1
|
Yang L, Shu J, Liu Y, Jin YX, Chen SS, Huang W, Xu XQ, Xie LY. Synthesis of S-Alkyl Dithiocarbamates via Multicomponent Reaction of Cyclic Sulfonium Salts with CS 2 and Amines. J Org Chem 2024; 89:15248-15263. [PMID: 39360740 DOI: 10.1021/acs.joc.4c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A convenient and practical method for the synthesis of various S-alkyl dithiocarbamates through three-component reaction of sulfonium salts, CS2 and amines has been developed. The reaction proceeds efficiently without any catalyst and additive under mild and open-air conditions, making it potential applications in pharmaceutical chemistry and sulfur chemistry.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jia Shu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Yun Liu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Yuan-Xin Jin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Si Si Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Wei Huang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Xiang-Qin Xu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources of Southern Hunan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
2
|
Mohlala RL, Rashamuse TJ, Coyanis EM. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: a tremendous growth in the past 5 years. Front Chem 2024; 12:1469677. [PMID: 39359421 PMCID: PMC11445040 DOI: 10.3389/fchem.2024.1469677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Since Strecker's discovery of multicomponent reactions (MCRs) in 1850, the strategy of applying an MCR approach has been in use for over a century. Due to their ability to quickly develop molecular diversity and structural complexity of interest, MCRs are considered an efficient approach in organic synthesis. Although MCRs such as the Ugi, Passerini, Biginelli, and Hantzsch reactions are widely studied, this review emphasizes the significance of selective MCRs to elegantly produce organic compounds of potential use in medicinal chemistry and industrial and material science applications, as well as the use of the MCR approach to sustainable methods. During synthesis, MCRs provide advantages such as atom economy, recyclable catalysts, moderate conditions, preventing waste, and avoiding solvent use. MCRs also reduce the number of sequential multiple reactions to one step.
Collapse
|
3
|
Govada GV, Pal S, Panjacharam P, Bhatt HS, Kumar S, Lin CC, Wang SK, Reddy SR. Pd(II)-Catalyzed Site-Selective Cross Coupling Reaction: Synthesis of Highly Fluorescent Aryl-Formyl-Chromenes and its Iminoantipyrine Analogues as Selective AChE Inhibitors. Chem Biodivers 2024; 21:e202400719. [PMID: 38958461 DOI: 10.1002/cbdv.202400719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
A versatile and efficient chemo selective synthesis of 4-aryl-3-formyl-2H-chromenes (AFC) was undertaken using Pd-catalyzed cross-coupling conditions. The key oxidative transmetalation was successfully applied to a significant range of substitutions on the chromene moiety and aryl ring in Ar(BOH)3, accommodating both electron-rich and electron-deficient groups. These π-extended scaffolds exhibited green-yellow fluorescence with a large Stokes shift and high quantum yield. Measurement of photophysical properties revealed that the compound with methoxy substitution in the chromene ring, 3t, caused a significant bathochromic shift. The AFCs obtained from this method can be transformed into biologically active 4-aryl-3-iminoantipyrine-2H-chromenes (AAC) through functionalization of the formyl chromenes. The AFCs and AACs with methoxy substitutions (3t and 4e) were docked against AChE inhibition, and compound 4e had the lowest binding energy of -11.20 kcal/mol. DFT calculations performed on representative compounds revealed that compound 4e is more reactive than 3t, which is in accordance with the docking studies.
Collapse
Affiliation(s)
- Grace Victoria Govada
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Sanjivani Pal
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Paranimuthu Panjacharam
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Harshil Samir Bhatt
- Centre for Bio Separation Technology, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Sanjit Kumar
- Department of Biotechnology, School of Interdisciplinary Education and Research, Guru Ghasidas Vishwavidyalaya (Central university), Bilaspur, India
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | | |
Collapse
|
4
|
Chen D, Huang L, Liang M, Chen X, Cao D, Xiao P, Ni C, Hu J. 1,6-Nucleophilic Di- and Trifluoromethylation of para-Quinone Methides with Me 3SiCF 2H/Me 3SiCF 3 Facilitated by CsF/18-Crown-6. Molecules 2024; 29:2905. [PMID: 38930971 PMCID: PMC11206660 DOI: 10.3390/molecules29122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The direct 1,6-nucleophilic difluoromethylation, trifluoromethylation, and difluoroalkylation of para-quinone methides (p-QMs) with Me3SiRf (Rf = CF2H, CF3, CF2CF3, CF2COOEt, and CF2SPh) under mild conditions are described. Although Me3SiCF2H shows lower reactivity than Me3SiCF3, it can react with p-QMs promoted by CsF/18-Crown-6 to give structurally diverse difluoromethyl products in good yields. The products can then be further converted into fluoroalkylated para-quinone methides and α-fluoroalkylated diarylmethanes.
Collapse
Affiliation(s)
- Dingben Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ling Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Mingyu Liang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaojing Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Dongdong Cao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, China
| | - Pan Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Chuanfa Ni
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
5
|
Yan Y, Hao J, Xie F, Han F, Jing L, Han P. Magnesium-Mediated Umpolung Carboxylation of p-Quinone Methides with CO 2. J Org Chem 2023; 88:14640-14648. [PMID: 37773013 DOI: 10.1021/acs.joc.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Magnesium-mediated reductive carboxylation of p-QMs with CO2 via an Umpolung strategy has been developed, which can be used for the preparation of various aryl acetic acids. This protocol featured high atom economy, mild conditions, and operational simplicity. The creation of this Umpolung carboxylation of p-QMs will unprecedentedly extend the application of p-QMs to nucleophilic reagents.
Collapse
Affiliation(s)
- Yunying Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jianjun Hao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
6
|
Dong J, Wu S, Geng F, Yan Y, Liu L, Zhou Y. Selective Oxidative Methyl C-H Functionalization of Butylated Hydroxytoluene toward Arylimines/ N-Heterocycles. J Org Chem 2023; 88:14649-14658. [PMID: 37816698 DOI: 10.1021/acs.joc.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
A metal-free and selective oxidative methyl C-H functionalization of BHT with aniline compounds has been developed. This innovative method enables the facile and efficient synthesis of a diverse array of BHT-functionalized N-containing skeletons, including arylamines, benzoxazoles, benzothiazoles, benzimidazoles, quinazolines, and quinazolinones, all of which are challenging to access. The control experiment involving TEMP18O suggests that the radical adduct of TEMPO with the benzyl radical of BHT may serve as an intermediate.
Collapse
Affiliation(s)
- Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Shaofeng Wu
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Furong Geng
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yani Yan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Long Liu
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Liu X, Cai TC, Zhu M, Liu Y, Xia J, Xie J, Wen L, Gui QW, Yin Y. S-alkyl Dithiocarbamates Synthesis through Electrochemical Multicomponent Reaction of Thiols, Hydrogen Sulfide, and Isocyanides. J Org Chem 2023; 88:12311-12318. [PMID: 37585499 DOI: 10.1021/acs.joc.3c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Dithiocarbamates synthesis is extremely important in plenty of biomedical and agrochemical applications, especially fungicide development, but remains a great challenge. In this work, we have successfully developed a multicomponent reaction protocol to convert H2S into S-alkyl dithiocarbamates under constant current conditions. No additional oxidants nor additional catalysts are required, and due to mild conditions, the reactions display a broad substrate scope, including varieties of thiols or disulfides.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Tian-Cheng Cai
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Mengxue Zhu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuxuan Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Jingjing Xia
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Junyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| |
Collapse
|
8
|
P H, Hati S, Dey R. S-Alkylation of dithiocarbamates via a hydrogen borrowing reaction strategy using alcohols as alkylating agents. Org Biomol Chem 2023; 21:6360-6367. [PMID: 37489908 DOI: 10.1039/d3ob00958k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Herein, we report an operationally simple, environmentally benign and scalable approach towards the synthesis of S-benzyl/alkyl dithiocarbamates via a hydrogen borrowing reaction between alcohols and dithiocarbamate anions catalyzed using a hydroxyapatite-supported copper nano-catalyst. This strategy has a broad substrate scope and offers high yields of products using inexpensive and readily available alcohols as starting materials. The catalyst was prepared by easy and straightforward methods and analyzed by several analytical techniques, e.g., FESEM, HR-TEM, BET, XRD, EDS, and XPS, demonstrating the anchoring of Cu nanoparticles on hydroxyapatite in the zero oxidation state.
Collapse
Affiliation(s)
- Hima P
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| | - Spandan Hati
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| |
Collapse
|
9
|
Toda Y, Iwasaki M, Suga H. Base-mediated synthesis of cyclic dithiocarbamates from 1-amino-3-chloropropan-2-ol derivatives and carbon disulfide. Org Biomol Chem 2023; 21:6293-6297. [PMID: 37486165 DOI: 10.1039/d3ob01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An efficient method for the preparation of six-membered cyclic dithiocarbamates is described, in which triethylamine effectively promotes the reaction of 1-amino-3-chloropropan-2-ol derivatives with carbon disulfide. On the basis of the experimental and theoretical studies, a reaction mechanism is proposed to explain the difference between the present reaction and our previously reported carbon dioxide fixation.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| | - Masaya Iwasaki
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| |
Collapse
|
10
|
Govada GV, Rajasekhara Reddy S. Synthesis and in Silico Study of Novel Benzisoxazole-Chromene Derivatives as Potent Inhibitors of Acetylcholinesterase: Metal-Free Site-Selective C-N Bond Formation via Aza-Michael Reaction. Chem Biodivers 2023; 20:e202300573. [PMID: 37415329 DOI: 10.1002/cbdv.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
An efficient metal-free approach for site selective C-N coupling reaction of benzo[d]isoxazole and 2H-chromene derivatives has been designed and developed against AchE. This nitrogen containing organo-base promoted methodology, which is both practical and environmentally friendly, provides an easy and suitable pathway for synthesizing Benzisoxazole-Chromene (BC) possessing poly heteroaryl moieties. The synthesized BC derivatives 4 a-n was docked into the active sites of AChE to obtain more perception into the binding modes of the compounds. Out of them, compound 4 a and 4 l displayed potent activity and high selectivity against the AChE inhibition. Final docking results indicates that compound 4 l showed the lowest binding energy of -11.2260 kcal/mol with AChE. The synthesized BC analogs would be potential candidates for promoting suitable studies in medicinal chemistry research.
Collapse
Affiliation(s)
- Grace Victoria Govada
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), 632014, Vellore, India
| | | |
Collapse
|
11
|
Singh T, Upreti GC, Arora S, Chauhan H, Singh A. Visible Light-Mediated Carbamoylation of para-Quinone Methides. J Org Chem 2023. [PMID: 36792547 DOI: 10.1021/acs.joc.2c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report a photocatalytic approach for the installation of the amide moiety onto para-quinone methides. This transformation features a net reductive approach for the generation of carbamoyl radicals from amide-substituted Hantzsch ester derivatives under transition metal-free conditions. This protocol exhibits wide scope and allows access to diarylacetamides employing a C-C bond formation approach.
Collapse
Affiliation(s)
- Tavinder Singh
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India
| | | | - Shivani Arora
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India
| | | | - Anand Singh
- Department of Chemistry, IIT Kanpur, Kanpur, UP 208016, India.,Department of Sustainable Energy Engineering, IIT Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
12
|
Abdi A, Hosseini SS, Nikbakht A, Bijanzadeh HR, Rominger F, Balalaie S. Regioselective Hydrothiolation of Allenoates through a Ca(OTf)
2
‐Promoted Three‐Component Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202203372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aida Abdi
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - S. Sina Hosseini
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Ali Nikbakht
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences Faculty of Natural Resources and Marine Sciences Tarbiat Modares University Noor Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer Feld 271 69120 Heidelberg Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute K. N. Toosi University of Technology P. O. Box 15875-4416 Tehran Iran
| |
Collapse
|
13
|
TfOH-catalyzed three-component synthesis of Dithiocarbamates from α-Diazoesters under continuous flow conditions. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Kumar N, Venkatesh R, Kandasamy J. Synthesis of functionalized S-benzyl dithiocarbamates from diazo-compounds via multi-component reactions with carbon disulfide and secondary amines. Org Biomol Chem 2022; 20:6766-6770. [PMID: 35980203 DOI: 10.1039/d2ob01069k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triflic acid promoted multi-component synthesis of functionalized S-benzyl dithiocarbamates from diazo compounds, carbon disulfide and secondary amines is reported. The reactions proceeded at room temperature and gave the desired dithiocarbamates in good yields. Wide-substrate scope and easy operation are the important features of this methodology.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Rapelly Venkatesh
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Jeyakumar Kandasamy
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| |
Collapse
|
15
|
Xiong B, Shang W, Xu W, Liu Y, Tang KW, Wong WY. Acid‐catalyzed Regioselective Synthesis of α‐Diarylmethyl Substituted Phenols and para‐Quinone Methides in Water. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biquan Xiong
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Wenli Shang
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Weifeng Xu
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Yu Liu
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Ke-Wen Tang
- Hunan Institute of Science and Technology Department of Chemistry and Chemical Engineering Xueyuan Road 414006 Yueyang CHINA
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology Hung Hom Hong Kong HONG KONG
| |
Collapse
|