1
|
Ali L, Alam A, Ali AM, Teoh WY, Altarawneh M. A comprehensive Review into Emission Sources, Formation Mechanisms, Ecological Effects, and Biotransformation Routes of Halogenated Polycyclic Aromatic Hydrocarbons (HPAHs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117196. [PMID: 39426109 DOI: 10.1016/j.ecoenv.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Halogenated polycyclic aromatic hydrocarbons (HPAHs, H = F, Cl, Br) are a new class of PAHs derivatives that mainly originate from the incomplete combustion of halogen-laden materials and via metallurgical operations. These compounds circulate extensively in various environmental matrices. This survey provides a comprehensive review on governing synthesis routes of HPAHs, their environmental occurrence, and their health and ecological effects. The review comprehensively enlists and presents emission sources of these emerging organic pollutants into the air that serves as their main reservoir. The formation of HPAHs ensues through successive addition reactions of related precursors accompanied by ring cyclization steps; in addition to direct unimolecular fragmentation of parents halogenated. Halogenation of parent PAHs rapidly occurs in saline ecosystems, thus multiplying the availability of these notorious compounds in the environment. Certain HPAHs appear to be more carcinogenic than dioxins. Transmission routes of HPAHs from their emission sources to water bodies, soil, aquatic life, plants, terrestrial animals, and humans are well-documented. Later, the direct and indirect diffusion of HPAHs from air to the biotic (plants, animals, humans) and abiotic components (soil, water, sediments) are described in detail. The study concludes that HPAHs are permeable to the carbon matrices resulting in the alleviation of the source-to-sink interface. As a potential future perspective, understanding the transmission interfaces lays a foundation to intervene in the introduction of these toxicants into the food chain.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Ayesha Alam
- United Arab Emirates University, Department of Integrative Agriculture, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Abdul Majeed Ali
- Medcare Hospital, Department of Pediatrics and Neonatology, King Faisal Street, Sharjah 15551, United Arab Emirates
| | - Wey Yang Teoh
- Department of Chemical Engineering, Sustainable Process Engineering Centre (SPEC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
2
|
Kempton RJ, Bradley S, Bozarth SA, Wheatcroft G, Onorato AJ, Hare PM. Through-space H-F coupling in a series of 4-substituted-1H-1,2,3-triazoles. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:718-722. [PMID: 38816347 DOI: 10.1002/mrc.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
In the 1H-NMR spectra of a series of N-1 substituted 4-substituted-1H-1,2,3-triazoles that have been prepared, the lone heterocyclic ring hydrogen (H-5) appears as a singlet in all cases except those compounds that contain a 2-fluorophenyl moiety at Position 4. In those cases, H-5 is a doublet with J ~3.7 Hz. Based on computational chemistry results and geometric considerations, we attribute this splitting to through-space H-F coupling.
Collapse
Affiliation(s)
- Robert J Kempton
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Saige Bradley
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Seth August Bozarth
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Gabriel Wheatcroft
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Amber J Onorato
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Patrick M Hare
- Department of Chemistry and Biochemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| |
Collapse
|
3
|
Abe A, Goushi K, Mamada M, Adachi C. Organic Binary and Ternary Cocrystal Engineering Based on Halogen Bonding Aimed at Room-Temperature Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211160. [PMID: 36920271 DOI: 10.1002/adma.202211160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Recently, there has been intense interest in pure organic room-temperature phosphorescence (ORTP) from cocrystals composed of 1,4-diiodotetrafluorobenzene (DITFB) and a variety of polycyclic aromatic hydrocarbons (PAHs) or their derivatives. To expand the possibility of halogen bonding-based cocrystals, the relationship between the crystal packing motifs and ORTP characteristics in binary cocrystals composed of DITFB and PAHs of phenanthrene (Phen), chrysene (Chry), and pyrene (Pyr), respectively, is investigated. The σ-hole···π and π-hole···π interactions determine not only the crystal packing motifs but also photoluminescence quantum yields (PLQYs). The Phen-DITFB and Chry-DITFB binary cocrystals with σ-hole···π interactions show higher PLQY compared with the Pyr-DITFB binary cocrystal with π-hole···π interaction. Further, to clarify the effect of crystal structures on PLQY, ternary cocrystals are prepared by partially doping Pyr into Phen-DITFB. The crystal packing motif of the ternary cocrystal originates from a Phen-DITFB cocrystal with σ-hole···π interaction, and some of the Phen sites are randomly replaced with Pyr molecules. The ORTP emission is derived from Pyr. The maximum PLQY is >20% due to suppressing nonradiative decay by changing the crystal packing motif.
Collapse
Affiliation(s)
- Ayano Abe
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Kenichi Goushi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
4
|
Zakharov AV, Timofeeva SM, Yadykov AV, Krayushkin MM, Shirinian VZ. Skeletal photoinduced rearrangement of diarylethenes: ethene bridge effects. Org Biomol Chem 2023; 21:2015-2023. [PMID: 36790344 DOI: 10.1039/d2ob02315f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A skeletal photorearrangement involving UV-induced 6π-electrocyclization of diarylethenes with various ethene bridges has been studied. It has been found that deprotonation is the predominant step among the three possible alternative reaction pathways (radical abstraction, deprotonation, or sigmatropic shift) following 6π-electrocyclization, and incorporation of an electronegative carbonyl group into the geminal position to the phenyl residue results in a reduction in the reaction time and an increase in the yield of the desired product. The significant increase in the reaction time in less polar solvents (toluene, TCM) also indicates a large contribution of the deprotonation step to the skeletal photorearrangement of diarylethenes. Performing the reaction in toluene in the presence of tertiary amines leads to a reduction in the reaction time and an increase in the yield of the desired product. The best results were achieved when the reaction was carried out in toluene in the presence of DIPEA. The experimental results are in good agreement with the DFT calculations.
Collapse
Affiliation(s)
- A V Zakharov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - S M Timofeeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - A V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - M M Krayushkin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
5
|
Rinu PXT, Radhika S, Anilkumar G. Recent Applications and Trends in the Julia‐Kocienski Olefination. ChemistrySelect 2022. [DOI: 10.1002/slct.202200760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
| |
Collapse
|
6
|
|
7
|
Tang Z, Li T, Cao Y, Zhang Y, He L, Zheng A, Lei M. Chrysene-Based Azahelicene π-Linker of D-π-D-Type Hole-Transporting Materials for Perovskite Solar Cells. CHEMSUSCHEM 2021; 14:4923-4928. [PMID: 34636480 DOI: 10.1002/cssc.202101551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chrysene is a readily available material for exploring new polycyclic aromatic hydrocarbons (PAHs). In this study, two chrysene based azahelicenes, nine-membered BA7 and ten-membered DA6, are constructed by intermolecular oxidative annulation of 6-aminochrysene and intramolecular annulation of N6 ,N12 -bis(1-chloronaphthalen-2-yl)chrysene-6,12-diamine, respectively. The hexylated BA7 and DA6 and their brominated products were undoubtedly characterized by single crystal XRD. Subsequent amination with bis(9-methyl-9H-carbazol-3-yl)amine (BMCA) electron donor afforded D-π-D-type semiconductors BA7-BMCA and DA6-BMCA with beneficial properties to act as hole transport materials for perovskite solar cell. Compared with 19.4 % champion power conversion efficiency (PCE) of BA7-BMCA based device, a higher PCE of 20.2 % for DA6-BMCA counterpart may be attributed to its S-shaped double helicene-like linker with extended π-conjugated system.
Collapse
Affiliation(s)
- Zefeng Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyu Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yucai Cao
- State key laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, P. R. China
| | - Yuyan Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lifei He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Aibin Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ming Lei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
8
|
Tsurusaki A, Kamikawa K. Multiple Helicenes Featuring Synthetic Approaches and Molecular Structures. CHEM LETT 2021. [DOI: 10.1246/cl.210409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Yang RY, Xu B. Chemo-, regio- and stereoselective synthesis of monofluoroalkenes via a tandem fluorination-desulfonation sequence. Chem Commun (Camb) 2021; 57:7802-7805. [PMID: 34268540 DOI: 10.1039/d1cc03207k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A widely applicable approach for the synthesis of Z-monofluoroalkenes from readily available alkyl triflones and NFSI has been reported. The reaction proceeded under mild conditions, affording mono-fluorinated alkenes in good to excellent yields with excellent chemo- regio- and stereoselectivity. The mechanism may involve electrophilic fluorination of triflones followed by the highly stereoselective concerted bimolecular elimination (E2) of CF3SO2H.
Collapse
Affiliation(s)
- Ren-Yin Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China.
| |
Collapse
|
10
|
Matsuda C, Suzuki Y, Katagiri H, Murase T. Synthesis of Terminally Fluorinated [7]Helicenes and Their Application to Photochemical Domino Reactions. Chem Asian J 2021; 16:538-547. [PMID: 33471402 DOI: 10.1002/asia.202001295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Indexed: 11/09/2022]
Abstract
The intramolecular Diels-Alder reactions of helicenes deform their π-conjugated screw-shaped skeletons. In particular, terminally tetrafluorinated [7]helicene (F4 -[7]helicene) undergoes a photoinduced Diels-Alder reaction followed by a photoinduced double fluorine atom transfer. Herein, we thoroughly investigated this photochemical domino process by decreasing the level of fluorine substitution. F3 -[7]Helicenes bearing two fluorine atoms at the dienophile terminal underwent photoinduced Diels-Alder reactions, but the whole domino process became slow. F2 -[7]Helicene, which is difluorinated only at the dienophile terminal, was also photolabile. As a result, two fluorine atoms were sufficient for the photochemical domino reaction to occur. X-ray crystallographic analysis revealed that F2 -[7]helicene was less compressed than F4 -[7]helicene, indicating that terminal polyfluorination enhanced the intramolecular arene-fluoroarene stacking interactions and thus promoted the transformations.
Collapse
Affiliation(s)
- Chikako Matsuda
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Yuto Suzuki
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Takashi Murase
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| |
Collapse
|
11
|
Erdoğan M, Özkınalı S, Mert H. A novel fluorinated monomer: Synthesis, characterization and ATRP of 5,6,7,8-tetrafluoronaphthalen-1-yl acrylate. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Sarmah M, Sharma A, Gogoi P. Exploration of Kobayashi's aryne precursor: a potent reactive platform for the synthesis of polycyclic aromatic hydrocarbons. Org Biomol Chem 2021; 19:722-737. [PMID: 33432965 DOI: 10.1039/d0ob02063j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arynes due to their transient nature leads to remarkable and versatile applications in the synthetic world. Apparently, researchers have focused on the construction of simple to complex π-conjugated systems using arynes as the reactive platform. In this regard, Kobayashi's aryne precursor has shown a great extent of reactivity and afforded significant advancement in the synthesis of polycyclic aromatic systems with wide practical utility. This review emphasizes the extensive utilization of Kobayashi's aryne intermediates and their derivatives for the synthesis of different classes of polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Manashi Sarmah
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India.
| | - Abhilash Sharma
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
13
|
Arsenyan P, Petrenko A, Belyakov S. Selanyl and tellanyl electrophiles as a driving force in the construction of sophisticated polyaromatic hydrocarbons. NEW J CHEM 2021. [DOI: 10.1039/d1nj00401h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the first examples of N-polyaromatic compounds bearing up to 13 fused aromatic rings, including 23H-benzo[12,1]tetrapheno[8,9-b]benzo[12,1]tetrapheno[9,8-h]carbazole derivatives.
Collapse
|
14
|
Kancherla S, Jørgensen KB. Synthesis of Phenacene-Helicene Hybrids by Directed Remote Metalation. J Org Chem 2020; 85:11140-11153. [PMID: 32786610 PMCID: PMC7498163 DOI: 10.1021/acs.joc.0c01097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with six and seven rings were synthesized via directed metalation and cross-coupling of chrysenyl N,N-diethyl carboxamides with o-tolyl and methylnaphthalenyl derivatives. In the presence of competing ortho sites, the site selectivity in iodination of chrysenyl amides by directed ortho metalation (DoM) was influenced by the lithium base. The catalyst ligand bite angle was presumably important in the cross-coupling of sterically hindered bulky PAHs. Subsequent directed remote metalation of biaryls under standard conditions and at elevated temperatures afforded various fused six- and seven-ring PAHs, all in good yields and with fluorescent properties.
Collapse
Affiliation(s)
- Sindhu Kancherla
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Kåre B Jørgensen
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| |
Collapse
|
15
|
Caivano I, Tošner Z, Císařová I, Nečas D, Kotora M. A General Synthetic Approach and Photophysical Properties of Regioselectively Fluorinated [5]- and [6]-Helical Bispiroindenofluorenes. Chempluschem 2020; 85:2010-2016. [PMID: 32881370 DOI: 10.1002/cplu.202000434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Indexed: 11/11/2022]
Abstract
A first series of fluorinated [n]helical compounds (n=5 and 6) with the dihydroindenofluorene scaffold was prepared in 5 or 9 (octafluorinated dihydroindenofluorene) steps and their photophysical properties were determined. Rh-catalyzed intramolecular [2+2+2] cyclotrimerization of triyndiols, which were prepared in a modular fashion from simple starting material such as fluorinated haloarylcarbaldehydes, to the intermediate [n]helical dihydroindeno[2,1-c]fluorene-5,8-diols was the crucial synthetic step and proceeded with high efficacy. Their further transformation gave the desired selectively fluorinated bispirodihydroindeno[2,1-c]fluorenes. Their absorption and emission spectra were recorded. The fluorescence quantum yields were up to 92 % and the emission maxima were red-shifted in comparison with their non-fluorinated counterparts (386-413 nm).
Collapse
Affiliation(s)
- Ilaria Caivano
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Praha 2, Czech Republic
| | - Zdeněk Tošner
- NMR Laboratory, Faculty of Science, Charles University, Hlavova 8, 128 43, Praha 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Praha 2, Czech Republic
| | - David Nečas
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Praha 2, Czech Republic
| | - Martin Kotora
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Praha 2, Czech Republic
| |
Collapse
|
16
|
Suzuki R, Uziie Y, Fujiwara W, Katagiri H, Murase T. Columnar Stacking of Partially Fluorinated [4]Helicenes: C-H⋅⋅⋅F Interactions Change the Stacking Orientation. Chem Asian J 2020; 15:1330-1338. [PMID: 32083804 DOI: 10.1002/asia.202000037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Indexed: 01/28/2023]
Abstract
The partial fluorination of polycyclic aromatic hydrocarbons often produces a layered crystal packing, where fluorinated aromatic surfaces are stacked over nonfluorinated aromatic surfaces. Herein, we report the synthesis and crystal packing of partially fluorinated [4]helicenes with steric congestion resulting from H and F atoms in the fjord region. F6 -[4]Helicene forms head-to-tail columnar stacks consisting of an alternate arrangement of perfluorinated and nonfluorinated naphthalene moieties. With decreasing fluorine content, aromatic stacking switched from arene-fluoroarene (ArH -ArF ) hetero-stacking to ArH -ArH /ArF -ArF homo-stacking with the help of intermolecular C-H⋅⋅⋅F contacts in the fjord region. As a result, head-to-head columnar stacks appear. Therefore, the conventional ArH -ArF stacking motif is not always applicable to Fn -[4]helicenes with twisted π-surfaces.
Collapse
Affiliation(s)
- Risa Suzuki
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Yuto Uziie
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Wataru Fujiwara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Takashi Murase
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| |
Collapse
|
17
|
Zhang C, Li Z, Fang Y, Jiang S, Wang M, Zhang G. MnO2 mediated sequential oxidation/olefination of alkyl-substituted heteroarenes with alcohols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130968] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Durka K, Górski B, Błocki K, Urban M, Woźniak K, Barbasiewicz M, Luliński S. Experimental and Theoretical Insights into Molecular and Solid-State Properties of Isomeric Bis(salicylaldehydes). J Phys Chem A 2019; 123:8674-8689. [DOI: 10.1021/acs.jpca.9b07360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Bartosz Górski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Krzysztof Błocki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Mateusz Urban
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Michał Barbasiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
19
|
Mathew BP, Kuram MR. Emerging C H functionalization strategies for constructing fused polycyclic aromatic hydrocarbons and nanographenes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Církva V, Jakubík P, Strašák T, Hrbáč J, Sýkora J, Císařová I, Vacek J, Žádný J, Storch J. Preparation and Physicochemical Properties of [6]Helicenes Fluorinated at Terminal Rings. J Org Chem 2019; 84:1980-1993. [PMID: 30681334 DOI: 10.1021/acs.joc.8b02870] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first racemization-stable helicene derivatives fluorinated at terminal rings, 1,2,3,4-tetrafluoro[6]helicene (6) and 1,2,3,4,13,14,15,16-octafluoro[6]helicene (15), were synthesized via the Wittig reaction followed by oxidative photocyclization in an overall yield of 41% of 6 and 76% of 15. The changed electronic structure in fluorinated helicenes was reflected in a slight shift of UV-vis absorption, fluorescence excitation, and emission spectra maxima when compared to unsubstituted [6]helicene. Cyclic voltammetry revealed a moderate decrease in the HOMO-LUMO gap with increasing fluorination. The specific rotation of tetrafluoro[6]helicene 6 enantiomers was found to be approximately 25% lower than that of unsubstituted [6]helicene. The theoretical study of the racemization barrier suggested a reasonable shift toward higher energy with increasing fluorination. The increasing fluorination also significantly affected the intermolecular interactions in the crystal lattice. The observed CH···F interactions led to the formation of 1D-molecular chains in the crystal structures of both fluorinated helicenes.
Collapse
Affiliation(s)
| | | | | | - Jan Hrbáč
- Institute of Chemistry , Masaryk University , Kamenice 5 , 625 00 Brno , Czech Republic
| | | | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science , Charles University in Prague , Hlavova 2030 , 128 40 Prague 2 , Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry , Palacký University , Hněvotínská 3 , 775 15 Olomouc , Czech Republic
| | | | | |
Collapse
|
21
|
Gotsu O, Shiota T, Fukumoto H, Kawasaki-Takasuka T, Yamazaki T, Yajima T, Agou T, Kubota T. Fluorine-Containing Dibenzoanthracene and Benzoperylene-Type Polycyclic Aromatic Hydrocarbons: Synthesis, Structure, and Basic Chemical Properties. Molecules 2018; 23:molecules23123337. [PMID: 30558365 PMCID: PMC6321064 DOI: 10.3390/molecules23123337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022] Open
Abstract
Intramolecular photocyclization of stilbene derivatives (Mallory reaction) is one of the efficient methods for building polycyclic aromatic hydrocarbon (PAH) frameworks, and is also expected to be applicable to synthesis of fluorine-containing PAHs (F-PAHs). In this study, dibenzoanthracene-type (4a) and benzoperylene-type (4b) F-PAHs were synthesized using the Mallory reaction of the 1,4-distyrylbenzene-type π-conjugated molecule (3a), which was prepared by addition-defluorination of available octafluorocyclopentene (OFCP) and aryllithium in three steps. The structure of 4a originating from π⁻π interaction was characterized by X-ray crystallographic analysis. The absorption maxima of UV-Vis spectra and emission maxima of photoluminescence spectra of the PAHs were positioned at a longer wavelength compared to those of the corresponding unsubstituted PAHs, presumably due to the electron-withdrawing nature of perfluorocyclopentene (PFCP) units. The effect of PFCP units in F-PAHs was also studied by time-dependent density functional theory (TD-DFT) calculation.
Collapse
Affiliation(s)
- Otohiro Gotsu
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.
| | - Tomomi Shiota
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.
| | - Hiroki Fukumoto
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.
| | - Tomoko Kawasaki-Takasuka
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.
| | - Takashi Yamazaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.
| | - Tomoko Yajima
- Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| | - Tomohiro Agou
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.
| | - Toshio Kubota
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.
| |
Collapse
|
22
|
Fuchibe K, Fujita T, Ichikawa J. Pinpoint-Fluorinated Polycyclic Aromatic Hydrocarbons (F-PAHs): Their Synthesis via Electrophilic Activation of Fluoroalkenes and Properties. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
23
|
|
24
|
Wei W, Khangarot RK, Stahl L, Veresmortean C, Pradhan P, Yang L, Zajc B. Generating Stereodiversity: Diastereoselective Fluorination and Highly Diastereoselective Epimerization of α-Amino Acid Building Blocks. Org Lett 2018; 20:3574-3578. [PMID: 29856640 PMCID: PMC8117975 DOI: 10.1021/acs.orglett.8b01358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diastereoselective fluorination of N-Boc ( R)- and ( S)-2,2-dimethyl-4-((arylsulfonyl)methyl)oxazolidines and a previously unknown diastereoselective epimerization at the fluorine-bearing carbon atom α to the sulfone was realized. Diastereoselectivities of both reactions were excellent for benzothiazolyl sulfones, allowing access to two enantiomerically pure diastereomers from one chiral precursor. To demonstrate synthetic utility, the benzothiazolyl sulfones were converted to diastereomerically pure ( S, S)- and ( R, S)-benzyl sulfones via sulfinate salts and to amino acids. To understand the diastereoselectivities, DFT analysis was performed.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
| | - Rama Kanwar Khangarot
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Lothar Stahl
- Department of Chemistry, University of North Dakota, Abbott Hall Room 425, 151 Cornell St Stop 9024, Grand Forks, ND 58202-9024, USA
| | - Cristina Veresmortean
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Padmanava Pradhan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Lijia Yang
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Barbara Zajc
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
| |
Collapse
|
25
|
Fuchibe K, Shigeno K, Zhao N, Aihara H, Akisaka R, Morikawa T, Fujita T, Yamakawa K, Shimada T, Ichikawa J. Pinpoint-fluorinated polycyclic aromatic hydrocarbons (F-PAHs): Syntheses of difluorinated subfamily and their properties. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Fuchibe K, Imaoka H, Ichikawa J. Synthesis of Pinpoint-Fluorinated Polycyclic Aromatic Hydrocarbons: Benzene Ring Extension Cycle Involving Microwave-Assisted SNAr Reaction. Chem Asian J 2017; 12:2359-2363. [DOI: 10.1002/asia.201700870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Kohei Fuchibe
- Division of Chemistry, Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8571 Japan
| | - Hisanori Imaoka
- Division of Chemistry, Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8571 Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|