant activity under the studied conditions.
Collapse
Affiliation(s)
- Trung Quang Nguyen
- The University of Danang - University of Science and Education Da Nang 550000 Vietnam
- Quality Assurance and Testing Center 2 Da Nang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia
| | - Quan V Vo
- Faculty of Chemical Technology - Environment, The University of Danang - University of Technology and Education Da Nang 550000 Vietnam
| |
Collapse
|
9
|
Cipollone MA, Fontana A, Fillería SG, Tironi VA. Characterization, Bioaccesibility and Antioxidant Activities of Phenolic Compounds Recovered from Yellow pea (Pisum sativum) Flour and Protein Isolate. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:401-409. [PMID: 38602652 DOI: 10.1007/s11130-024-01172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
This study focused on studying the bioaccesible phenolic compounds (PCs) from yellow pea flour (F) and protein isolate (I). Total phenolic contents (TPC), PCs composition and antioxidant activities were analysed in ethanol 60% extracts obtained by applying ultrasound assisted extraction (UAE, 15 min/40% amplitude). The preparation of I under alkaline conditions and the elimination of some soluble components at lower pH produced a change of PCs profile and antioxidant activity. After simulated gastrointestinal digestion (SGID) of both ingredients to obtain the digests FD and ID, notable changes in the PCs concentration and profiles could be demonstrated. FD presented a higher ORAC activity than ID (IC50 = 0.022 and 0.039 mg GAE/g dm, respectively), but lower ABTS•+ activity (IC50 = 0.8 and 0.3 mg GAE/g dm, respectively). After treatment with cholestyramine of extracts from FD and ID in order to eliminate bile salts and obtain the bioaccesible fractions FDb and IDb, ROS scavenging in H2O2-induced Caco2-TC7 cells was evaluated, registering a greater activity for ID respect to FD (IC50 = 0.042 and 0.017 mg GAE/mL, respectively). These activities could be attributed to the major bioaccesible PCs: OH-tyrosol, polydatin, trans-resveratrol, rutin, (-)-epicatechin and (-)-gallocatechin gallate for FD; syringic (the most concentrated) and ellagic acids, trans-resveratrol, and (-)-gallocatechin gallate for ID, but probably other compounds such as peptides or amino acids can also contribute.
Collapse
Affiliation(s)
- María Agustina Cipollone
- Laboratorio de Investigación, Desarrollo e Innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CONICET, CICPBA, UNLP, La Plata, 1900, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza (IBAM) (CONICET, FCA, UNCUYO), Almirante Brown 500, M5528AHB Chacras de Coria, Mendoza, Argentina
| | - Susan García Fillería
- Laboratorio de Investigación, Desarrollo e Innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CONICET, CICPBA, UNLP, La Plata, 1900, Argentina
| | - Valeria A Tironi
- Laboratorio de Investigación, Desarrollo e Innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CONICET, CICPBA, UNLP, La Plata, 1900, Argentina.
| |
Collapse
|
10
|
Mfotie Njoya E, Tabakam GT, Chukwuma CI, Mashele SS, Makhafola TJ. Phytoconstituents of Androstachys johnsonii Prain Prevent Reactive Oxygen Species Production and Regulate the Expression of Inflammatory Mediators in LPS-Stimulated RAW 264.7 Macrophages. Antioxidants (Basel) 2024; 13:401. [PMID: 38671849 PMCID: PMC11047428 DOI: 10.3390/antiox13040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
According to a survey, the medicinal use of Androstachys johnsonii Prain is kept secret by traditional healers. Considering that inflammation and oxidative stress are major risk factors for the progression of various chronic diseases and disorders, we resolved to investigate the antioxidant and anti-inflammatory potentials of A. johnsonii using in vitro and cell-based assays. The antioxidant activity of A. johnsonii hydroethanolic leaf extract (AJHLE) was evaluated using the ABTS, DPPH, and FRAP assays. Its cytotoxic effect was assessed on RAW 264.7 macrophages using an MTT assay. Then, its anti-inflammatory effect was evaluated by measuring the NO production and 15-LOX inhibitory activities. Moreover, its preventive effect on ROS production and its regulatory effect on the expression of pro-inflammatory mediators such as IL-1β, IL-10, TNF-α, and COX-2 were determined using established methods. AJHLE strongly inhibited radicals such as ABTS•+, DPPH•, and Fe3+-TPTZ with IC50 values of 9.07 µg/mL, 8.53 µg/mL, and 79.09 µg/mL, respectively. Additionally, AJHLE induced a significant (p < 0.05) cytotoxic effect at 100 µg/mL, and when tested at non-cytotoxic concentrations, it inhibited NO and ROS production in LPS-stimulated RAW 264.7 macrophages in a concentration-dependent manner. Furthermore, AJHLE showed that its anti-inflammatory action occurs via the inhibition of 15-LOX activity, the downregulation of COX-2, TNF-α, and IL-1β expression, and the upregulation of IL-10 expression. Finally, chemical investigation showed that AJHLE contains significant amounts of procyanidin, epicatechin, rutin, and syringic acid which support its antioxidant and anti-inflammatory activities. These findings suggest that A. johnsonii is a potential source of therapeutic agents against oxidative stress and inflammatory-related diseases.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (G.T.T.); (C.I.C.); (S.S.M.)
| | | | | | | | - Tshepiso J. Makhafola
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (G.T.T.); (C.I.C.); (S.S.M.)
| |
Collapse
|
11
|
Khatun A, Panchali T, Gorai S, Dutta A, Das TK, Ghosh K, Pradhan S, Mondal KC, Chakrabarti S. Impaired brain equanimity and neurogenesis in the diet-induced overweight mouse: a preventive role by syringic acid treatment. Nutr Neurosci 2024; 27:271-288. [PMID: 36947578 DOI: 10.1080/1028415x.2023.2187510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVES In this study mice were fed a high-fat diet for 12 weeks to establish diet-induced obesity and syringic acid (SA) was assessed for anti-obese, neuroprotective, and neurogenesis. METHOD Animals were given HFD for 12 weeks to measure metabolic characteristics and then put through the Barns-maze and T-maze tests to measure memory. Additionally, the physiology of the blood-brain barrier, oxidative stress parameters, the expression of inflammatory genes, neurogenesis, and histopathology was evaluated in the brain. RESULT DIO raised body weight, BMI, and other metabolic parameters after 12 weeks of overfeeding. A reduced spontaneous alternation in behavior (working memory, reference memory, and total time to complete a task), decreased enzymatic and non-enzymatic antioxidants, oxidative biomarkers, increased neurogenesis, and impaired blood-brain barrier were all seen in DIO mice. SA (50 mg/kg) treatment of DIO mice (4 weeks after 8 weeks of HFD feeding) reduced diet-induced changes in lipid parameters associated with obesity, hepatological parameters, memory, blood-brain barrier, oxidative stress, neuroinflammation, and neurogenesis. SA also reduced the impact of malondialdehyde and enhanced the effects of antioxidants such as glutathione, superoxide dismutase (SOD), and total thiol (MDA). Syringic acid improved neurogenesis, cognition, and the blood-brain barrier while reducing neurodegeneration in the hippocampal area. DISCUSSION According to the results of the study, syringic acid therapy prevented neurodegeneration, oxidative stress, DIO, and memory loss. Syringic acid administration may be a useful treatment for obesity, memory loss, and neurogenesis, but more research and clinical testing is needed.
Collapse
Affiliation(s)
- Amina Khatun
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| | - Titli Panchali
- Department of Paramedical & Allied Health Science, Midnapore City College, Paschim Medinipur, India
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Ananya Dutta
- Department of Paramedical & Allied Health Science, Midnapore City College, Paschim Medinipur, India
| | - Tridip Kumar Das
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| | - Shrabani Pradhan
- Department of Paramedical & Allied Health Science, Midnapore City College, Paschim Medinipur, India
| | | | - Sudipta Chakrabarti
- Department of Biological Sciences, Midnapore City College, Paschim Medinipur, India
| |
Collapse
|
12
|
Rusdipoetra RA, Suwito H, Puspaningsih NNT, Haq KU. Theoretical insight of reactive oxygen species scavenging mechanism in lignin waste depolymerization products. RSC Adv 2024; 14:6310-6323. [PMID: 38380240 PMCID: PMC10877321 DOI: 10.1039/d3ra08346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Apart from natural products and synthesis, phenolic compounds can be produced from the depolymerization of lignin, a major waste in biofuel and paper production. This process yields a plethora of aryl propanoid phenolic derivatives with broad biological activities, especially antioxidant properties. Due to its versatility, our study focuses on investigating the antioxidant mechanisms of several phenolic compounds obtained from renewable and abundant resources, namely, syringol (Hs), 4-allylsyringol (HAs), 4-propenylsyringol (HPns), and 4-propylsyringol (HPs). Employing the density functional theory (DFT) approach in conjunction with the QM-ORSA protocol, we aim to explore the reactivity of these compounds in neutralizing hydroperoxyl radicals in physiological and non-polar media. Kinetic and thermodynamic parameter calculations on the antioxidant activity of these compounds were also included in this study. Additionally, our research utilizes the activation strain model (ASM) for the first time to explain the reactivity of the HT and RAF mechanisms in the peroxyl radical scavenging process. It is predicted that HPs has the best rate constant in both media (1.13 × 108 M-1 s-1 and 1.75 × 108 M-1 s-1, respectively). Through ASM analysis, it is observed that the increase in the interaction energy due to the formation of intermolecular hydrogen bonds during the reaction is an important feature for accelerating the hydrogen transfer process. Furthermore, by examining the physicochemical and toxicity parameters, only Hs is not suitable for further investigation as a therapeutic agent because of potential toxicity and mutagenicity. However, overall, all compounds are considered potent HOO˙ scavengers in lipid-rich environments compared to previously studied antioxidants.
Collapse
Affiliation(s)
- Rahmanto Aryabraga Rusdipoetra
- Bioinformatic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Hery Suwito
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Ni Nyoman Tri Puspaningsih
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Proteomic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| | - Kautsar Ul Haq
- Bioinformatic Research Group, Research Centre of Bio-Molecule Engineering (BIOME), Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
- Department of Chemistry, Faculty of Science and Technology, Airlangga University Jl. Ir. H. Soekarno Mulyorejo Surabaya Indonesia
| |
Collapse
|
13
|
Nakhaee S, Kooshki A, Hormozi A, Akbari A, Mehrpour O, Farrokhfall K. Cinnamon and cognitive function: a systematic review of preclinical and clinical studies. Nutr Neurosci 2024; 27:132-146. [PMID: 36652384 DOI: 10.1080/1028415x.2023.2166436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cinnamon is the inner bark of trees named Cinnamomum. Studies have shown that cinnamon and its bioactive compounds can influence brain function and affect behavioral characteristics. This study aimed to systematically review studies about the relationship between cinnamon and its key components in memory and learning. Two thousand six hundred five studies were collected from different databases (PubMed, Scopus, Google Scholar, and Web of Science) in September 2021 and went under investigation for eligibility. As a result, 40 studies met our criteria and were included in this systematic review. Among the included studies, 33 were In vivo studies, five were In vitro, and two clinical studies were also accomplished. The main outcome of most studies (n = 40) proved that cinnamon significantly improves cognitive function (memory and learning). In vivo studies showed that using cinnamon or its components, such as eugenol, cinnamaldehyde, and cinnamic acid, could positively alter cognitive function. In vitro studies also showed that adding cinnamon or cinnamaldehyde to a cell medium can reduce tau aggregation, Amyloid β and increase cell viability. For clinical studies, one study showed positive effects, and another reported no changes in cognitive function. Most studies reported that cinnamon might be useful for preventing and reducing cognitive function impairment. It can be used as an adjuvant in the treatment of related diseases. However, more studies need to be done on this subject.
Collapse
Affiliation(s)
- Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Kooshki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Hormozi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Aref Akbari
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Data Science Institute, Southern Methodist University, Dallas, TX, USA
| | - Khadijeh Farrokhfall
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
14
|
Wang M, Gao Z, Zhang Y, Zhao Q, Tan X, Wu S, Ding L, Liu Y, Qin S, Gu J, Xu L. Syringic acid promotes cartilage extracellular matrix generation and attenuates osteoarthritic cartilage degradation by activating TGF-β/Smad and inhibiting NF-κB signaling pathway. Phytother Res 2024; 38:1000-1012. [PMID: 38126609 DOI: 10.1002/ptr.8089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease which is characterized by the disruption of articular cartilage. Syringic acid (SA) is a phenolic compound with anti-inflammatory, antioxidant, and other effects including promoting osteogenesis. However, the effect of SA on OA has not yet been reported. Therefore, the purpose of our study was to investigate the effect and mechanism of SA on OA in a mouse model of medial meniscal destabilization. The expressions of genes were evaluated by qPCR or western blot or immunofluorescence. RNA-seq analysis was performed to examine gene transcription alterations in chondrocytes treated with SA. The effect of SA on OA was evaluated using destabilization of the medial meniscus model of mice. We found that SA had no obvious toxic effect on chondrocytes, while promoting the expressions of chondrogenesis-related marker genes. The results of RNA-seq analysis showed that extracellular matrix-receptor interaction and transforming growth factor-β (TGF-β) signaling pathways were enriched among the up-regulated genes by SA. Mechanistically, we demonstrated that SA transcriptionally activated Smad3. In addition, we found that SA inhibited the overproduction of lipopolysaccharide-induced inflammation-related cytokines including tumor necrosis factor-α and interleukin-1β, as well as matrix metalloproteinase 3 and matrix metalloproteinase 13. The cell apoptosis and nuclear factor-kappa B (NF-κB) signaling were also inhibited by SA treatment. Most importantly, SA attenuated cartilage degradation in a mouse OA model. Taken together, our study demonstrated that SA could alleviate cartilage degradation in OA by activating the TGF-β/Smad and inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Gao
- Er Sha Sports Training Center of Guangdong Province, Guangzhou, China
| | - Yage Zhang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiangqiang Zhao
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfang Tan
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siluo Wu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingli Ding
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengnan Qin
- School of Biomedical Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiangyong Gu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Vo QV, Thuy Hoa DT, Hoa NT, Tran MD, Mechler A. The radical scavenging activity of monocaffeoylquinic acids: the role of neighboring hydroxyl groups and pH levels. RSC Adv 2024; 14:4179-4187. [PMID: 38292262 PMCID: PMC10825902 DOI: 10.1039/d3ra08460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Caffeoylquinic acids (CQAs) are well-known antioxidants. However, a key aspect of their radical scavenging activity - the mechanism of action - has not been addressed in detail thus far. Here we report on a computational study of the mechanism of activity of CQAs in scavenging hydroperoxyl radicals. In water at physiological pH, the CQAs demonstrated ≈ 104 times higher HOO˙ antiradical activity than in lipid medium (k(lipid) ≈ 104 M-1 s-1). The activity in the aqueous solution was determined by the hydrogen transfer mechanism of the adjacent hydroxyl group (O6'-H) of the dianion states (Γ = 93.2-95.2%), while the single electron transfer reaction of these species contributed 4.8-6.8% to the total rate constants. The kinetics estimated by the calculations are consistent with experimental findings in water (pH = 7.5), yielding a kcalculated/kexperimental = 2.4, reinforcing the reliability and precision of the computational method and demonstrating its utility for evaluating radical reactions in silico. The results also revealed the pH dependence of the HOO˙ scavenging activity of the CQAs; activity was comparable for all compounds below pH 3, however at higher pH values 5CQA reacted with the HOO˙ with lower activity than 3CQA or 4CQA. It was also found that CQAs are less active than Trolox below pH 4.7, however over pH 5.0 they showed higher activity than the reference. The CQAs had the best HOO˙ antiradical activity at pH values between 5.0 and 8.6. Therefore, in the physiological environment, the hydroperoxyl antiradical capacity of CQAs exhibits similarity to renowned natural antioxidants including resveratrol, ascorbic acid, and Trolox.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Duong Thi Thuy Hoa
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Manh Duc Tran
- The University of Danang - University of Sciences and Education Danang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia
| |
Collapse
|
16
|
Hieu LT, Hoa NT, Mechler A, Vo QV. The Theoretical and Experimental Insights into the Radical Scavenging Activity of Rubiadin. J Phys Chem B 2023; 127:11045-11053. [PMID: 38103025 DOI: 10.1021/acs.jpcb.3c06366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Rubiadin (RBD), an anthraquinone derivative, is obtained from Rubia cordifolia, a plant species classified under the Rubiaceae family. Rubiadin has proven beneficial properties, such as anticancer, neuroprotective, anti-inflammatory, and antidiabetic activity. The antioxidant activity of this molecule was suggested by some experimental results but has not been clearly established thus far. In this study, we employ DFT calculations to comprehensively assess the mechanism and kinetics of the HO•/HOO• radical scavenging activity of this compound in relation to solvents. RBD showed moderate HO• radical scavenging activity, with rate constants of 2.95 × 108 and 1.82 × 1010 M-1 s-1 in lipid and polar media, respectively. In the aqueous solution, the compound exhibited remarkable superoxide anion radical scavenging activity (k = 4.93 × 108 M-1 s-1) but modest HOO• antiradical activity. RBD also showed promising antiradical activity against a variety of radicals (CCl3O•, CCl3OO•, NO2, SO4•-, and N3•), while experimental and computational results confirmed that RBD has moderate activity in DPPH/ABTS•+ assays. Thus, RBD is predicted to be a good, albeit selective, radical scavenger.
Collapse
Affiliation(s)
- Le Trung Hieu
- University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang-University of Technology and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University, Victoria 3086, Australia
| | - Quan V Vo
- The University of Danang-University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
17
|
Bartel I, Mandryk I, Horbańczuk JO, Wierzbicka A, Koszarska M. Nutraceutical Properties of Syringic Acid in Civilization Diseases-Review. Nutrients 2023; 16:10. [PMID: 38201840 PMCID: PMC10780450 DOI: 10.3390/nu16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Civilization diseases account for a worldwide health issue. They result from daily behavioral, environmental, and genetic factors. One of the most significant opportunities to prevent and alleviate the occurrence of these diseases is a diet rich in antioxidants like polyphenols. This review paper is concentrated on syringic acid (SA), one of the representative compounds of phenolic acids subgroups. There are many in vitro and in vivo studies on SA that assess its pivotal effects on oxidative stress and inflammation parameters. It is effective on metabolic risk factors as well, including hyperglycemia, high blood pressure, and hyperlipidemia. SA is one of the prominent polyphenolic compounds that may help address health issues related to civilization diseases.
Collapse
Affiliation(s)
- Iga Bartel
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (I.B.); (J.O.H.); (A.W.)
| | - Izabela Mandryk
- Faculty of Medicine and Health Sciences, University of Applied Sciences in Nowy Sacz, 33-300 Nowy Sacz, Poland;
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (I.B.); (J.O.H.); (A.W.)
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (I.B.); (J.O.H.); (A.W.)
| | - Magdalena Koszarska
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (I.B.); (J.O.H.); (A.W.)
| |
Collapse
|
18
|
Vo QV, Hoa NT, Flavel M, Thong NM, Boulebd H, Nam PC, Quang DT, Mechler A. A Comprehensive Study of the Radical Scavenging Activity of Rosmarinic Acid. J Org Chem 2023; 88:17237-17248. [PMID: 38011833 DOI: 10.1021/acs.joc.3c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Rosmarinic acid (RA) is reported in separate studies to be either an inducer or reliever of oxidative stress, and this contradiction has not been resolved. In this study, we present a comprehensive examination of the radical scavenging activity of RA using density functional theory calculations in comparison with experimental data. In model physiological media, RA exhibited strong HO• radical scavenging activity with overall rate constant values of 2.89 × 1010 and 3.86 × 109 M-1 s-1. RA is anticipated to exhibit excellent scavenging properties for HOO• in an aqueous environment (koverall = 3.18 × 108 M-1 s-1, ≈2446 times of Trolox) following the hydrogen transfer and single electron transfer pathways of the dianion state. The neutral form of the activity is equally noteworthy in a lipid environment (koverall = 3.16 × 104 M-1 s-1) by the formal hydrogen transfer mechanism of the O6(7,15,16)-H bonds. Chelation with RA may prevent Cu(II) from reduction by the ascorbic acid anion (AA-), hence blocking the OIL-1 pathway, suggesting that RA in an aqueous environment also serves as an OIL-1 antioxidant. The computational findings exhibit strong concurrence with the experimental observations, indicating that RA possesses a significant efficacy as a radical scavenger in physiological environments.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education, Danang550000, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang550000, Vietnam
| | - Matthew Flavel
- TPM Bioactives Division, The Product Makers Pty. Ltd., Melbourne 3173, Australia
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Nguyen Minh Thong
- The University of Danang-University of Science and Education, Danang 550000, Vietnam
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Danang - University of Science and Technology, Danang 550000, Vietnam
| | - Duong Tuan Quang
- University of Education, Hue University, Hue City 530000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
19
|
Bay MV, Nam PC, Hoa NT, Mechler A, Vo QV. Antiradical Activity of Lignans from Cleistanthus sumatranus: Theoretical Insights into the Mechanism, Kinetics, and Solvent Effects. ACS OMEGA 2023; 8:38668-38675. [PMID: 37867707 PMCID: PMC10586290 DOI: 10.1021/acsomega.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Sumatranus lignans (SL) isolated from Cleistanthus sumatranus have demonstrated bioactivities, e.g., they were shown to exhibit immunosuppressive properties in previous research. Their structure suggests potential antioxidant activity that has not attracted any attention thus far. Consistently, a comprehensive analysis of the antioxidant activity of these compounds is highly desirable with the view of prospective medical applications. In this work, the mechanism and kinetics of the antiradical properties of SL against hydroperoxyl radicals were studied by using calculations based on density functional theory (DFT). In the lipid medium, it was discovered that SL reacted with HOO• through the formal hydrogen transfer mechanism with a rate constant of 101-105 M-1 s-1, whereas in aqueous media, the activity primarily occurred through the sequential proton loss electron transfer mechanism with rate constants of 102-108 M-1 s-1. In both lipidic and aqueous environments, the antiradical activity of compounds 6 and 7 exceeds that of resveratrol, ascorbic acid, and Trolox. These substances are therefore predicted to be good radical scavengers in physiological environments.
Collapse
Affiliation(s)
- Mai Van Bay
- The
University of Danang - University of Science and Education, Danang 550000, Vietnam
| | - Pham Cam Nam
- The
University of Danang - University of Science and Technology, Danang 550000, Vietnam
| | - Nguyen Thi Hoa
- The
University of Danang - University of Technology and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department
of Biochemistry and Chemistry, La Trobe
University, Victoria 3086, Australia
| | - Quan V. Vo
- The
University of Danang - University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
20
|
Vo QV, Tram TLB, Phuoc Hoang L, Hoa NT, Mechler A. The alkoxy radical polymerization of N-vinylpyrrolidone in organic solvents: theoretical insight into the mechanism and kinetics. RSC Adv 2023; 13:23402-23408. [PMID: 37546223 PMCID: PMC10401519 DOI: 10.1039/d3ra03820c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Poly(N-vinylpyrrolidone) (PVP) is a polymer with many applications in cosmetic, pharmaceutical, and biomedical formulations due to its minimal toxicity. PVP can be synthesized through radical polymerization in organic solvents; this well-known industrial process is thoroughly characterized experimentally, however, quantum chemical modeling of the process is scarce: the mechanism and kinetics have not been thoroughly investigated yet. In this work, the mechanism and kinetics of the alkoxy radical polymerization of N-vinylpyrrolidone in organic solvents, namely isopropanol (IP) and toluene (TL), were successfully modeled by computational chemistry. The initiator radicals di-tert-butyl peroxide (TBO˙) and dicumyl peroxide (CMO˙) as well as the solvents isopropanol and toluene, were shown to be capable of assisting in the initiation reactions. The rate constant was influenced by the combination of initiators and solvent and the values of the rate constant of propagation were approximately 101-103 M-1 s-1. The radical polymerization of NVP with dicumyl peroxide as an initiator was comparable to that of di-tert-butyl peroxide in all of the examined organic solvents, whereas the solvents had less of an effect.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang-University of Technology and Education Danang 550000 Vietnam
| | - Truong Le Bich Tram
- Department of Science-Technology and Environment, The University of Danang Danang 550000 Vietnam
| | - Loc Phuoc Hoang
- Quang Tri Teacher Training College Dong Ha Quang Tri 520000 Vietnam
| | - Nguyen Thi Hoa
- The University of Danang-University of Technology and Education Danang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University Victoria 3086 Australia
| |
Collapse
|
21
|
Carreon-Gonzalez M, Alvarez-Idaboy JR. The Synergy between Glutathione and Phenols-Phenolic Antioxidants Repair Glutathione: Closing the Virtuous Circle-A Theoretical Insight. Antioxidants (Basel) 2023; 12:antiox12051125. [PMID: 37237991 DOI: 10.3390/antiox12051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) and phenols are well-known antioxidants, and previous research has suggested that their combination can enhance antioxidant activity. In this study, we used Quantum Chemistry and computational kinetics to investigate how this synergy occurs and elucidate the underlying reaction mechanisms. Our results showed that phenolic antioxidants could repair GSH through sequential proton loss electron transfer (SPLET) in aqueous media, with rate constants ranging from 3.21 × 106 M-1 s-1 for catechol to 6.65 × 108 M-1 s-1 for piceatannol, and through proton-coupled electron transfer (PCET) in lipid media with rate constants ranging from 8.64 × 106 M-1 s-1 for catechol to 5.53 × 107 M-1 s-1 for piceatannol. Previously it was found that superoxide radical anion (O2•-) can repair phenols, thereby completing the synergistic circle. These findings shed light on the mechanism underlying the beneficial effects of combining GSH and phenols as antioxidants.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Juan Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
22
|
Georgieva MK, Anastassova N, Stefanova D, Yancheva D. Radical Scavenging Mechanisms of 1-Arylhydrazone Benzimidazole Hybrids with Neuroprotective Activity. J Phys Chem B 2023; 127:4364-4373. [PMID: 37163390 DOI: 10.1021/acs.jpcb.2c05784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Benzimidazole-arylhydrazone hybrids showed promising potential as multifunctional drugs for the treatment of neurodegenerative disorders. The neuroprotection studies conducted using an in vitro model of H2O2-induced oxidative stress on the SH-SY5Y cell line revealed a remarkable activity of the compound possessing a vanilloid structural fragment. The cell viability was preserved up to 84% and this effect was significantly higher than the one exerted by the reference compounds melatonin and rasagiline. Another compound with a catecholic moiety demonstrated the second-best neuroprotective activity. Computational studies were further conducted to characterize in depth the antioxidant properties of both compounds. The possible radical scavenging mechanisms were estimated as well as the most reactive sites through which the compounds may deactivate a variety of free radicals. Both of the compounds are able to deactivate not only the highly reactive hydroxyl radicals but also alkoxyl and hydroperoxyl radicals, following hydrogen atom transfer or radical adduct formation mechanism. In nonpolar medium, 3e is predicted to react slightly faster than 3a with alkoxyl radicals and around two orders of magnitude faster than 3a with hydroperoxyl radicals. The most reactive sites for formal hydrogen atom transfer in 3a are the meta-hydroxy group in the phenyl ring in water and the amide N-H group in benzene; in 3e, the amide N-H group is more reactive in both solvents. The radical adduct formation can occur at several positions in 3a and 3e, the most active being C4, C6, and C14. The stability of the formed radicals was estimated by NBO calculations. The NBO calculations indicated that the spin density in the radicals formed by the abstraction of a hydrogen atom from the amide groups of both compounds is delocalized over the phenyl ring and the hydrazone chain. The obtained theoretical data for the better radical scavenging ability of the vanilloid hybrid corroborate its experimentally established better neuroprotective activity.
Collapse
Affiliation(s)
- Miglena K Georgieva
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
| | - Denitsa Stefanova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
| |
Collapse
|
23
|
Boulebd H. Insights on the antiradical capacity and mechanism of phytocannabinoids: H-abstraction and electron transfer processes in physiological media and the influence of the acid-base equilibrium. PHYTOCHEMISTRY 2023; 208:113608. [PMID: 36738909 DOI: 10.1016/j.phytochem.2023.113608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Phytocannabinoids are natural products primarily isolated from Cannabis sativa that exhibit the typical C21 terpenophenolic skeleton. This class of compounds has been shown to be effective in the treatment of various oxidation-related diseases, which has made their antioxidant properties the focus of increasing interest. In the present contribution, the primary antioxidant properties of eight representative phytocannabinoids have been systematically studied against a variety of biologically significant radical species using the density functional theory (DFT) method. The findings demonstrated that phytocannabinoids, in water at physiological pH, exhibit excellent radical scavenging capacity, mainly exerted by the single electron transfer (SET) process from the deprotonated state. In contrast, phytocannabinoids are moderate radical scavengers in non-polar environment via the formal hydrogen atom transfer (fHAT) process. Among the compounds examined, cannabichromene (CBC) and cannabifuran (CBF) had the greatest free radical scavenging capacity in water, surpassing even common antioxidants like BHT and Trolox. CBF is expected to have potent antiradical action toward peroxyl radicals, alkoxy radicals, and nitrogen dioxide in water at physiological pH. These results provide supporting evidence that phytocannabinoids may be useful in scavenging harmful free radicals in physiological environments.
Collapse
Affiliation(s)
- Houssem Boulebd
- Chemistry Department, Faculty of Exact Science, University of Constantine 1, Constantine, 25000, Algeria.
| |
Collapse
|
24
|
So V, Poul P, Oeung S, Srey P, Mao K, Ung H, Eng P, Heim M, Srun M, Chheng C, Chea S, Srisongkram T, Weerapreeyakul N. Bioactive Compounds, Antioxidant Activities, and HPLC Analysis of Nine Edible Sprouts in Cambodia. Molecules 2023; 28:molecules28062874. [PMID: 36985845 PMCID: PMC10059773 DOI: 10.3390/molecules28062874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The non-nutritional health benefits of sprouts are unconfirmed. Thus, nine sprout methanolic extracts were tested for phytoconstituents and antioxidant activity. The TPC, TCC, TFC, TAC, and TALC were measured. ABTS and DPPH radical scavenging and ferric-reducing antioxidant power assays were used to assess the antioxidant activity. HPLC detected gallic acid, vanillin, syringic acid, chlorogenic acid, caffeic acid, and rutin in the extracts. The sprout extracts contained six compounds, with caffeic acid being the most abundant. Gallic acid, syringic acid, chlorogenic acid, caffeic acid, vanillin, and rutin were highest in soybean, black sesame, mustard, sunflower, white radish, and black sesame sprouts, respectively. Sunflower sprouts had the highest level of TCC while soybean sprouts had the highest level of TFC, Taiwanese morning glory had the highest level of TPC, mustard sprouts had the highest level of TALC, and black sesame sprouts had the highest level of TAC. Taiwanese morning glories scavenged the most DPPH and ABTS radicals. Colored and white radish sprouts had similar ferric-reducing antioxidant power. Antioxidation mechanisms varied by compound. Our findings demonstrated that sprouts have biological effects, and their short time for mass production offers an alternative food source for health benefits, and that they are useful for future research development of natural products and dietary supplements.
Collapse
Affiliation(s)
- Visessakseth So
- Division of Pharmacognosy, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Philip Poul
- Division of Pharmacognosy, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Sokunvary Oeung
- Division of Toxicology, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Pich Srey
- Division of Pharmacognosy, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Kimchhay Mao
- Division of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Huykhim Ung
- Division of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Poliny Eng
- Division of Basic Pharmaceutical Sciences, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Mengkhim Heim
- Division of Pharmacology, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Marnick Srun
- Department of Technology Research and Development, National Institute of Science, Technology and Innovation, Phnom Penh 120601, Cambodia
| | - Chantha Chheng
- Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Sin Chea
- Faculty of Pharmacy, University of Puthisastra, Phnom Penh 120204, Cambodia
| | - Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
25
|
Trung NQ, Thu Thanh NT, Hoa NT, Mechler A, Vo QV. Feruloylmonotropeins: promising natural antioxidants in Paederia scandens. RSC Adv 2023; 13:6153-6159. [PMID: 36814870 PMCID: PMC9940704 DOI: 10.1039/d3ra00458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Paederia scandens (Lour.) is a widely used medicinal herb in Vietnam, China, India, and Japan for the treatment of a variety of conditions, including toothache, chest pains, piles, and spleen inflammation. There is broad interest in identifying the composition of its extracts and confirming their numerous biological activities, including anti-nociceptive, antiviral, and anticancer properties. Two iridoid glucosides obtained from the MeOH extract of P. scandens, 6'-O-E-feruloylmonotropein (6-FMT) and 10'-O-E-feruloylmonotropein (10-FMT), are potential antioxidants based on their structure. In this study, the hydroperoxyl scavenging activity of 6-FMT and 10-FMT was examined in silico by using density functional theory. These FMTs are predicted to be weak antioxidants in non-polar environments, whereas a good HOO˙ scavenging activity is expected in polar environments (pH = 7.4) with k overall = 3.66 × 107 M-1 s-1 and 9.45 × 106 M-1 s-1, respectively. This activity is better than many common antioxidants such as trolox and nearly equivalent to ascorbic acid and resveratrol. The hydroperoxyl scavenging activity was exerted mainly by the di-anion form of FMTs in water at physiological pH following the single electron transfer mechanism. The results suggest that FMTs are promising natural antioxidants in aqueous physiological environments.
Collapse
Affiliation(s)
- Nguyen Quang Trung
- The University of Danang - University of Science and Education Da Nang 550000 Vietnam .,Quality Assurance and Testing Center 2 Da Nang 550000 Vietnam
| | | | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe UniversityVictoria 3086Australia
| | - Quan V. Vo
- The University of Danang – University of Technology and EducationDanang 550000Vietnam
| |
Collapse
|
26
|
Hoa NT, Ngoc Van LT, Vo QV. Reactions of nicotine and the hydroxyl radical in the environment: Theoretical insights into the mechanism, kinetics and products. CHEMOSPHERE 2023; 314:137682. [PMID: 36586441 DOI: 10.1016/j.chemosphere.2022.137682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Nicotine (NCT) is a prevalent and highly poisonous tobacco alkaloid found in wastewater discharge. Advanced oxidative processes (AOP) are radical interactions between harmful pollutants and ambient free radicals that, theoretically, result in less toxic compounds. For a better understanding of the chemical transformations and long-term environmental effects of toxic discharges, the study of these processes is crucial. Here, quantum chemical calculations are used to investigate the AOP of the NCT in aqueous and lipidic environments. It was found that NCT interacted with HO• in polar and nonpolar media, with an overall rate constant koverall = 106 - 1010 M-1 s-1. The computed kinetic data are reasonably accurate as seen by the comparison with the experimental rate constant in water (pH = 7.0), which results in a kcalculated/kexperimetal ratio of 1.4. The hydrogen transfer (C7, C9, C12)-single electron transfer pathways are the main mechanisms for the HO• + NCT reaction in pentyl ethanoate solvent to form the cations as the primary products of the two-step reaction. However, in aqueous environments, the degradation of NCT by HO• radicals increases with increasing pH levels. It is predicted that oxidation products are less toxic than nicotine itself, especially in an aqueous environment with a pH < 7.0.
Collapse
Affiliation(s)
- Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang, 550000, Viet Nam
| | | | - Quan V Vo
- The University of Danang - University of Technology and Education, Danang, 550000, Viet Nam.
| |
Collapse
|
27
|
Islam MA, Huq Atanu MS, Siraj MA, Acharyya RN, Ahmed KS, Dev S, Uddin SJ, Das AK. Supplementation of syringic acid-rich Phrynium pubinerve leaves imparts protection against allergic inflammatory responses by downregulating iNOS, COX-2, and NF-κB expressions. Heliyon 2023; 9:e13343. [PMID: 36816283 PMCID: PMC9932742 DOI: 10.1016/j.heliyon.2023.e13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/24/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Background The present study was designed to characterize the role of ethanolic leaf extract of Phrynium pubinerve Blume (EPP) supplement in attenuating allergic inflammation, encouraged by the presence of syringic acid in it, as this phenolic acid is reportedly promising in suppressing serum immunoglobulin E (IgE) and inflammatory cytokine levels. Materials and methods HPLC-DAD dereplication analysis was performed to determine the presence of the vital polyphenolic metabolites. The efficacy of EPP against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells was evaluated by measuring its inhibitory effects on NO and ROS/RNS production. The expressions of major inflammation-associated molecules (iNOS, COX-2, NF-κB, IL-6, and TNF-α) in RAW 264.7 cells were assessed through Western blot. Physiological and behavioral changes, BMI, and different biochemical parameters in mice blood serum were investigated in the toxicological assays. Formaldehyde-induced paw edema test in mice was conducted using established animal model. TDI-induced allergic model in mice was carried out to determine different allergy-like symptoms, and differential white blood cell (WBC) counts in blood and bronchoalveolar lavage (BAL) fluid. The intermolecular interaction analysis of the identified major metabolite of EPP with H1R and iNOS was studied by molecular docking. Results HPLC-DAD analysis showed the presence of syringic acid (89.19 mg/100 g EPP) and a few other compounds. LPS-induced NO generation was reduced by EPP in a concentration-dependent manner, showing IC50 of 28.20 ± 0.27 μg/mL. EPP exhibited a similar inhibitory effect on ROS/RNS production with IC50 of 29.47 ± 2.19 μg/mL. Western blotting revealed that EPP significantly downregulated the expressions of iNOS, COX-2, NF-κB, IL-6, and TNF-α in RAW 264.7 cells when challenged with LPS. The toxicological assays confirmed the dosage and organ-specific safety of EPP. In the formaldehyde-induced paw edema test, EPP caused a 66.41% reduction in mice paw volume at 500 mg/kg dose. It ameliorated TDI-induced allergy-like symptoms and decreased different inflammatory WBCs in mice's blood and BAL fluid in a dose-dependent manner. Finally, syringic acid demonstrated mentionable intermolecular binding affinity towards H1R (-6.6 Kcal/moL) and iNOS (-6.7 Kcal/moL). Conclusions Collectively, considerable scientific reasoning was obtained in favor of the suppressive potential of EPP against allergic inflammatory responses that are proposed to be exerted via the downregulation of iNOS, COX-2, and NF-κB expressions, H1R antagonism and suppression of cytokines, such as IL-6, and TNF-α.
Collapse
Affiliation(s)
- Md Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | | | - Md Afjalus Siraj
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
- Department of Pharmacy, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | | | - Khondoker Shahin Ahmed
- Chemical Research Division, BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Shrabanti Dev
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Asish Kumar Das
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
28
|
Kaur C, Mandal D. The Scavenging Mechanism of Aminopyrines towards Hydroxyl Radical: A Computational Mechanistic and Kinetics Investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Hang DTN, Hoa NT, Bich HN, Mechler A, Vo QV. The hydroperoxyl radical scavenging activity of natural hydroxybenzoic acids in oil and aqueous environments: Insights into the mechanism and kinetics. PHYTOCHEMISTRY 2022; 201:113281. [PMID: 35738432 DOI: 10.1016/j.phytochem.2022.113281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Foods that contain hydroxybenzoic acid derivatives (HBA) include red fruits, black radish, onion, and potato peel. HBA are widely known for their anti-inflammatory, anti-cancer, and especially antioxidant capabilities; however, a comprehensive study of the mechanism and kinetics of the antiradical action of these compounds has not been performed. Here, we report a study on the mechanisms and kinetics of hydroperoxyl radical scavenging activity of HBA by density functional theory (DFT) calculations. According to the results, HBA exert low HOO• antiradical activity in the nonpolar environment with overall rate constants in the range of koverall = 5.90 × 10-6 - 4.10 × 103 M-1 s-1. However, most HBA exhibit significant HOO• antiradical activity (koverall = 105 - 108 M-1 s-1) by the single electron transfer (SET) reaction of the phenoxide anions in water at physiological pH. The overall rate constant increases with increasing pH values in the majority of the substances studied. At pH ≤ 4, gentisic acid had the best HOO• antiradical activity (log(koverall) = 3.7-4.8), however at pH > 4, the largest HOO• radical scavenging activity (log(koverall) = 4.8-9.8) was almost exclusively found for gallic and syringic acids. Salicylic and 5-sulphosalicylic acids have the lowest antiradical activity across most of the pH range. The activities of the majority of the acids in this study are faster than the reference compound Trolox. Thus, in the aqueous physiological environment, these HBA are good natural antioxidants.
Collapse
Affiliation(s)
- Do Thi Ngoc Hang
- The University of Danang - University of Technology and Education, Danang 550000, Viet Nam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang 550000, Viet Nam
| | - Huynh Ngoc Bich
- The University of Danang - University of Technology and Education, Danang 550000, Viet Nam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Quan V Vo
- The University of Danang - University of Technology and Education, Danang 550000, Viet Nam.
| |
Collapse
|
30
|
Ben Mrid R, Bouchmaa N, Ouedrhiri W, Ennoury A, ZouaouI Z, Kabach I, Nhiri M, El Fatimy R. Synergistic antioxidant effects of natural compounds on H2O2-induced cytotoxicity of human monocytes. Front Pharmacol 2022; 13:830323. [PMID: 36120290 PMCID: PMC9474927 DOI: 10.3389/fphar.2022.830323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Natural compounds are endowed with a broad spectrum of biological activities, including protection against Toxins. Most of them are known for their antioxidant and radical scavenging activities. However, the synergistic combination of these natural molecules is not well studied. Therefore, the present study aims first to investigate the effect of four potent natural molecules [rosmarinic acid (Ros-A), ellagic acid (Ella-A), curcumin (Cur), and syringic acid (Syr-A)] on H2O2 -induced cell cytotoxicity and oxidative stress on the human monocytes (THP-1) and then to evaluate their combined action effect. Optimal combinations of these molecules were predicted using an augmented mixture design approach. In the first, as preliminary antioxidant activities screening, two in vitro assays were adopted to assess the single radicals scavenging activity of these natural compounds, DPPH• and ABTS• + tests. Based on the results obtained, the multitude of optimal formulas proposed by the mixture design study led to choosing four potent compositions (comp) in addition to ellagic acid, proposed as the most efficient when applied alone. The different molecules and mixtures were used to assess their cytoprotective effect on THP-1 cells in the presence and absence of H2O2. The most potent Comp-4, as well as the molecules forming this mixture, were exploited in a second experiment, aiming to understand the effect on oxidative stress via antioxidant enzyme activities analysis in the H2O2-induced oxidative stress in the THP-1 cell line. Interestingly, the natural molecules used for THP-1 cells treatment exhibited a significant increase in the antioxidant defense and glyoxalase system as well as suppression of ROS generation evaluated as MDA content. These results indicate that the natural compounds tested here, especially the synergistic effect of Cur and Ros-A (Comp-4), could serve as cytoprotective and immunostimulant agents against H2O2-induced cytotoxicity THP-1 cells, which makes them interesting for further investigations on the molecular mechanisms in preclinical animal models.
Collapse
Affiliation(s)
- Reda Ben Mrid
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Reda Ben Mrid, ; Najat Bouchmaa,
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Reda Ben Mrid, ; Najat Bouchmaa,
| | - Wessal Ouedrhiri
- Laoratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Science and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Zakia ZouaouI
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Science and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Science and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Science and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| |
Collapse
|
31
|
Gheena S, Ezhilarasan D, Shree Harini K, Rajeshkumar S. Syringic acid and silymarin concurrent administration inhibits sodium valproate-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2143-2152. [PMID: 35543257 DOI: 10.1002/tox.23557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Sodium valproate (SV) is a well-known anti-epileptic drug, also used to control convulsions, bipolar disorders and migraines. SV has been shown to induce liver toxicity in clinical subjects. Syringic acid (SA), a natural polyphenolic compound has potential antioxidant, anti-inflammatory and several beneficial effects. Therefore, in this study, we evaluated hepatoprotective effect of SA against SV-induced liver injury in rats. Wistar rats were treated with SV orally at a dose of 500 mg/kg, once daily, for 14 days. Another three groups of rats were administered with SV and concurrently treated with SA (40 and 80 mg/kg) and silymarin (SIL) (100 mg/kg) for 14 days. SV administration for 14 days caused significant (p < .001) elevation of liver transaminases and ALP in serum. Liver MDA level was significantly (p < .001) increased with a concomitant decrease (p < .001) in enzymic antioxidants activities in SV administered rats. SV administration also caused the upregulation of proinflammatory markers such as tumor necrosis factor α, c-Jun N-terminal kinase, nuclear factor kappa B, cyclooxygenase-2 and Interleukin 6 expressions in liver tissue. Histopathological studies also revealed the presence of inflammatory cell infiltration and hepatocellular necrosis upon SV administration. At both doses, concurrent administration of SA and SIL significantly (p < .001) inhibited the liver transaminase activities in serum, oxidative stress, and proinflammatory markers expression in liver tissue. Our current results suggest that SA can be a promising herbal drug that can inhibit SV-induced hepatotoxicity when administered together due its potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Sukumaran Gheena
- Department of Oral Pathology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Shanmugam Rajeshkumar
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
32
|
Rodríguez-Rico D, Sáenz-Esqueda MDLÁ, Meza-Velázquez JA, Martínez-García JJ, Quezada-Rivera JJ, Umaña MM, Minjares-Fuentes R. High-Intensity Ultrasound Processing Enhances the Bioactive Compounds, Antioxidant Capacity and Microbiological Quality of Melon ( Cucumis melo) Juice. Foods 2022; 11:foods11172648. [PMID: 36076833 PMCID: PMC9455593 DOI: 10.3390/foods11172648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The bioactive compounds, antioxidant capacity and microbiological quality of melon juice processed by high-intensity ultrasound (HIUS) were studied. Melon juice was processed at two ultrasound intensities (27 and 52 W/cm2) for two different processing times (10 and 30 min) using two duty cycles (30 and 75%). Unprocessed juice was taken as a control. Total carotenoids and total phenolic compounds (TPC) were the bioactive compounds analyzed while the antioxidant capacity was determined by DPPH, ABTS and FRAP assays. The microbiological quality was tested by counting the aerobic and coliforms count as well as molds and yeasts. Total carotenoids increased by up to 42% while TPC decreased by 33% as a consequence of HIUS processing regarding control juice (carotenoids: 23 μg/g, TPC: 1.1 mg GAE/g), gallic acid and syringic acid being the only phenolic compounds identified. The antioxidant capacity of melon juice was enhanced by HIUS, achieving values of 45% and 20% of DPPH and ABTS inhibition, respectively, while >120 mg TE/100 g was determined by FRAP assay. Further, the microbial load of melon juice was significantly reduced by HIUS processing, coliforms and molds being the most sensitive. Thus, the HIUS could be an excellent alternative supportive the deep-processing of melon products.
Collapse
Affiliation(s)
- Daniel Rodríguez-Rico
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
| | | | | | - Juan José Martínez-García
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
| | | | - Mónica M. Umaña
- Department of Chemistry, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Rafael Minjares-Fuentes
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Gómez Palacio 35010, Mexico
- Correspondence:
| |
Collapse
|
33
|
Boulebd H. DFT analysis of peroxyl radical scavenging capacity of Coumestrol: insights into kinetics and reaction mechanisms. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest University of Frères Mentouri Constantine 1 Constantine Algeria
| |
Collapse
|
34
|
Nizomov Z, Asozoda M, Nematov D. Characteristics of Nanoparticles in Aqueous Solutions of Acetates and Sulfates of Single and Doubly Charged Cations. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Mokhtar M, Youcefi F, Keddari S, Saimi Y, Elhao SO, Cacciola F. Phenolic content and in vitro antioxidant and anti-inflammatory evaluation of Algerian Ruta graveolens L. Chem Biodivers 2022; 19:e202200545. [PMID: 35866461 DOI: 10.1002/cbdv.202200545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
Plants constitute a valuable source of natural antioxidants such as polyphenols and are responsible for exhibiting many biologically significant functions. Ruta species including Ruta chalepensis L. and Ruta graveolens L are widespread species in Algeria and are used as medicinal plants to treat various diseases; however, so far, most of the conducted studies focused on analyzing alkaloids and essential oils mostly on R. chalepensis. The aim of the present research is to investigate the phenolic profile of the aerial parts of Ruta graveolens. L from Algeria and assess its in vitro antioxidant and anti-inflammatory properties. The total polyphenols and flavonoids were assessed using colorimetric methods, and the individual polyphenols were identified and quantified using HPLC-DAD-ESI-MS. The antioxidant activity was evaluated with DPPH and β-carotene tests, and the anti-inflammatory activity with inhibition of bovine serum albumin denaturation and HRBC membrane stabilization methods. The results showed that Ruta graveolens extract is rich in phenolic compounds with a total phenol and flavonoid contents of 41.63±0.394 mg GAE/gE and 13.97±0.33 mg EQ/gE, respectively. Nine phenolic compounds were determined, including three phenolic acids and six flavonoids. Rutin was the major phenolic compound in Ruta graveolens (464.95 µg/g), followed by syringic acid (179.74 µg/g), and naringenin (109.78 µg/g). R. graveolens phenolic extract also showed good antioxidant activity with values of 0.77 mM TE/g DW and 0.37 mM β-CE/ g DW with DPPH and β-carotene tests, respectively. For the anti-inflammatory activity, the highest tested concentration (200 μg/mL) gave 50.61% of inhibition of the denaturation of albumin and 44.12% of membrane stabilization.
Collapse
Affiliation(s)
- Meriem Mokhtar
- Université Abdelhamid Ibn Badis de Mostaganem: Universite Abdelhamid Ibn Badis de Mostaganem, Institute of Medical and Biological Sciences, -, Mostaganem, ALGERIA
| | - Fatma Youcefi
- Abou Bekr Belkaid University Tlemcen: Universite Abou Bekr Belkaid Tlemcen, Institute of Medical and Biological Sciences, -, Tlemcen, ALGERIA
| | - Soumia Keddari
- Universite Abdelhamid Ibn Badis de Mostaganem, Institute of Medical and Biological Sciences, -, Mostaganem, ALGERIA
| | - Yahia Saimi
- Universite Abdelhamid Ibn Badis de Mostaganem, -, -, Mostaganem, ALGERIA
| | - Siham Otsmane Elhao
- Université Abdelhamid Ibn Badis de Mostaganem: Universite Abdelhamid Ibn Badis de Mostaganem, -, -, Mostaganem, ALGERIA
| | - Francesco Cacciola
- University of Messina: Universita degli Studi di Messina, BIOMORF, Via Consolare Valeria, 98125, Messina, ITALY
| |
Collapse
|
36
|
Matos P, Batista MT, Figueirinha A. A review of the ethnomedicinal uses, chemistry, and pharmacological properties of the genus Acanthus (Acanthaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115271. [PMID: 35430290 DOI: 10.1016/j.jep.2022.115271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Acanthus genus belongs to the Acanthaceae family, and its species are distributed in all continents, mainly in tropical and subtropical regions. Several traditional applications are referred to, but few scientific studies validate them. Despite this, studies in animal models corroborate some of its uses in folk medicine, such as anticancer, antidiabetic, anti-inflammatory, and antinociceptive, which encourages the research on plants of this genus. AIM OF THE REVIEW To our knowledge, this document is the first comprehensive review study that provides information on the geographic distribution, botanical characteristics, ethnomedicinal uses, phytochemicals, and pharmacological activities of some Acanthus species to understand the correlation between traditional uses, phytochemical, and pharmacological activities, providing perspectives for future studies. RESULTS In traditional medicine, Acanthus species are mainly used for diseases of respiratory, nervous and reproductive system, gastrointestinal and urinary tract, and skin illness. The most used species are A. montanus, A. ilicifolius, and A. ebracteatus. Chemical compounds (125) from different chemical classes were isolated and identified in seven species, mainly from A. ilicifolius, about 80, followed by A. ebracteatus and A. montanus, appearing with a slightly lower number with fewer phytochemical profile studies. Isolated phytoconstituents have been mainly alkaloids, phenylpropanoid glycosides, and phenylethanoids. In addition, aliphatic glycosides, flavonoids, lignan glycosides, megastigmane derivatives, triterpenoids, steroids, fatty acids, alcohols, hydroxybenzoic acids, simple phenols were also cited. Scientific studies from Acanthus species extracts and their phytoconstituents support their ethnomedical uses. Antimicrobial activity that is the most studied, followed by the antioxidant, anti-inflammatory, and anticancer properties, underlie many Acanthus species activities. A. dioscoridis, A. ebracteatus, A. hirsutus, A. ilicifolius, A. mollis, A. montanus, and A. polystachyus have studies on these activities, A. ilicifolius being the one with the most publications. Most studies were essentially performed in vitro. However, the anticancer, antidiabetic, anti-inflammatory and antinociceptive properties have been studied in vivo. CONCLUSION Acanthus species have remarkable phytoconstituents with different biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antinociceptive, hepatoprotective, and leishmanicidal, supporting traditional uses of some species. However, many others remain unexplored. Future studies should focus on these species, especially pharmacological properties, toxicity, and action mechanisms. This review provides a comprehensive report on Acanthus genus plants, evidencing their therapeutic potential and prospects for discovering new safe and effective drugs from Acanthus species.
Collapse
Affiliation(s)
- Patrícia Matos
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal
| | - Maria Teresa Batista
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; University of Coimbra, CIEPQPF, FFUC, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, R. D. Manuel II, Apartado, 55142, Oporto, Portugal.
| |
Collapse
|
37
|
Ngoc TD, Thi Ha MV, Le TN, Thi HV, Anh Nguyen TV, Mechler A, Hoa NT, Vo QV. A Potent Antioxidant Sesquiterpene, Abelsaginol, from Abelmoschus sagittifolius: Experimental and Theoretical Insights. ACS OMEGA 2022; 7:24004-24011. [PMID: 35847298 PMCID: PMC9280938 DOI: 10.1021/acsomega.2c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The sesquiterpenoid compound abelsaginol (AS) was successfully isolated from Abelmoschus sagittifolius for the first time. The compound was identified using NMR and MS data. The antioxidant activity of AS was also evaluated both theoretically and experimentally. AS was found to be a weak HOO• radical scavenger in organic solvents such as pentyl ethanoate and dimethyl sulfoxide (k overall = ∼ 102 M-1 s-1), in a good agreement with the results of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. However, AS exhibited good HOO• antiradical activity in water at pH 7.40 (k overall = 9.00 × 106 M-1 s-1) through the single-electron transfer mechanism of the anion state. Further calculations also demonstrated that AS could exert good to moderate activity against CH3O•, CH3OO•, CCl3OO•, NO2, and SO4 •- radicals, with k f values from 4.00 × 103 to 1.52 × 107 M-1 s-1. However, AS exerted much lower activity against HO•, CCl3O•, NO, O2 •-, and N3 • radicals under the studied conditions. In general, the activity of AS in water at pH 7.40 is higher than that of Trolox or butylated hydroxytoluene, which are common reference antioxidants. Thus, in an aqueous physiological milieu, AS is a promising natural antioxidant.
Collapse
Affiliation(s)
- Thuc Dinh Ngoc
- Department
of Science and Technology Management, Hong
Duc University, Thanh
Hóa, Thanh Hóa 40000, Vietnam
| | - Mai Vu Thi Ha
- Department
of Science and Technology Management, Hong
Duc University, Thanh
Hóa, Thanh Hóa 40000, Vietnam
| | - Thanh Nguyen Le
- Institute
of Marine Biochemistry (IMBC), Graduate University of Science and
Technology (GUST), Vietnam Academy of Science
and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Hue Vu Thi
- Institute
of Marine Biochemistry (IMBC), Graduate University of Science and
Technology (GUST), Vietnam Academy of Science
and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Thi Van Anh Nguyen
- University
of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Adam Mechler
- Department
of Biochemistry and Chemistry, La Trobe
University, Melbourne, Victoria 3086, Australia
| | - Nguyen Thi Hoa
- The
University of Danang − University of Technology and Education, Danang 550000, Vietnam
| | - Quan V. Vo
- The
University of Danang − University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
38
|
Poornima MS, Sindhu G, Billu A, Sruthi CR, Nisha P, Gogoi P, Baishya G, G Raghu K. Pretreatment of hydroethanolic extract of Dillenia indica L. attenuates oleic acid induced NAFLD in HepG2 cells via modulating SIRT-1/p-LKB-1/AMPK, HMGCR & PPAR-α signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115237. [PMID: 35351574 DOI: 10.1016/j.jep.2022.115237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dillenia indica L. is an edible plant from the Dilleniaceae family present in the forest of India and other Asian countries. Different parts of this plant are being used in the traditional system of medicines for various diseases like diabetes, indigestion, asthma, jaundice, and rheumatic pain by various rural communities. This plant is very common among Khamptis traditional healers, the rural community of the Dhemaji district of Assam, ethnic communities of Dibru-Saikhowa Biosphere Reserve of Northeast, India for various medicinal uses. It is observed as a 'vat' suppressant and 'pitta' boosting medicine in Ayurveda. AIM OF THE STUDY The aim of this research was to evaluate the effect of hydroethanolic extract of Dillenia indica leaf (DI-HET) against non-alcoholic fatty liver disease (NAFLD) as it is reported effective against jaundice in traditional medicine. We are also planning to see the various molecular mechanisms responsible for its effect if it is efficacious. STUDY DESIGN/METHOD An in vitro model for NAFLD was employed in this study. For this HepG2 cells were incubated with 100 μM of oleic acid (OA) for 24 h. For evaluation of the effect of DI-HET, the extracts (5 or 10 μg/mL) were pretreated to the OA group. Fenofibrate was the positive control. Various parameters relevant to lipogenesis and β-oxidation of fatty acids like intracellular lipid accumulation, reactive oxygen species (ROS), mitochondrial stress, and key proteins were studied. RESULTS DI-HET significantly reduced the intracellular lipid accumulation in OA treated cells. And also substantially decreased the expression of lipogenic proteins and increased β-oxidation in the OA group. OA induced ROS generation was found to reduce with DI-HET treatment. Western blot analysis showed that the expression of LXR-α, SREBP-1C, SREBP-2, HMGCR, FAS, CD-36, and ACOX-1 were downregulated while that of SIRT-1, p-LKB-, p-AMPK, p-ACC, CPT-1, and PPAR-α upregulated in DI-HET treatment. LCMS/MS analysis showed the presence of polyphenols like naringenin, catechin, epicatechin, shikimic acid, syringic acid, vanillic acid, and kaempferol. CONCLUSION These results suggest that DI-HET is effective against NAFLD by activation of the SIRT-1/p-LKB-1/AMPK signaling pathway via polyphenols present in the extract.
Collapse
Affiliation(s)
- M S Poornima
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - G Sindhu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - Abraham Billu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P Nisha
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pinku Gogoi
- Natural Products Chemistry Group, Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Gakul Baishya
- Natural Products Chemistry Group, Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
39
|
Barberino RS, Silva RLS, Palheta Junior RC, Smitz JEJ, Matos MHT. Protective Effects of Antioxidants on Cyclophosphamide-Induced Ovarian Toxicity. Biopreserv Biobank 2022; 21:121-141. [PMID: 35696235 DOI: 10.1089/bio.2021.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common limitation of anticancer chemotherapy is the injury to normal cells. Cyclophosphamide, which is one of the most widely used alkylating agents, can cause premature ovarian insufficiency and infertility since the ovarian follicles are extremely sensitive to their effects. Although little information is available about the pathogenic mechanism of cyclophosphamide-induced ovarian damage, its toxicity is attributed to oxidative stress, inflammation, and apoptosis. The use of compounds with antioxidant and cytoprotective properties to protect ovarian function from deleterious effects during chemotherapy would be a significant advantage. Thus, this article reviews the mechanism by which cyclophosphamide exerts its toxic effects on the different cellular components of the ovary, and describes 24 cytoprotective compounds used to ameliorate cyclophosphamide-induced ovarian injury and their possible mechanisms of action. Understanding these mechanisms is essential for the development of efficient and targeted pharmacological complementary therapies that could protect and prolong female fertility.
Collapse
Affiliation(s)
- Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Regina Lucia S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Raimundo C Palheta Junior
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| | - Johan E J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, Free University Brussels-VUB, Brussels, Belgium
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Department of Veterinary Medicine, Federal University of São Francisco Valley-UNIVASF, Petrolina, Brazil
| |
Collapse
|
40
|
Altarawneh RM, Al‐Jaafreh AM, Qaralleh H, Al‐Qaralleh OS. Chemical profiling of Punica granatum peels from Jordan using
LC–MS
/
MS
and study on their biological activities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rakan M. Altarawneh
- Department of Chemistry Faculty of Science Mu'tah University Al‐Karak Jordan
| | - Ahmad M. Al‐Jaafreh
- Department of Medical Laboratory Sciences Faculty of Science Mu'tah University Al‐Karak Jordan
| | - Haitham Qaralleh
- Department of Medical Laboratory Sciences Faculty of Science Mu'tah University Al‐Karak Jordan
| | - Omar S. Al‐Qaralleh
- Department of Biological Sciences Faculty of Science Mu'tah University Al‐Karak Jordan
| |
Collapse
|
41
|
Spiegel M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J Chem Inf Model 2022; 62:2639-2658. [PMID: 35436117 PMCID: PMC9198981 DOI: 10.1021/acs.jcim.2c00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The antioxidative
nature of chemicals is now routinely studied
using computational quantum chemistry. Scientists are constantly proposing
new approaches to investigate those methods, and the subject is evolving
at a rapid pace. The goal of this review is to collect, consolidate,
and present current trends in a clear, methodical, and reference-rich
manner. This paper is divided into several sections, each of which
corresponds to a different stage of elaborations: preliminary concerns,
electronic structure analysis, and general reactivity (thermochemistry
and kinetics). The sections are further subdivided based on methodologies
used. Concluding remarks and future perspectives are presented based
on the remaining elements.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
42
|
Ogut E, Armagan K, Gül Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 2022; 37:859-880. [PMID: 35334041 DOI: 10.1007/s11011-022-00960-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
Hundreds of millions of people are influenced by neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), traumatic disorders of the nervous system, dementia, and various neurological disorders. Syringic acid (SA) is a natural phenolic compound that is found in medicinal herbs and dietary plants. The therapeutic potential of SA is due to its anti-oxidative, chemoprotective, anti-angiogenic, anti-glycating, anti-proliferative, anti-hyperglycaemic, anti-endotoxic, anti-microbial, anti-inflammatory, anti-diabetic and anti-depressant properties. However, in recent studies, its neuroprotective effect has drawn attention. The current review focuses on the neuroprotective bioactivities of SA and putative mechanisms of action. An electronic data search was performed using different search engines, and the relevant articles (with or without meta-analysis) with any language were selected. In the central and peripheral nervous system, SA has been shown a significant role in excitatory neurotransmitters and alleviate behavioral dysfunctions. The consensus of the literature search was that SA treatment may help neurological dysfunction or behavioral impairments management with antioxidant, anti-inflammatory properties. Furthermore, administration and proper dose of SA could be crucial factors for the effective treatment of neurological diseases.
Collapse
Affiliation(s)
- Eren Ogut
- Department of Anatomy, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| | - Kutay Armagan
- Medical Faculty Student, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Zülfiye Gül
- Department of Pharmacology, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
43
|
Ogut E, Armagan K, Gül Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 2022; 37:859-880. [DOI: https:/doi.org/10.1007/s11011-022-00960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 07/22/2023]
|
44
|
Carreon-Gonzalez M, Muñoz-Rugeles L, Vivier-Bunge A, Alvarez-Idaboy JR. Chemical repair of damaged leucine and tryptophane by thiophenols at close to diffusion-controlled rates: Mechanisms and kinetics. J Comput Chem 2022; 43:556-567. [PMID: 35106786 DOI: 10.1002/jcc.26813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
Thiophenols are chemical species with multiple desirable biological properties, including their primary and secondary antioxidant capacity. In this work, the repairing antioxidant activity of eight different thiophenols has been investigated for damaged leucine and tryptophane. The investigation was carried out employing quantum mechanical and transition state methods to calculate the thermodynamic and kinetic data of the reactions involved, while simulating the biological conditions at physiological pH and aqueous and lipidic medium. The analysis of the atomic charges and the spin densities at each of the points on the potential energy surface was the tool that allowed the elucidation of the reaction mechanisms through which thiophenols repair the oxidative damage caused to the amino acids leucine and tryptophan. It was found that thiophenols can repair leucine via a hydrogen atom transfer mechanism in a manner which is similar to the one used by glutathione to repair the carbon-centered radicals of guanosine. In addition, thiophenols can also restore tryptophane, a nitrogen-centered radical, via proton-coupled electron transfer and single electron transfer mechanisms. Moreover, both processes occur at close to diffusion-controlled rates.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonardo Muñoz-Rugeles
- Laboratorio de Espectroscopia Atómica y Molecular (LEAM), Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Annik Vivier-Bunge
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Juan Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
45
|
Ngoc TD, Le TN, Nguyen TVA, Mechler A, Hoa NT, Nam NL, Vo QV. Mechanistic and Kinetic Studies of the Radical Scavenging Activity of 5- O-Methylnorbergenin: Theoretical and Experimental Insights. J Phys Chem B 2022; 126:702-707. [PMID: 35029995 DOI: 10.1021/acs.jpcb.1c09196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
5-O-Methylnorbergenin (5-OMB), a natural compound isolated from Rourea harmandiana, is a compound with potential antioxidant activity based on its chemical structure; however, this activity has not been investigated thus far. In this study, the antioxidant activity of 5-OMB was evaluated by experimental and computational methods. 5-OMB exhibited high activity in DPPH (IC50 = 7.25 ± 0.94 μM) and ABTS•+ (IC50 = 4.23 ± 0.12 μM) assays, higher than the reference compound Trolox. The computational results consistently show that 5-OMB is an excellent HOO• radical scavenger (koverall = 8.14 × 108 M-1 s-1) in water at physiological pH, however it only exerts weak activity in lipid medium (koverall = 3.02 × 102 M-1 s-1). The reaction follows the formal hydrogen transfer mechanism in nonpolar solvents, whereas both the sequential proton loss electron transfer and the formal hydrogen transfer pathways contribute to the activity in aqueous solution. There is a good agreement between experimental and computational data, suggesting that 5-OMB is a promising natural radical scavenger in aqueous physiological environment.
Collapse
Affiliation(s)
- Thuc Dinh Ngoc
- Department of Science and Technology Management, Hong Duc University, Thanh Hoa 40000, Vietnam
| | - Thanh Nguyen Le
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 100000, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 100000, Vietnam
| | - Thi Van Anh Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 100000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, La Trobe, Victoria 3086, Australia
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang 550000, Vietnam
| | - Nguyen Linh Nam
- The University of Danang - University of Technology and Education, Danang 550000, Vietnam
| | - Quan V Vo
- The University of Danang - University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
46
|
Hoa NT, Van Bay M, Mechler A, Vo QV. Theoretical insights into the antiradical activity and copper-catalysed oxidative damage of mexidol in the physiological environment. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211239. [PMID: 35223048 PMCID: PMC8753141 DOI: 10.1098/rsos.211239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/03/2021] [Indexed: 05/16/2023]
Abstract
Mexidol (MD, 2-ethyl-6-methyl-3-hydroxypyridine) is a registered therapeutic agent for the treatment of anxiety disorders. The chemical structure suggests that MD may also act as an antioxidant. In this study, the hydroperoxyl radical scavenging activity of MD was studied to establish baseline antioxidant activity, followed by an investigation of the effect of MD on the copper-catalysed oxidative damage in biological systems, using computational methods. It was found that MD exhibits moderate radical scavenging activity against HOO• in water and pentyl ethanoate solvents following the single electron transfer and formal hydrogen transfer mechanisms, respectively. MD can chelate Cu(II), forming complexes that are much harder to reduce than free Cu(II): MD chelation completely quenches the Cu(II) reduction by ascorbic acid and suppresses the rate of reduction reaction byO 2 ⋅ - that are the main reductants of Cu(II) in biological environments. Therefore, MD exerts its anti-HO• activity primarily as an OIL-1 inhibitor.
Collapse
Affiliation(s)
- Nguyen Thi Hoa
- The University of Danang, University of Technology and Education, Danang 550000, Vietnam
| | - Mai Van Bay
- Department of Chemistry, The University of Danang, University of Science and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Quan V. Vo
- The University of Danang, University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
47
|
Hoa NT, Ngoc Van LT, Vo QV. The hydroperoxyl antiradical activity of natural hydroxycinnamic acid derivatives in physiological environments: the effects of pH values on rate constants. RSC Adv 2022; 12:15115-15122. [PMID: 35702430 PMCID: PMC9115882 DOI: 10.1039/d2ra02311c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Quantum chemistry calculations suggest that hydroxycinnamic acid derivatives are good natural antioxidants in aqueous solutions.
Collapse
Affiliation(s)
- Nguyen Thi Hoa
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| | | | - Quan V. Vo
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
48
|
Hieu LT, Van Bay M, Hoa NT, Mechler A, Vo QV. The radical scavenging activity of glycozolidol in physiological environments: a quantum chemical study. RSC Adv 2022; 12:32693-32699. [DOI: 10.1039/d2ra05907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Glycozolidol (GLD), derived from Glycosmis pentaphylla, is predicted to be a good radical scavenger in physiological environments.
Collapse
Affiliation(s)
- Le Trung Hieu
- University of Sciences, Hue University, Thua Thien Hue 530000, Vietnam
| | - Mai Van Bay
- The University of Danang, University of Science and Education, Danang 550000, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang, University of Technology and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University, Victoria 3086, Australia
| | - Quan V. Vo
- The University of Danang, University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
49
|
Nguyen NT, Dai VV, Mechler A, Hoa NT, Vo QV. Synthesis and evaluation of the antioxidant activity of 3-pyrroline-2-ones: experimental and theoretical insights. RSC Adv 2022; 12:24579-24588. [PMID: 36128396 PMCID: PMC9425838 DOI: 10.1039/d2ra04640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
The heterocyclic γ-lactam ring 2-pyrrolidinone has four carbon atoms and one nitrogen atom. Among the group of derivatives of 2-pyrrolidinones, 1,5-dihydro-2H-pyrrol-2-ones, also known as 3-pyrroline-2-ones, play a significant structural role in a variety of bioactive natural compounds. In this study, three-component reactions were used to successfully synthesize six polysubstituted 3-hydroxy-3-pyrroline-2-one derivatives. The antioxidant activity of the compounds was tested by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, identifying 4-ethoxycarbonyl-3-hydroxy-5-(4-methylphenyl)-1-phenyl-3-pyrroline-2-one (4b) as the most promising radical scavenger. Quantum chemistry calculations of the thermodynamics and kinetics of the radical scavenging activity also suggest that 4b is an effective HO˙ radical scavenger, with koverall values of 2.05 × 109 and 1.54 × 1010 M−1 s−1 in pentyl ethanoate and water, respectively. On the other hand, 4b could not scavenge hydroperoxyl radicals in either media. The ability of 4b to scavenge hydroxyl radicals in polar and non-polar environments is comparable to that of conventional antioxidants such as melatonin, gallic acid, indole-3-carbinol, ramalin, or Trolox. Thus 4b may be classed as a promising HO˙ radical scavenger in the physiological environment. Derivatives of 3-hydroxy-3-pyrroline-2-one were effectively synthesized via multicomponent reactions and exhibited potential HO˙ radical scavenging activity.![]()
Collapse
Affiliation(s)
- Nguyen Tran Nguyen
- The University of Danang – University of Science and Education, Danang 550000, Vietnam
| | - Vo Viet Dai
- The University of Danang – University of Science and Education, Danang 550000, Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University, Victoria 3086, Australia
| | - Nguyen Thi Hoa
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| | - Quan V. Vo
- The University of Danang – University of Technology and Education, Danang 550000, Vietnam
| |
Collapse
|
50
|
Pei J, Velu P, Zareian M, Feng Z, Vijayalakshmi A. Effects of Syringic Acid on Apoptosis, Inflammation, and AKT/mTOR Signaling Pathway in Gastric Cancer Cells. Front Nutr 2022; 8:788929. [PMID: 34970579 PMCID: PMC8712439 DOI: 10.3389/fnut.2021.788929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer is one of the most common cancer and deadly disease worldwide. Despite substantial advances made in the treatment of gastric cancer, existing therapies still encounter bottlenecks. Chemotherapy, for instance, could lead to serious side effects, high drug resistance and treatment failure. Phytochemical-derived compounds from plants offer novel strategies as potent drug molecules in cancer therapy. Given the low toxicity and higher tolerance rate of naturally occurring compounds, the present study evaluated the effects of syringic acid on cytotoxicity, oxidative stress, mitochondrial membrane potential, apoptosis, and inflammatory responses in gastric cancer cell line (AGS). AGS cells were treated with various concentrations (5-40 μg/mL) of syringic acid for 24 h, after which cytotoxicity was analyzed. Reactive Oxygen Species (ROS), antioxidant enzyme activities, mitochondrial membrane potential (MMP, Δψ m), cell morphologies, the expression of apoptotic markers and protein expression patterns were also investigated. Results indicated that syringic acid-treated cells developed anti-cancer activities by losing MMP, cell viability, and enhancing intracellular ROS. Syringic acid selectively developed apoptosis in a dose-dependent manner via enhanced regulation of caspase-3, caspase-9 and Poly ADP-ribose Polymerase (PARP) whereas decreasing the expression levels of p53 and BCL-2. Syringic acid also lowered activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) whereas Thio Barbituric Acid Reactive Substances (TBARS) increased. Syringic acid suppressed gastric cancer cell proliferation, inflammation, and induced apoptosis by upregulating mTOR via AKT signaling pathway. The study suggests syringic acid may constitute a promising chemotherapeutic candidate for gastric cancer treatment. Our study is the first report on the anti-cancer effects of syringic acid against gastric cancer cells via apoptosis, inhibition of inflammation, and the suppression of the mTOR/AKT signaling pathway.
Collapse
Affiliation(s)
- Jinjin Pei
- College of Bioscience and Bioengineering, Qinba State Key Laboratory of Biological Resources and Ecological Environment, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - Periyannan Velu
- College of Bioscience and Bioengineering, Qinba State Key Laboratory of Biological Resources and Ecological Environment, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - Mohsen Zareian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Zili Feng
- College of Bioscience and Bioengineering, Qinba State Key Laboratory of Biological Resources and Ecological Environment, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| | - Annamalai Vijayalakshmi
- College of Bioscience and Bioengineering, Qinba State Key Laboratory of Biological Resources and Ecological Environment, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|