1
|
Danopoulou M, Zorba LP, Karantoni AP, Tzeli D, Vougioukalakis GC. Copper-Catalyzed α-Alkylation of Aryl Acetonitriles with Benzyl Alcohols. J Org Chem 2024; 89:14242-14254. [PMID: 39292689 PMCID: PMC11459520 DOI: 10.1021/acs.joc.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
A highly efficient, in situ formed CuCl2/TMEDA catalytic system (TMEDA = N,N,N',N'-tetramethylethylene-diamine) for the cross-coupling reaction of aryl acetonitriles with benzyl alcohols is reported. This user-friendly protocol, employing a low catalyst loading and a catalytic amount of base, leads to the synthesis of α-alkylated nitriles in up to 99% yield. Experimental mechanistic investigations reveal that the key step of this transformation is the C(sp3)-H functionalization of the alcohol, taking place via a hydrogen atom abstraction, with the simultaneous formation of copper-hydride species. Detailed density functional theory studies shed light on all reaction steps, confirming the catalytic pathway proposed on the basis of the experimental findings.
Collapse
Affiliation(s)
- Marianna Danopoulou
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Leandros P. Zorba
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Athanasia P. Karantoni
- Laboratory
of Physical Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Demeter Tzeli
- Laboratory
of Physical Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, Vas. Constantinou, 48, 11635 Athens, Greece
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
2
|
Copper Pyrithione (CuPT)-Catalyzed Oxidation of Secondary and Primary Benzyl Alcohols with Molecular oxygen or Air Under Mild Conditions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Fu W, Zhu L, Tan S, Zhao Z, Yu X, Wang L. Copper/Nitroxyl-Catalyzed Synthesis of Pyrroles by Oxidative Coupling of Diols and Primary Amines at Room Temperature. J Org Chem 2022; 87:13389-13395. [PMID: 36130051 DOI: 10.1021/acs.joc.2c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cu/ABNO-catalyzed aerobic oxidative coupling of diols and primary amines to access N-substituted pyrroles is highlighted (ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl). The reaction proceeds at room temperature with an O2 balloon as the oxidant using commercially available materials as the substrates and catalysts. The catalyst system is characterized by a broad range of substrates and a good tolerance to sensitive functional groups. The gram-scale experiment proves this system's practicability.
Collapse
Affiliation(s)
- Weiru Fu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Lina Zhu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Shangzhi Tan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Zhengjia Zhao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Xiangzhu Yu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Lianyue Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China
| |
Collapse
|
4
|
A Highly Efficient Bismuth Nitrate/Keto-ABNO Catalyst System for Aerobic Oxidation of Alcohols to Carbonyl Compounds under Mild Conditions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123727. [PMID: 35744850 PMCID: PMC9230008 DOI: 10.3390/molecules27123727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
An efficient and practical catalytic system for the oxidation of alcohols to aldehydes/ketones using catalytic amounts of Bi(NO3)3 and Keto-ABNO (9-azabicyclo [3.3.1]nonan-3-one N-oxyl) with air as the environmentally benign oxidant was developed. Various primary and secondary alcohols were smoothly oxidized to the corresponding products under mild conditions, and satisfactory yields were achieved. Moreover, this methodology avoids the use of a ligand and base. The gram-scale reaction was demonstrated for the oxidation of 1-phenyl ethanol, and the product of acetophenone was obtained at an isolated yield of about 94%.
Collapse
|
5
|
Chen J, Wang F, Huang Y, Jia X, Zhuang D, Wan Z, Li Z. Remote carbamate-directed site-selective benzylic C–H oxygenation via synergistic copper/TEMPO catalysis at room temperature. Org Chem Front 2022. [DOI: 10.1039/d2qo00435f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A benzylic C(sp3)–H oxygenation with water at room temperature through a ligand- and additive-free synergistic copper/TEMPO-catalysed radical relay pathway and a remote directing strategy is described.
Collapse
Affiliation(s)
- Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Huang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Engineering Experimental Teaching Centre, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Preparation of poly(carbazole-TEMPO) electrode and its electrochemical performance. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Nicholls TP, Bourne RA, Nguyen BN, Kapur N, Willans CE. On-Demand Electrochemical Synthesis of Tetrakisacetonitrile Copper(I) Triflate and Its Application in the Aerobic Oxidation of Alcohols. Inorg Chem 2021; 60:6976-6980. [PMID: 33890765 DOI: 10.1021/acs.inorgchem.1c00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An on-demand electrochemical synthesis of copper(I) triflate under both batch and continuous flow conditions has been developed. A major benefit of the electrochemical methodology is that the only byproduct of the reaction is hydrogen gas, which obviates the need for workup and purification, and water is not incorporated into the product. Upon completion of the electrochemical synthesis, solutions are directly transferred or dispensed into reaction mixtures for the catalytic oxidation of benzyl alcohol with no requirement for workup or purification.
Collapse
Affiliation(s)
| | | | - Bao N Nguyen
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | | |
Collapse
|
8
|
Kim HY, Oh K. Recent advances in the copper-catalyzed aerobic C sp3-H oxidation strategy. Org Biomol Chem 2021; 19:3569-3583. [PMID: 33908570 DOI: 10.1039/d1ob00081k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interplay between copper catalysts and molecular oxygen provides the opportunity to control the promiscuous catalytic behaviors in aerobic Csp3-H bond oxidations without using stoichiometric amounts of oxidants. This mini-review aims to cover the Cu-catalyzed aerobic benzylic and α-carbonyl Csp3-H oxidations and that of the carbon next to an amine group in the past five years. The development of tandem multicomponent reactions employing aerobic Csp3-H bond oxidations will be discussed to highlight the controlled catalyst behaviors and the catalyst interactions between multiple reaction components.
Collapse
Affiliation(s)
- Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
| |
Collapse
|
9
|
Greve E, Lindeman SV, Scartelli C, Lin L, Flaumenhaft R, Dockendorff C. Route exploration and synthesis of the reported pyridone-based PDI inhibitor STK076545. Org Biomol Chem 2020; 18:6665-6681. [PMID: 32812971 DOI: 10.1039/d0ob01205j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The enzyme protein disulfide isomerase (PDI) is essential for the correct folding of proteins and the activation of certain cell surface receptors, and is a promising target for the treatment of cancer and thrombotic conditions. A previous high-throughput screen identified the commercial compound STK076545 as a promising PDI inhibitor. To confirm its activity and support further biological studies, a resynthesis was pursued of the reported β-keto-amide with an N-alkylated pyridone at the α-position. Numerous conventional approaches were complicated by undesired fragmentations or rearrangements. However, a successful 5-step synthetic route was achieved using an aldol reaction with an α-pyridone allyl ester as a key step. An X-ray crystal structure of the final compound confirmed that the reported structure of STK076545 was achieved, however its lack of PDI activity and inconsistent spectral data suggest that the commercial structure was misassigned.
Collapse
Affiliation(s)
- Eric Greve
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Szczepaniak G, Piątkowski J, Nogaś W, Lorandi F, Yerneni SS, Fantin M, Ruszczyńska A, Enciso AE, Bulska E, Grela K, Matyjaszewski K. An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. Chem Sci 2020. [DOI: 10.1039/d0sc00623h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three for the price of one: 1,4-bis(3-isocyanopropyl)piperazine allows for the removal of Cu impurities, can quench Cu-catalyzed reactions, and can prevent undesirable Glaser coupling.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | - Jakub Piątkowski
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | - Wojciech Nogaś
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | | | | | - Marco Fantin
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Anna Ruszczyńska
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | - Alan E. Enciso
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - Ewa Bulska
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | - Karol Grela
- Faculty of Chemistry
- Biological and Chemical Research Centre
- University of Warsaw
- 02-089 Warsaw
- Poland
| | | |
Collapse
|
11
|
Sheikhi E, Adib M, Akherati Karajabad M, Rezaei N. Metal‐Free and Selective Oxidation of Benzylic Alcohols to Aromatic Aldehydes by Hexachloroacetone. ChemistrySelect 2019. [DOI: 10.1002/slct.201903790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ehsan Sheikhi
- School of ChemistryCollege of ScienceUniversity of Tehran 16 Azar St PO Box 14155–6455 Tehran Iran
| | - Mehdi Adib
- School of ChemistryCollege of ScienceUniversity of Tehran 16 Azar St PO Box 14155–6455 Tehran Iran
| | | | - Narjes Rezaei
- School of ChemistryCollege of ScienceUniversity of Tehran 16 Azar St PO Box 14155–6455 Tehran Iran
| |
Collapse
|
12
|
3-BocNH-ABNO-catalyzed aerobic oxidation of alcohol at room temperature and atmospheric pressure. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Nelson DJ, Wencel-Delord J. Highlights from the 54th EUCHEM Bürgenstock Conference on Stereochemistry, Brunnen, Switzerland, May 2019. Chem Commun (Camb) 2019; 55:10043-10046. [DOI: 10.1039/c9cc90354b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- David J. Nelson
- WestCHEM Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - Joanna Wencel-Delord
- Laboratoire d’Innovation Moléculaire et Applications
- ECPM
- UMR 7042
- Université de Strasbourg/Université de Haute—Alsace
- Cedex 67087
| |
Collapse
|
14
|
Goethe O, Heuer A, Ma X, Wang Z, Herzon SB. Antibacterial properties and clinical potential of pleuromutilins. Nat Prod Rep 2019; 36:220-247. [PMID: 29979463 DOI: 10.1039/c8np00042e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2018Pleuromutilins are a clinically validated class of antibiotics derived from the fungal diterpene (+)-pleuromutilin (1). Pleuromutilins inhibit bacterial protein synthesis by binding to the peptidyl transferase center (PTC) of the ribosome. In this review we summarize the biosynthesis and recent total syntheses of (+)-pleuromutilin (1). We review the mode of interaction of pleuromutilins with the bacterial ribosome, which involves binding of the C14 extension and the tricyclic core to the P and A sites of the PTC, respectively. We provide an overview of existing clinical agents, and discuss the three primary modes of bacterial resistance (mutations in ribosomal protein L3, Cfr methylation, and efflux). Finally we collect structure-activity relationships from publicly available reports, and close with some forward looking statements regarding future development.
Collapse
Affiliation(s)
- Olivia Goethe
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Abigail Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Xiaoshen Ma
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Zhixun Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
15
|
Zhai D, Ma S. Copper catalysis for highly selective aerobic oxidation of alcohols to aldehydes/ketones. Org Chem Front 2019. [DOI: 10.1039/c9qo00740g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and practical room temperature aerobic oxidation of different types of alcohols using Cu(NO3)2·3H2O and TEMPO or 4-HO-TEMPO as the catalysts forming aldehydes or ketones with an excellent selectivity has been developed.
Collapse
Affiliation(s)
- Di Zhai
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
16
|
Zare Hosseinzadeh S, Babazadeh M, Shahverdizadeh GH, Hosseinzadeh-Khanmiri R. Direct oxidative esterification of primary alcohols and oxidation of secondary alcohols over mesoporous spherical silica encapsulated MnO 2nanoparticles. NEW J CHEM 2019. [DOI: 10.1039/c9nj01345h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work, a simple and efficient strategy for the fabrication of novel encapsulated MnO2nanoparticles inside spherical mesoporous silica hollow-nanoparticles was described.
Collapse
|
17
|
Niu P, Liu X, Shen Z, Li M. Electrochemical Performance of ABNO for Oxidation of Secondary Alcohols in Acetonitrile Solution. Molecules 2018; 24:E100. [PMID: 30597882 PMCID: PMC6337132 DOI: 10.3390/molecules24010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022] Open
Abstract
The ketones was successfully prepared from secondary alcohols using 9-azabicyclo[3.3.1]nonane-N-oxyl (ABNO) as the catalyst and 2,6-lutidine as the base in acetonitrile solution. The electrochemical activity of ABNO for oxidation of 1-phenylethanol was investigated by cyclic voltammetry, in situ Fourier transform infrared spectroscopy (FTIR) and constant current electrolysis experiments. The resulting cyclic voltammetry indicated that ABNO exhibited much higher electrochemical activity when compared with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) under the similar conditions. A reasonable reaction mechanism of the electrocatalytic oxidation of 1-phenylethanol to acetophenone was proposed. In addition, a series of secondary alcohols could be converted to the corresponding ketones at room temperature in 80⁻95% isolated yields.
Collapse
Affiliation(s)
- Pengfei Niu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Xin Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
18
|
Thorat RG, Brooks BA, Nichols B, Harned AM. Stereoselective synthesis of the C14-C23 fragment of biselyngbyolide A and B enabled by transition metal catalysis. Tetrahedron 2018; 74:7277-7281. [PMID: 30636818 PMCID: PMC6327972 DOI: 10.1016/j.tet.2018.10.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transition met al catalysis has enabled the highly stereoselective and protecting group-free synthesis of the C14-C23 fragment of the apoptosis-inducing natural products biselyngbyolide A and B. A Pd-catalyzed Stille reaction between a vinyl stannane and a crotyl carbonate formed the skipped diene with complete control of the the trisubstituted bond and excellent control over the branched/linear products. A Cu-catalyzed Stahl oxidation was used to form the requisite aldehyde needed for a Ag-catalyzed asymmetric allylation. The latter provided the final fragment with excellent stereochemical control.
Collapse
Affiliation(s)
- Rakesh G. Thorat
- Texas Tech University, Department of Chemistry & Biochemistry, 1204 Boston Ave., Lubbock, TX, 79409-1061, USA
| | - Bailey A. Brooks
- Texas Tech University, Department of Chemistry & Biochemistry, 1204 Boston Ave., Lubbock, TX, 79409-1061, USA
| | - Brandon Nichols
- Texas Tech University, Department of Chemistry & Biochemistry, 1204 Boston Ave., Lubbock, TX, 79409-1061, USA
| | - Andrew M. Harned
- Texas Tech University, Department of Chemistry & Biochemistry, 1204 Boston Ave., Lubbock, TX, 79409-1061, USA
| |
Collapse
|
19
|
Syiemlieh I, Asthana M, Asthana SK, Kurbah SD, Koch A, Lal RA. Water soluble new bimetallic catalyst [CuZn(bz)3(bpy)2]PF6 in hydrogen peroxide mediated oxidation of alcohols to aldehydes/ketones and C-N functional groups. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Zhang G, Ma D, Zhao Y, Zhang G, Mei G, Lyu J, Ding C, Shan S. NH 3⋅H 2O: The Simplest Nitrogen-Containing Ligand for Selective Aerobic Alcohol Oxidation to Aldehydes or Nitriles in Neat Water. ChemistryOpen 2018; 7:885-889. [PMID: 30460169 PMCID: PMC6232702 DOI: 10.1002/open.201800196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/30/2022] Open
Abstract
Aqueous ammonia (NH3⋅H2O) has been shown to serve as the simplest nitrogen-containing ligand to effectively promote copper-catalyzed selective alcohol oxidation under air in water. A series of alcohols with varying electronic and steric properties were selectively oxidized to aldehydes with up to 95 % yield. Notably, by increasing the amount of aqueous ammonia in neat water, the exclusive formation of aryl nitriles was also accomplished with good-to-excellent yields. Additionally, the catalytic system exhibits a high level of functional group tolerance with -OH, -NO2, esters, and heteroaryl groups all being amenable to the reaction conditions. This one-pot and green oxidation protocol provides an important synthetic route for the selective preparation of either aldehydes or nitriles from commercially available alcohols.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Danting Ma
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yiyong Zhao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guihua Zhang
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guangyao Mei
- Zhejiang Hongyuan Pharmaceutical Co. LtdTaizhou317016P. R. China
| | - Jinghui Lyu
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Chengrong Ding
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Shang Shan
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| |
Collapse
|
21
|
Bulky 2,6-dibenzhydryl-4-methylphenyl β-diiminato derived complexes of Pd(II) and Cu(II): Efficient catalysts for Suzuki coupling and alcohol oxidation. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Yin L, Zhang J, Yao J, Li H. A Designed TEMPO-derivate Catalyst with Switchable Signals of EPR and Photoluminescence: Application in the Mechanism of Alcohol Oxidation. ChemCatChem 2018. [DOI: 10.1002/cctc.201800345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lu Yin
- Department of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 PR China
| | - Jiaxiang Zhang
- Department of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 PR China
| | - Jia Yao
- Department of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 PR China
| | - Haoran Li
- Department of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou 310027 PR China
- State Key Laboratory of Chemical Engineering Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 PR China
| |
Collapse
|
23
|
Kataoka K, Wachi K, Jin X, Suzuki K, Sasano Y, Iwabuchi Y, Hasegawa JY, Mizuno N, Yamaguchi K. CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides. Chem Sci 2018; 9:4756-4768. [PMID: 29910926 PMCID: PMC5982222 DOI: 10.1039/c8sc01410h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/05/2018] [Indexed: 01/25/2023] Open
Abstract
Although aerobic oxidative acylation of amides with alcohols would be a good complement to classical synthetic methods for imides (e.g., acylation of amides with activated forms of carboxylic acids), to date, there have been no reports on oxidative acylation to produce imides. In this study, we successfully developed, for the first time, an efficient method for the synthesis of imides through aerobic oxidative acylation of amides with alcohols by employing a CuCl/TMEDA/nor-AZADO catalyst system (TMEDA = teramethylethylendiamine; nor-AZADO = 9-azanoradamantane N-oxyl). The proposed acylation proceeds through the following sequential reactions: aerobic oxidation of alcohols to aldehydes, nucleophilic addition of amides to the aldehydes to form hemiamidal intermediates, and aerobic oxidation of the hemiamidal intermediates to give the corresponding imides. This catalytic system utilizes O2 as the terminal oxidant and produces water as the sole by-product. An important point for realizing this efficient acylation system is the utilization of a TMEDA ligand, which, to the best of our knowledge, has not been employed in previously reported Cu/ligand/N-oxyl systems. Based on experimental evidence, we consider that plausible roles of TMEDA involve the promotion of both hemiamidal oxidation and regeneration of an active CuII-OH species from a CuI species. Here promotion of hemiamidal oxidation is particularly important. Employing the proposed system, various types of structurally diverse imides could be synthesized from various combinations of alcohols and amides, and gram-scale acylation was also successful. In addition, the proposed system was further applicable to the synthesis of α-ketocarbonyl compounds (i.e., α-ketoimides, α-ketoamides, and α-ketoesters) from 1,2-diols and nucleophiles (i.e., amides, amines, and alcohols).
Collapse
Affiliation(s)
- Kengo Kataoka
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Keiju Wachi
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Kosuke Suzuki
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Yusuke Sasano
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry , Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku , Sendai 980-8578 , Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis , Hokkaido University , Kita 21 Nishi 10 , Kita-ku , Sapporo 001-0021 , Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| | - Kazuya Yamaguchi
- Department of Applied Chemistry , School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan .
| |
Collapse
|
24
|
Riemer D, Mandaviya B, Schilling W, Götz AC, Kühl T, Finger M, Das S. CO2-Catalyzed Oxidation of Benzylic and Allylic Alcohols with DMSO. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04390] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel Riemer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Bhavdip Mandaviya
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Anne Charlotte Götz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Torben Kühl
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Markus Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
25
|
del Mar Conejo M, Cantero J, Pastor A, Álvarez E, Galindo A. Synthesis, structure and properties of nickel and copper complexes containing N,O -hydrazone Schiff base ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.04.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Hill CK, Hartwig JF. Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation. Nat Chem 2017; 9:1213-1221. [PMID: 29168493 PMCID: PMC5728688 DOI: 10.1038/nchem.2835] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2017] [Indexed: 11/08/2022]
Abstract
Polyoxygenated hydrocarbons that bear one or more hydroxyl groups comprise a large set of natural and synthetic compounds, often with potent biological activity. In synthetic chemistry, alcohols are important precursors to carbonyl groups, which then can be converted into a wide range of oxygen- or nitrogen-based functionality. Therefore, the selective conversion of a single hydroxyl group in natural products into a ketone would enable the selective introduction of unnatural functionality. However, the methods known to convert a simple alcohol, or even an alcohol in a molecule that contains multiple protected functional groups, are not suitable for selective reactions of complex polyol structures. We present a new ruthenium catalyst with a unique efficacy for the selective oxidation of a single hydroxyl group among many in unprotected polyol natural products. This oxidation enables the introduction of nitrogen-based functional groups into such structures that lack nitrogen atoms and enables a selective alcohol epimerization by stepwise or reversible oxidation and reduction.
Collapse
Affiliation(s)
- Christopher K. Hill
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
27
|
Dutta I, De S, Yadav S, Mondol R, Bera JK. Aerobic oxidative coupling of alcohols and amines towards imine formation by a dicopper(I,I) catalyst. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Ma D, Liu A, Lu C, Chen C. Photocatalytic Dehydrogenation of Primary Alcohols: Selectivity Goes against Adsorptivity. ACS OMEGA 2017; 2:4161-4172. [PMID: 31457713 PMCID: PMC6641877 DOI: 10.1021/acsomega.7b00754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/19/2017] [Indexed: 05/17/2023]
Abstract
Solid/liquid heterogeneous photocatalysis was often considered to occur on the active sites of a solid catalyst surface. Herein, we report that the selectivity of photocatalytic dehydrogenative oxidations of aliphatic primary alcohols in acetonitrile solution into corresponding aldehydes exhibits an anomalous relationship with adsorption behavior of the alcohols. By using Pt-loaded TiO2 photocatalyst in an inert atmosphere under UV light illumination, primary short-chain alcohols (SCAs) with strong adsorption were dehydrogenated into aldehydes in very poor selectivity, whereas weak-adsorbable long-chain alcohols (LCAs) were transformed into corresponding aldehydes with much higher selectivity. More than 20 examples of primary LCAs (C4-C10) were successfully transformed into their corresponding aldehydes with satisfactory selectivity and yield. Both solid-state magic-angle-spinning 13C NMR and attenuated total reflectance-Fourier transform infrared spectroscopy studies provided concrete differences in adsorption behaviors on the Pt-TiO2 photocatalyst surface between SCA ethanol and LCA n-octanol. To further uncover the mechanism for different selectivities of SCAs and LCAs in photodehydrogenation, in situ electron paramagnetic resonance (EPR) experiments (at 8 K temperature) were employed to observe the oxidation features of photogenerated hole in the valance band of Pt-TiO2 (hvb +). The EPR experimental studies exhibited that unlike ethanol, either n-octanol or solvent acetonitrile alone all could not scavenge photogenerated hvb + on Pt-P25 photocatalyst and only n-octanol dissolved in acetonitrile solvent could smoothly react with photoinduced hole. This indicated that selective oxidations of LCAs were achieved by solvent-delivered oxidation rather than directly destructive oxidation of photogenerated hvb +. Our results may open an alternative way in selective dehydrogenative oxidation of various substrates sensitive to both dioxygen and high-temperature treatments.
Collapse
Affiliation(s)
- Dongge Ma
- School
of Science, Beijing Technology and Business
University, 100048 Beijing, P. R. China
- Key
Laboratory of Photochemistry, Beijing National Laboratory for Molecular
Sciences, Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- E-mail: . Phone: +86-10-68985573 (D.M.)
| | - Anan Liu
- Key
Laboratory of Photochemistry, Beijing National Laboratory for Molecular
Sciences, Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Chichong Lu
- School
of Science, Beijing Technology and Business
University, 100048 Beijing, P. R. China
| | - Chuncheng Chen
- Key
Laboratory of Photochemistry, Beijing National Laboratory for Molecular
Sciences, Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| |
Collapse
|
29
|
Das A, Stahl SS. Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene-TEMPO Conjugate. Angew Chem Int Ed Engl 2017; 56:8892-8897. [PMID: 28586133 PMCID: PMC5831151 DOI: 10.1002/anie.201704921] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/08/2022]
Abstract
Electrocatalytic methods for organic synthesis could offer sustainable alternatives to traditional redox reactions, but strategies are needed to enhance the performance of molecular catalysts designed for this purpose. The synthesis of a pyrene-tethered TEMPO derivative (TEMPO=2,2,6,6-tetramethylpiperidinyl-N-oxyl) is described, which undergoes facile in situ noncovalent immobilization onto a carbon cloth electrode. Cyclic voltammetry and controlled potential electrolysis studies demonstrate that the immobilized catalyst exhibits much higher activity relative to 4-acetamido-TEMPO, an electronically similar homogeneous catalyst. In preparative electrolysis experiments with a series of alcohol substrates and the immobilized catalyst, turnover numbers and frequencies approach 2 000 and 4 000 h-1 , respectively. The synthetic utility of the method is further demonstrated in the oxidation of a sterically hindered hydroxymethylpyrimidine precursor to the blockbuster drug, rosuvastatin.
Collapse
Affiliation(s)
- Amit Das
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
30
|
Das A, Stahl SS. Noncovalent Immobilization of Molecular Electrocatalysts for Chemical Synthesis: Efficient Electrochemical Alcohol Oxidation with a Pyrene–TEMPO Conjugate. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704921] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Das
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| | - Shannon S. Stahl
- Department of Chemistry University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
31
|
Ortiz A, Soumeillant M, Savage SA, Strotman NA, Haley M, Benkovics T, Nye J, Xu Z, Tan Y, Ayers S, Gao Q, Kiau S. Synthesis of HIV-Maturation Inhibitor BMS-955176 from Betulin by an Enabling Oxidation Strategy. J Org Chem 2017; 82:4958-4963. [PMID: 28406018 DOI: 10.1021/acs.joc.7b00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A concise and scalable second generation synthesis of HIV maturation inhibitor BMS-955176 is described. The synthesis is framed by an oxidation strategy highlighted by a CuI mediated aerobic oxidation of betulin, a highly selective PIFA mediated dehydrogenation of an oxime, and a subsequent Lossen rearrangement which occurs through a unique reaction mechanism for the installation of the C17 amino functionality. The synthetic route proceeds in 7 steps with 47% overall yield and begins from the abundant and inexpensive natural product betulin.
Collapse
Affiliation(s)
- Adrian Ortiz
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Maxime Soumeillant
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Scott A Savage
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Neil A Strotman
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Matthew Haley
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tamas Benkovics
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jeffrey Nye
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Zhongmin Xu
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Yichen Tan
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sloan Ayers
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Qi Gao
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Susanne Kiau
- Chemical and Synthetic Development, Bristol-Myers Squibb , 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
32
|
Aerobic oxidation of secondary alcohols in water with ABNO/tert-butyl nitrite/KPF6 catalytic system. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Carbó López M, Chavant PY, Molton F, Royal G, Blandin V. Chiral Nitroxide/Copper-Catalyzed Aerobic Oxidation of Alcohols: Atroposelective Oxidative Desymmetrization. ChemistrySelect 2017. [DOI: 10.1002/slct.201601993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marta Carbó López
- Univ. Grenoble Alpes; DCM UMR-5250; F-38000 Grenoble France
- CNRS; DCM UMR-5250; F-38000 Grenoble France
| | - Pierre Y. Chavant
- Univ. Grenoble Alpes; DCM UMR-5250; F-38000 Grenoble France
- CNRS; DCM UMR-5250; F-38000 Grenoble France
| | - Florian Molton
- Univ. Grenoble Alpes; DCM UMR-5250; F-38000 Grenoble France
- CNRS; DCM UMR-5250; F-38000 Grenoble France
| | - Guy Royal
- Univ. Grenoble Alpes; DCM UMR-5250; F-38000 Grenoble France
- CNRS; DCM UMR-5250; F-38000 Grenoble France
| | - Véronique Blandin
- Univ. Grenoble Alpes; DCM UMR-5250; F-38000 Grenoble France
- CNRS; DCM UMR-5250; F-38000 Grenoble France
| |
Collapse
|
34
|
Conejo MDM, Ávila P, Álvarez E, Galindo A. Synthesis and structure of nickel and copper complexes containing the N-allyl-o-hydroxyacetophenoniminato ligand and the application of copper complex as catalyst for aerobic alcohol oxidations. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Ravichandiran P, Lai B, Gu Y. Aldo-X Bifunctional Building Blocks for the Synthesis of Heterocycles. CHEM REC 2016; 17:142-183. [DOI: 10.1002/tcr.201600042] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Palanisamy Ravichandiran
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Bingbing Lai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
| | - Yanlong Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Lanzhou 730000 P.R. China
| |
Collapse
|
36
|
Ray R, Chandra S, Maiti D, Lahiri GK. Simple and Efficient Ruthenium-Catalyzed Oxidation of Primary Alcohols with Molecular Oxygen. Chemistry 2016; 22:8814-22. [PMID: 27257955 DOI: 10.1002/chem.201601800] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 11/12/2022]
Abstract
Oxidative transformations utilizing molecular oxygen (O2 ) as the stoichiometric oxidant are of paramount importance in organic synthesis from ecological and economical perspectives. Alcohol oxidation reactions that employ O2 are scarce in homogeneous catalysis and the efficacy of such systems has been constrained by limited substrate scope (most involve secondary alcohol oxidation) or practical factors, such as the need for an excess of base or an additive. Catalytic systems employing O2 as the "primary" oxidant, in the absence of any additive, are rare. A solution to this longstanding issue is offered by the development of an efficient ruthenium-catalyzed oxidation protocol, which enables smooth oxidation of a wide variety of primary, as well as secondary benzylic, allylic, heterocyclic, and aliphatic, alcohols with molecular oxygen as the primary oxidant and without any base or hydrogen- or electron-transfer agents. Most importantly, a high degree of selectivity during alcohol oxidation has been predicted for complex settings. Preliminary mechanistic studies including (18) O labeling established the in situ formation of an oxo-ruthenium intermediate as the active catalytic species in the cycle and involvement of a two-electron hydride transfer in the rate-limiting step.
Collapse
Affiliation(s)
- Ritwika Ray
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| | - Shubhadeep Chandra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400 076, India.
| |
Collapse
|