1
|
Bilea F, Bradu C, Cicirma M, Medvedovici AV, Magureanu M. Plasma treatment of sulfamethoxazole contaminated water: Intermediate products, toxicity assessment and potential agricultural reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168524. [PMID: 37972787 DOI: 10.1016/j.scitotenv.2023.168524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The increasing global water demand has prompted the reuse of treated wastewater. However, the persistence of organic micropollutants in inefficiently treated effluents can have detrimental effects depending on the scope of the reclaimed water usage. One example is the presence of sulfamethoxazole, a widely used antibiotic whose interference with the folate synthesis pathway negatively affects plants and microorganisms. The goal of this study is to assess the suitability of a non-thermal plasma-ozonation technique for the removal of the organic pollutant and reduction of its herbicidal effect. Fast sulfamethoxazole degradation was achieved with apparent reaction rate constants in the range 0.21-0.49 min-1, depending on the initial concentration. The highest energy yield (64.5 g/kWh at 50 % removal) exceeds the values reported thus far in plasma degradation experiments. During treatment, 38 degradation intermediates were detected and identified, of which only 9 are still present after 60 min. The main reactive species that contribute to the degradation of sulfamethoxazole and its intermediate products were hydroxyl radicals and ozone, which led to the formation of several hydroxylated compounds, ring opening and fragmentation. The herbicidal effect of the target compound was eliminated with its removal, showing that the remanent intermediates do not retain phytotoxic properties.
Collapse
Affiliation(s)
- Florin Bilea
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania; Faculty of Chemistry, University of Bucharest, Regina Elisabeta Bd. 4-12, 030018 Bucharest, Romania.
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, Splaiul Independenței Str. 91-95, 050095 Bucharest, Romania
| | - Marius Cicirma
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania
| | | | - Monica Magureanu
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str. 409, 077125 Magurele, Romania.
| |
Collapse
|
2
|
Zhang Y, Han B, Gu X, Wang K, Liang S. Mn(OAc) 3-Promoted Sulfonation- ipso-Cyclization Cascade via the SO 3- Radical: The Synthesis of Spirocyclic Sulfonates. J Org Chem 2023; 88:14140-14155. [PMID: 37718492 DOI: 10.1021/acs.joc.3c01684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A radical sulfonation-ipso-cyclization cascade promoted by Mn(OAc)3·2H2O using functionalized alkynes or alkenes and potassium metabisulfite (K2S2O5) is reported. A total of 30 spirocyclic sulfonates were synthesized under mild conditions. We also demonstrate a modular synthesis approach in multiple steps for the preparation of various azaspiro[4,5]-trienone-based sulfonamides and sulfonate esters.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Bingxu Han
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Xin Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaixuan Wang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No.1 Ningde Road, 266071 Qingdao, China
| |
Collapse
|
3
|
Liu Y, Gao W, Yuan S, Ni M, Hao T, Zeng C, Xu X, Fu Y, Peng Y, Ding Q. One-pot synthesis of 11-sulfenyl dibenzodiazepines via tandem sulfenylation/cyclization of o-isocyanodiaryl amines and diaryl disulfides. Org Biomol Chem 2023; 21:4257-4263. [PMID: 37139575 DOI: 10.1039/d3ob00220a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A one-pot sulfenylation/cyclization of o-isocyanodiaryl amines has been described for the preparation of 11-sulfenyl dibenzodiazepines. This AgI-catalyzed reaction covers an unexplored tandem process to give seven-membered N-heterocycles. This transformation shows a broad range of substrate scope, simple operation, and moderate to good yields under aerobic conditions. Diphenyl diselenide can also be produced in an acceptable yield.
Collapse
Affiliation(s)
- Yi Liu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Wei Gao
- Jiangxi Academy of Forestry, Nanchang 330013, Jiangxi, China.
| | - Sitian Yuan
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Mengjia Ni
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Tianxin Hao
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Cuiying Zeng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Xinyi Xu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Yang Fu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Yiyuan Peng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Qiuping Ding
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| |
Collapse
|
4
|
Bai J, Li S, Qi D, Song Z, Li B, Guo L, Song L, Xia W. Visible-Light-Induced Trifluoromethylsulfonylation Reaction of Diazo Compounds Enabled by Manganese Catalysis. Org Lett 2023; 25:2410-2414. [PMID: 36996439 DOI: 10.1021/acs.orglett.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
A visible-light-induced trifluoromethylsulfonylation reaction of diazo compounds is herein reported. This developed synthetic method captures the relatively rare trifluoromethyl sulfone radicals via coordination to the Mn(acac)3 catalyst, delivering the corresponding α-trifluoromethyl sulfone esters in good to moderate yields (up to 82%). This protocol exhibits broad substrate scope and is easily carried out under mild reaction conditions. Furthermore, a plausible mechanism of the reaction was investigated through DFT calculations.
Collapse
Affiliation(s)
- Jinrui Bai
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Dan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuoheng Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bin Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lijuan Song
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Zhang KY, Long F, Peng CC, Liu JH, Hu YC, Wu LJ. Multicomponent Sulfonylation of Alkenes to Access β-Substituted Arylsulfones. J Org Chem 2023; 88:3772-3780. [PMID: 36877592 DOI: 10.1021/acs.joc.2c03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
A novel multicomponent sulfonylation of alkenes is described for the assembly of various β-substituted arylsulfones using cheap and easily available K2S2O5 as a sulfur dioxide source. Of note, the procedure does not need any extra oxidants and metal catalysts and exhibits a relatively wide substrate scope and good functional group compatibility. Mechanistically, an initial arylsulfonyl radical is formed involving the insertion of sulfur dioxide with aryl diazonium salt, followed by alkoxyarylsulfonylation or hydroxysulfonylation of alkenes.
Collapse
Affiliation(s)
- Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.,Department of Hunan Cuisine, Changsha Commerce & Tourism College, Changsha 410116, China
| | - Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin-Hui Liu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yun-Chu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Han B, Ding X, Zhang Y, Gu X, Qi Y, Liang S. Mn(OAc) 3-Promoted Sulfonation-Cyclization Cascade via the SO 3– Radical: The Synthesis of Heterocyclic Sulfonates. Org Lett 2022; 24:8255-8260. [DOI: 10.1021/acs.orglett.2c03510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bingxu Han
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| | - Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| | - Xin Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yunkun Qi
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| | - Shuai Liang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, 266071 Qingdao, China
| |
Collapse
|