1
|
Wang X, Luo H, Yang B, Li M, Ma YJ, Wang XC, Quan ZJ. Synthesis of 1,2,4-diazaphospholes via base-promoted cyclization reaction of hydrazonoyl chlorides and [Bu 4N][P(SiCl 3) 2]. Org Biomol Chem 2024; 22:7138-7142. [PMID: 39161268 DOI: 10.1039/d4ob01260g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Aromatic 1,2,4-diazaphospholes featuring distinct hybrid-mode nitrogen atoms (N(λ3σ2), N(λ3σ3)) and low-valent phosphorus atoms (λ3σ2) exhibited the characteristic of serving as unique hybrid ligands. This study presented a one-pot reaction involving the base-promoted stepwise cyclization of hydrazonoyl chlorides and [Bu4N][P(SiCl3)2] to yield 1,2,4-diazaphospholes, providing an effective method for synthesizing such compounds.
Collapse
Affiliation(s)
- Xin Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Luo
- NO.1 Middle School of Tongwei, Dingxi 743300, China
| | - Bo Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ming Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yong-Jun Ma
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
2
|
Ghosh A, Van Nguyen TH, Bellanger C, Chelli S, Ahmad M, Saffon-Merceron N, Taillier C, Dalla V, Mayer RJ, Dixon IM, Lakhdar S. Unraveling C-Selective Ring-Opening of Phosphiranes with Carboxylic Acids and Other Nucleophiles: A Mechanistically-Driven Approach. Angew Chem Int Ed Engl 2024:e202414172. [PMID: 39140616 DOI: 10.1002/anie.202414172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Phosphiranes are weak Lewis bases reacting with only a limited number of electrophiles to produce the corresponding phosphiranium ions. These salts are recognized for their propensity to undergo reactions with oxygen pronucleophiles at the phosphorus site, leading to the formation of phosphine oxide adducts. Building on a thorough mechanistic understanding, we have developed an unprecedented approach that enables the selective reaction of carboxylic acids, and other nucleophiles, at the carbon site of phosphiranes. This method involves the photochemical generation of highly reactive carbenes, which react with 1-mesitylphosphirane to yield ylides. The latter undergoes a stepwise reaction with carboxylic acids, resulting in the production of the desired phosphines. In addition to DFT calculations, we have successfully isolated and fully characterized the key intermediates involved in the reaction.
Collapse
Affiliation(s)
- Avisek Ghosh
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Thi Hong Van Nguyen
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Corentin Bellanger
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Saloua Chelli
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| | - Mohammad Ahmad
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Nathalie Saffon-Merceron
- Service Diffraction des Rayons X, Institut de Chimie de Toulouse, ICT- UAR 2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062, Toulouse cedex 9, France
| | - Catherine Taillier
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Vincent Dalla
- Normandie Univ., URCOM, UNIHAVRE, FR 3032, EA 322125 rue Philippe Lebon, BP 540, 76058, Le Havre, France
| | - Robert J Mayer
- School of Natural Sciences, Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier, F-31062, Toulouse, France
| | - Sami Lakhdar
- CNRS/Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France
| |
Collapse
|
3
|
Sun M, Zeng CY, Bu LL, Xu M, Chen K, Liu JL, Zhang T, Dai JY, Hong JX, Ding MW. Novel Metal-Free Synthesis of 3-Substituted Isocoumarins and Evaluation of Their Fluorescence Properties for Potential Applications. Molecules 2024; 29:2449. [PMID: 38893325 PMCID: PMC11173990 DOI: 10.3390/molecules29112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
A novel metal-free synthesis of 3-substituted isocoumarins through a sequential O-acylation/Wittig reaction has been established. The readily accessible (2-carboxybenzyl)-triphenylphosphonium bromide and diverse chlorides produced various 1H-isochromen-1-one in the presence of triethylamine, employing sequential O-acylation and an intramolecular Wittig reaction of acid anhydride. Reactions using these facile conditions have exhibited high functional group tolerance and excellent yields (up to 90%). Moreover, the fluorescence properties of isocoumarin derivatives were evaluated at the theoretical and experimental levels to determine their potential application in fluorescent materials. These derivatives have good photoluminescence in THF with a large Stokes shift and an absolute fluorescence quantum yield of up to 14%.
Collapse
Affiliation(s)
- Mei Sun
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (M.S.); (C.-Y.Z.); (L.-L.B.); (M.X.); (K.C.); (J.-L.L.); (T.Z.); (J.-Y.D.)
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, China
| | - Chong-Yang Zeng
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (M.S.); (C.-Y.Z.); (L.-L.B.); (M.X.); (K.C.); (J.-L.L.); (T.Z.); (J.-Y.D.)
| | - Lu-Lu Bu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (M.S.); (C.-Y.Z.); (L.-L.B.); (M.X.); (K.C.); (J.-L.L.); (T.Z.); (J.-Y.D.)
| | - Mai Xu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (M.S.); (C.-Y.Z.); (L.-L.B.); (M.X.); (K.C.); (J.-L.L.); (T.Z.); (J.-Y.D.)
| | - Kai Chen
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (M.S.); (C.-Y.Z.); (L.-L.B.); (M.X.); (K.C.); (J.-L.L.); (T.Z.); (J.-Y.D.)
| | - Jia-Lin Liu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (M.S.); (C.-Y.Z.); (L.-L.B.); (M.X.); (K.C.); (J.-L.L.); (T.Z.); (J.-Y.D.)
| | - Tao Zhang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (M.S.); (C.-Y.Z.); (L.-L.B.); (M.X.); (K.C.); (J.-L.L.); (T.Z.); (J.-Y.D.)
| | - Jia-You Dai
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (M.S.); (C.-Y.Z.); (L.-L.B.); (M.X.); (K.C.); (J.-L.L.); (T.Z.); (J.-Y.D.)
| | - Jia-Xin Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ming-Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
4
|
Qian J, Zhou L, Peng R, Tong X. (3+2) Annulation of 4-Acetoxy Allenoate with Aldimine Enabled by AgF-Assisted P(III)/P(V) Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315188. [PMID: 37985927 DOI: 10.1002/anie.202315188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A phosphine-catalyzed (3+2) annulation of 4-acetoxy allenoate and aldimine with the assistance of AgF is described. The success of this reaction hinges on the metathesis between the enolate-phosphonium zwitterion and AgF, leading to a key intermediate comprising of silver enolate and a fluorophosphorane P(V)-moiety. The former is able to undergo a Mannich reaction with aldimine, whereas the latter initiates a cascade sequence of AcO-elimination/aza-addition, thus furnishing the P(III)/P(V) catalysis. By taking advantage of the silver enolate, a preliminary attempt at an asymmetric variant was conducted with the combination of an achiral phosphine catalyst and a chiral bis(oxazolinyl)pyridine ligand (PyBox), giving moderate enantioselectivity.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Rouxuan Peng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
5
|
Losa R, Lorton C, Retailleau P, Bignon J, Voituriez A. Fluorinated 2-Azetines: Synthesis, Applications, Biological Tests, and Development of a Catalytic Process. Org Lett 2023; 25:5140-5144. [PMID: 37390327 DOI: 10.1021/acs.orglett.3c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
An efficient and straightforward phosphine-promoted tandem aza-Michael addition/intramolecular Wittig reaction was developed for the synthesis of polyfunctionalized 2-azetines. After demonstrating that this transformation could be made catalytic in phosphine through in situ reduction of phosphine oxide with phenylsilane, different post-transformation steps have been demonstrated, including an original [2 + 2] photodimerization. Preliminary biological tests highlighted that these fluorinated 1,2-dihydroazete-2,3-dicarboxylates exhibited significant cytotoxicity against the human tumor cell line.
Collapse
Affiliation(s)
- Romain Losa
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Charlotte Lorton
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Jérôme Bignon
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Nakano Y, Maddigan-Wyatt JT, Lupton DW. Enantioselective Catalysis by the Umpolung of Conjugate Acceptors Involving N-Heterocyclic Carbene or Organophosphine 1,4-Addition. Acc Chem Res 2023; 56:1190-1203. [PMID: 37093247 DOI: 10.1021/acs.accounts.3c00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
ConspectusConjugate acceptors are one of the most common electrophilic functional groups in organic synthesis. While useful in a diverse range of transformations, their applications are largely dominated by the reactions from which their name is derived (i.e., as an acceptor of nucleophiles in the conjugate position). In 2014, we commenced studies focused on their ability to undergo polarity inversion through the conjugate addition of Lewis base catalysts. The first step in this process provides an enolate, from which the well-developed Rauhut-Currier (RC) and Morita-Baylis-Hillman (MBH) reactions can occur; however, tautomerization to provide a species in which the β-carbon of the conjugate acceptor can now act as a donor is also possible. When we commenced studies on this topic, reaction designs with this type of species, particularly when accessed using N-heterocyclic carbenes (NHCs), had been reported on only a handful of occasions. Despite a lack of development, conceptually it was felt that reactions taking advantage of polarity switching by Lewis base conjugate addition have a number of desirable features. Perhaps the most significant is the potential to reimagine a ubiquitous functional group as an entirely new synthon, namely, a donor to electrophiles from the conjugate position.Our work has focused on catalysis with both simple conjugate acceptors and also those embedded within more complicated substrates; the latter has allowed a series of cycloisomerizations and annulation reactions to be achieved. In most cases, the reactions have been possible using enantioenriched chiral NHCs or organophosphines as the Lewis base catalysts thereby delivering enantioselective approaches to novel cyclic molecules. While related chemistry can be accessed with either family of catalyst, in all cases reactions have been designed to take advantage of one or the other. In addition, a fine balance exists between reactions that exploit the initially formed enolate and those that involve the polarity-inverted β-anion. In our studies, this balance is addressed through substrate design, although catalyst control may also be possible. We consider the chemistry discussed in this Account to be in its infancy. Significant challenges remain to be addressed before our broad aim of discovering a universal approach to the polarity inversion of all conjugate acceptors can be achieved. These challenges broadly relate to chemoselectivity with substrates bearing multiple electrophilic functionalities, reliance upon the use of conjugate acceptors, and catalyst efficiency. To address these challenges, advances in catalyst design and catalyst cooperativity are likely required.
Collapse
Affiliation(s)
- Yuji Nakano
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | | | - David W Lupton
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
7
|
Xue J, Zhang YS, Huan Z, Yang JD, Cheng JP. Catalytic Vilsmeier-Haack Reactions for C1-Deuterated Formylation of Indoles. J Org Chem 2022; 87:15539-15546. [PMID: 36348629 DOI: 10.1021/acs.joc.2c02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Vilsmeier-Haack reaction is a powerful tool to introduce formyl groups into electron-rich arenes, but its wide application is significantly restricted by stoichiometric employment of caustic POCl3. Herein, we reported a catalytic version of the Vilsmeier-Haack reaction enabled by a P(III)/P(V)═O cycle. This catalytic reaction provides a facile and efficient route for the direct construction of C1-deuterated indol-3-carboxaldehyde under mild conditions with stoichiometric DMF-d7 as the deuterium source. The products feature a remarkably higher deuteration level (>99%) than previously reported ones and are not contaminated by the likely unselective deuteration at other sites. The present transformation can also be used to transfer other carbonyl groups. Further downstream derivatizations of these deuterated products manifested their potential applications in the synthesis of deuterated bioactive molecules. Mechanistic insight was disclosed from studies of kinetics and intermediates.
Collapse
Affiliation(s)
- Jing Xue
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhen Huan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Keyan West Road, Tianjin 300192, China
| |
Collapse
|
8
|
Wang L, Li M, Ning Z, Zhang X, Fu Y, Du Z. Copper- and Visible-Light-Catalyzed Cascade Radical Cyclization of N-Propargylindoles with Cyclic Ethers. J Org Chem 2022; 88:6374-6381. [PMID: 36269585 DOI: 10.1021/acs.joc.2c01713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient visible-light-assisted, copper-catalyzed tandem radical cyclization of N-propargylindoles with cyclic ethers is established. A series of 2-oxoalkyl-9H-pyrrolo[1,2-a]indol-9-ones with potential biological activities were synthesized in moderate yields by using a dual catalytic system with copper acetate as a transition metal catalyst and eosin Y as a visible light catalyst. The investigation of reaction mechanism shows that it goes through a cascade oxoalkyl radical addition, cyclization, and oxidation process.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Mengting Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhitao Ning
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xi Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
9
|
Pei M, Tian A, Yang Q, Huang N, Wang L, Li D. Organophosphorus catalytic reaction based on reduction of phosphine oxide. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Zheng Y, Wang ZW, Cheng WS, Xie ZZ, He XC, Chen YS, Chen K, Xiang HY, Chen XQ, Yang H. Phosphine-Mediated Morita-Baylis-Hillman-Type/Wittig Cascade: Access to E-Configured 3-Styryl- and 3-(Benzopyrrole/furan-2-yl) Quinolinones. J Org Chem 2022; 87:974-984. [PMID: 34985275 DOI: 10.1021/acs.joc.1c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A phosphine-mediated, well-designed Morita-Baylis-Hillman-type/Wittig cascade for the rapid assembly of a quinolinone framework from benzaldehyde derivatives is developed for the first time. By rationally combining I2/NIS-mediated cyclization, biologically relevant 3-(benzopyrrole/furan-2-yl) quinolinones were facilely synthesized in a one-pot process by starting from 3-styryl-quinolinones bearing an o-hydroxy/amino group, significantly expanding the chemical space of this privileged skeleton. Further utility of this protocol is illustrated by successfully performing this transformation in a catalytic manner through in situ reduction of phosphine oxide by phenylsilane.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Wei Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Wen-Shuo Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Shan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
11
|
Zhang J, Wu M, Ju H, Yang H, Qian B, Ding K, Wu J, Xie M. K2S2O8-mediated acylarylation of unactivated alkenes via acyl radical addition/C–H annulation cascade of N-allyl-indoles with silver cocatalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01069g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A silver-catalyzed, K2S2O8-mediated protocol to access the regioselective acylarylation of unactivated alkenes was reported.
Collapse
Affiliation(s)
- Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Manyi Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hu Ju
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Haitao Yang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Baiyang Qian
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Ke Ding
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jiaping Wu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
12
|
Lorton C, Roblin A, Retailleau P, Voituriez A. Synthesis of Functionalized Cyclobutenes and Spirocycles
via
Asymmetric P(III)/P(V) Redox Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Charlotte Lorton
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Antoine Roblin
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Pascal Retailleau
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Arnaud Voituriez
- Université Paris-Saclay CNRS Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
13
|
Shelke YG, Hande PE, Gharpure SJ. Recent advances in the synthesis of pyrrolo[1,2- a]indoles and their derivatives. Org Biomol Chem 2021; 19:7544-7574. [PMID: 34524330 DOI: 10.1039/d1ob01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pyrrolo[1,2-a]indole unit is a privileged heterocycle found in numerous natural products and has been shown to exhibit diverse pharmacological properties. Thus, recent years have witnessed immense interest from the synthesis community on the synthesis of this scaffold. In light of the ever-increasing demand for pyrrolo[1,2-a]indoles in drug discovery, this review provides an overview of recent synthesis methods for the preparation of pyrrolo[1,2-a]indoles and their derivatives. The mechanistic pathway and stereo-electronic factors affecting the yield and selectivity of the product are briefly explained. Furthermore, we have attempted to demonstrate the utility of the developed methods in the synthesis of bioactive molecules and natural products, wherever offered.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
14
|
Phosphine‐Catalyzed Synthesis of Chiral
N
‐Heterocycles through (Asymmetric) P(III)/P(V) Redox Cycling. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Das A, Thakur S, Das T. Indole‐2‐Carboxaldehyde: An Emerging Precursor for the Construction of Diversified Imperative Skeleton. ChemistrySelect 2021. [DOI: 10.1002/slct.202100695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arunima Das
- Department of Chemistry, NIT Jamshedpur Jamshedpur 831014 India
| | - Seema Thakur
- Department of Chemistry, NIT Jamshedpur Jamshedpur 831014 India
| | - Tapas Das
- Department of Chemistry, NIT Jamshedpur Jamshedpur 831014 India
| |
Collapse
|
16
|
Singh G, Satija P, Singh A, Pawan, Mohit, Kaur JD, Devi A, Saini A, Singh J. Bis-triazole with indole pendant Organosilicon framework: Probe for recognition of Pb2+ ions. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
|
18
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
|
20
|
Huang Y, Liao J, Wang W, Liu H, Guo H. Synthesis of heterocyclic compounds through nucleophilic phosphine catalysis. Chem Commun (Camb) 2020; 56:15235-15281. [PMID: 33320123 DOI: 10.1039/d0cc05699e] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nucleophilic phosphine catalysis is a practical and powerful tool for the synthesis of various heterocyclic compounds with the advantages of environmentally friendly, metal-free, and mild reaction conditions. The present report summarizes the construction of four to eight-membered heterocyclic compounds containing nitrogen, oxygen and sulphur atoms through phosphine-catalyzed intramolecular annulations and intermolecular [2+2], [3+2], [4+1], [3+1+1], [5+1], [4+2], [2+2+2], [3+3], [4+3] and [3+2+3] annulations of electron-deficient alkenes, allenes, alkynes and Morita-Baylis-Hillman carbonates.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
21
|
Hu W, Li EQ, Duan Z, Mathey F. Concise Synthesis of Phospholene and Its P-Stereogenic Derivatives. J Org Chem 2020; 85:14772-14778. [PMID: 32375482 DOI: 10.1021/acs.joc.0c00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple method to build phospholene derivatives has been achieved in a one-pot reaction with readily available o-alkynylaryl bromides and alkylphosphine oxides. This method is also applicable to synthesize P-stereogenic phospholenes, and the resulting chiral phosphine was utilized as a ligand for coordination chemistry.
Collapse
Affiliation(s)
- Wei Hu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - François Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
22
|
Li G, Qin Z, Radosevich AT. P(III)/P(V)-Catalyzed Methylamination of Arylboronic Acids and Esters: Reductive C-N Coupling with Nitromethane as a Methylamine Surrogate. J Am Chem Soc 2020; 142:16205-16210. [PMID: 32886500 DOI: 10.1021/jacs.0c08035] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The direct reductive N-arylation of nitromethane by organophosphorus-catalyzed reductive C-N coupling with arylboronic acid derivatives is reported. This method operates by the action of a small ring organophosphorus-based catalyst (1,2,2,3,4,4-hexamethylphosphetane P-oxide) together with a mild terminal reductant hydrosilane to drive the selective installation of the methylamino group to (hetero)aromatic boronic acids and esters. This method also provides for a unified synthetic approach to isotopically labeled N-methylanilines from various stable isotopologues of nitromethane (i.e., CD3NO2, CH315NO2, and 13CH3NO2), revealing this easy-to-handle compound as a versatile precursor for the direct installation of the methylamino group.
Collapse
Affiliation(s)
- Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ziyang Qin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Geeson M, Cummins CC. Let's Make White Phosphorus Obsolete. ACS CENTRAL SCIENCE 2020; 6:848-860. [PMID: 32607432 PMCID: PMC7318074 DOI: 10.1021/acscentsci.0c00332] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 05/20/2023]
Abstract
Industrial and laboratory methods for incorporating phosphorus atoms into molecules within the framework of Green Chemistry are in their infancy. Current practice requires large inputs of energy, involves toxic intermediates, and generates substantial waste. Furthermore, a negligible fraction of phosphorus-containing waste is recycled which in turn contributes to negative environmental impacts, such as eutrophication. Methods that begin to address some of these drawbacks are reviewed, and some key opportunities to be realized by pursuing organophosphorus chemistry under the principles of Green Chemistry are highlighted. Methods used by nature, or in the chemistry of other elements such as silicon, are discussed as model processes for the future of phosphorus in chemical synthesis.
Collapse
|
24
|
Li G, Nykaza TV, Cooper JC, Ramirez A, Luzung MR, Radosevich AT. An Improved P III/P V═O-Catalyzed Reductive C-N Coupling of Nitroaromatics and Boronic Acids by Mechanistic Differentiation of Rate- and Product-Determining Steps. J Am Chem Soc 2020; 142:6786-6799. [PMID: 32178514 PMCID: PMC7146866 DOI: 10.1021/jacs.0c01666] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Experimental,
spectroscopic, and computational studies are reported
that provide an evidence-based mechanistic description of an intermolecular
reductive C–N coupling of nitroarenes and arylboronic acids
catalyzed by a redox-active main-group catalyst (1,2,2,3,4,4-hexamethylphosphetane P-oxide, i.e., 1·[O]). The central observations
include the following: (1) catalytic reduction of 1·[O]
to PIII phosphetane 1 is kinetically fast
under conditions of catalysis; (2) phosphetane 1 represents
the catalytic resting state as observed by 31P NMR spectroscopy;
(3) there are no long-lived nitroarene partial-reduction intermediates
observable by 15N NMR spectroscopy; (4) the reaction is
sensitive to solvent dielectric, performing best in moderately polar
solvents (viz. cyclopentylmethyl ether); and (5) the reaction is largely
insensitive with respect to common hydrosilane reductants. On the
basis of the foregoing studies, new modified catalytic conditions
are described that expand the reaction scope and provide for mild
temperatures (T ≥ 60 °C), low catalyst
loadings (≥2 mol%), and innocuous terminal reductants (polymethylhydrosiloxane).
DFT calculations define a two-stage deoxygenation sequence for the
reductive C–N coupling. The initial deoxygenation involves
a rate-determining step that consists of a (3+1) cheletropic addition
between the nitroarene substrate and phosphetane 1; energy
decomposition techniques highlight the biphilic character of the phosphetane
in this step. Although kinetically invisible, the second deoxygenation
stage is implicated as the critical C–N product-forming event,
in which a postulated oxazaphosphirane intermediate is diverted from
arylnitrene dissociation toward heterolytic ring opening with the
arylboronic acid; the resulting dipolar intermediate evolves by antiperiplanar
1,2-migration of the organoboron residue to nitrogen, resulting in
displacement of 1·[O] and formation of the target
C–N coupling product upon in situ hydrolysis.
The method thus described constitutes a mechanistically well-defined
and operationally robust main-group complement to the current workhorse
transition-metal-based methods for catalytic intermolecular C–N
coupling.
Collapse
Affiliation(s)
- Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Trevor V Nykaza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Julian C Cooper
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Antonio Ramirez
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael R Luzung
- Chemical and Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Nykaza TV, Li G, Yang J, Luzung MR, Radosevich AT. P
III
/P
V
=O Catalyzed Cascade Synthesis of N‐Functionalized Azaheterocycles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Trevor V. Nykaza
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Gen Li
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Junyu Yang
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | | | - Alexander T. Radosevich
- Department of ChemistryMassachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
26
|
Nykaza TV, Li G, Yang J, Luzung MR, Radosevich AT. P III /P V =O Catalyzed Cascade Synthesis of N-Functionalized Azaheterocycles. Angew Chem Int Ed Engl 2020; 59:4505-4510. [PMID: 31869510 DOI: 10.1002/anie.201914851] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Indexed: 12/19/2022]
Abstract
An organocatalytic method for the modular synthesis of diverse N-aryl and N-alkyl azaheterocycles (indoles, oxindoles, benzimidazoles, and quinoxalinediones) is reported. The method employs a small-ring organophosphorus-based catalyst (1,2,2,3,4,4-hexamethylphosphetane P-oxide) and a hydrosilane reductant to drive the conversion of ortho-functionalized nitroarenes into azaheterocycles through sequential intermolecular reductive C-N cross coupling with boronic acids, followed by intramolecular cyclization. This method enables the rapid construction of azaheterocycles from readily available building blocks, including a regiospecific approach to N-substituted benzimidazoles and quinoxalinediones.
Collapse
Affiliation(s)
- Trevor V Nykaza
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Junyu Yang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Michael R Luzung
- Kallyope Inc., 430 E. 29th St., Suite 1050, New York, NY, 10016, USA
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
27
|
Reddy CR, Kajare RC, Punna N. Silver-catalyzed acylative annulation of N-propargylated indoles with α-keto acids: access to acylated pyrrolo[1,2-a]indoles. Chem Commun (Camb) 2020; 56:3445-3448. [DOI: 10.1039/c9cc10069e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel carbon-centered radical cyclization of N-propargyl indoles with α-keto acids to form acylated pyrrolo[1,2-a]indoles involving difunctionalisation of the alkyne moiety with concomitant annulation is disclosed.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad–500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Roshan Chandrakant Kajare
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad–500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad–500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
28
|
Convergent Synthesis of Polysubstituted Furans via Catalytic Phosphine Mediated Multicomponent Reactions. Molecules 2019; 24:molecules24244595. [PMID: 31888142 PMCID: PMC6943692 DOI: 10.3390/molecules24244595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Tri- or tetrasubstituted furans have been prepared from terminal activated olefins and acyl chlorides or anhydrides by a multicomponental convergent synthesis mode. Instead of stoichiometric nBu3P, only catalytic nBu3P or nBu3P=O is needed to furnish the furans in modest to excellent yields with a good functional group tolerance under the aid of reducing agent silane. This synthetic method features a silane-driven catalytic intramolecular Wittig reaction as a key annulation step and represents the first successful application of catalytic Wittig reaction in multicomponent cascade reaction.
Collapse
|
29
|
Sun M, Zhao L, Ding MW. One-Pot–Three-Component Synthesis of 2-(1,2,3,4-Tetrahydroisoquinolin-1-yl)oxazoles via DEAD-Promoted Oxidative Ugi/Wittig Reaction. J Org Chem 2019; 84:14313-14319. [DOI: 10.1021/acs.joc.9b02016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Long Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| | - Ming-Wu Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
30
|
Li Y, Yu J, Bi Y, Yan G, Huang D. Tandem Reactions of Ynones:viaConjugate Addition of Nitrogen‐, Carbon‐, Oxygen‐, Boron‐, Silicon‐, Phosphorus‐, and Sulfur‐Containing Nucleophiles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900611] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Li
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Jian Yu
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Yicheng Bi
- Department of ChemistryQingdao University of Science & Technology Qingdao Shandong People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| |
Collapse
|
31
|
Manjal SK, Pathania S, Bhatia R, Kaur R, Kumar K, Rawal RK. Diversified Synthetic Strategies for Pyrroloindoles: An Overview. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sundeep Kaur Manjal
- Department of Pharmaceutical ChemistryIndo‐Soviet Friendship College of Pharmacy (ISFCP) Moga 142001 India
| | - Shelly Pathania
- Department of Pharmaceutical ChemistryIndo‐Soviet Friendship College of Pharmacy (ISFCP) Moga 142001 India
- Research Scholar, Department of Pharmaceutical Sciences and TechnologyMaharaja Ranjit Singh Punjab Technical University Bathinda Punjab 151001 India
| | - Rohit Bhatia
- Department of Pharmaceutical ChemistryIndo‐Soviet Friendship College of Pharmacy (ISFCP) Moga 142001 India
- Research Scholar, Department of Pharmaceutical Sciences and TechnologyMaharaja Ranjit Singh Punjab Technical University Bathinda Punjab 151001 India
| | - Ramandeep Kaur
- Department of Pharmaceutical ChemistryIndo‐Soviet Friendship College of Pharmacy (ISFCP) Moga 142001 India
| | - Kapil Kumar
- School of Pharmaceutical SciencesApeejay Satya University Sohna‐Palwal Road, Sohna Gurgaon Haryana 122103 India
| | - Ravindra K. Rawal
- Department of ChemistryMaharishi Markandeshwar (Deemed to be University) Mullana 133207 Ambala Haryana India
| |
Collapse
|
32
|
Lorton C, Voituriez A. Synthesis and Applications of 9H
-Pyrrolo[1,2-a
]indole and 9H
-Pyrrolo[1,2-a
]indol-9-one Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Charlotte Lorton
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
33
|
Lecomte M, Lipshultz JM, Kim-Lee SH, Li G, Radosevich AT. Driving Recursive Dehydration by P III/P V Catalysis: Annulation of Amines and Carboxylic Acids by Sequential C-N and C-C Bond Formation. J Am Chem Soc 2019; 141:12507-12512. [PMID: 31345031 PMCID: PMC6693942 DOI: 10.1021/jacs.9b06277] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A method
for the annulation of amines and carboxylic acids to form
pharmaceutically relevant azaheterocycles via organophosphorus PIII/PV redox catalysis is reported. The method employs
a phosphetane catalyst together with a mild bromenium oxidant and
terminal hydrosilane reductant to drive successive C–N and
C–C bond-forming dehydration events via the serial action of
a catalytic bromophosphonium intermediate. These results demonstrate
the capacity of PIII/PV redox catalysis to enable
iterative redox-neutral transformations in complement to the common
reductive driving force of the PIII/PV couple.
Collapse
Affiliation(s)
- Morgan Lecomte
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States
| | - Jeffrey M Lipshultz
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States
| | - Shin-Ho Kim-Lee
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States.,Departamento de Química Orgánica, Facultad de Ciencias , Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid , Spain
| | - Gen Li
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States
| | - Alexander T Radosevich
- Department of Chemistry , Massachusetts Institute of Technology , 02139 Cambridge , Massachusetts , United States
| |
Collapse
|
34
|
Gupta S, Khurana JM. Catalyst‐Free One‐Pot Regioselective Synthesis of Spiropyrrolizines Using 1,3‐Dipolar Cycloaddition Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shruti Gupta
- Department of ChemistryUniversity of Delhi New Delhi - 110007 India
| | | |
Collapse
|
35
|
Lorton C, Castanheiro T, Voituriez A. Catalytic and Asymmetric Process via PIII/PV═O Redox Cycling: Access to (Trifluoromethyl)cyclobutenes via a Michael Addition/Wittig Olefination Reaction. J Am Chem Soc 2019; 141:10142-10147. [DOI: 10.1021/jacs.9b02539] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Charlotte Lorton
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Thomas Castanheiro
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
36
|
New facile synthesis of furan-2(3H)-ones and 2,3,5-trisubstituted furans via intramolecular Wittig reaction of acid anhydride. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
White PB, Rijpkema SJ, Bunschoten RP, Mecinović J. Mechanistic Insight into the Catalytic Staudinger Ligation. Org Lett 2019; 21:1011-1014. [DOI: 10.1021/acs.orglett.8b04035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Paul B. White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sjoerd J. Rijpkema
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roderick P. Bunschoten
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
38
|
Ghosh A, Lecomte M, Kim-Lee SH, Radosevich AT. Organophosphorus-Catalyzed Deoxygenation of Sulfonyl Chlorides: Electrophilic (Fluoroalkyl)sulfenylation by P III /P V =O Redox Cycling. Angew Chem Int Ed Engl 2019; 58:2864-2869. [PMID: 30632657 DOI: 10.1002/anie.201813919] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 11/07/2022]
Abstract
A method for electrophilic sulfenylation by organophosphorus-catalyzed deoxygenative O-atom transfer from sulfonyl chlorides is reported. This C-S bond-forming reaction is catalyzed by a readily available small-ring phosphine (phosphetane) in conjunction with a hydrosilane terminal reductant to afford a general entry to sulfenyl electrophiles, including valuable trifluoromethyl, perfluoroalkyl, and heteroaryl derivatives that are otherwise difficult to access. Mechanistic investigations indicate that the twofold deoxygenation of the sulfonyl substrate proceeds by the intervention of an off-cycle resting state thiophosphonium ion. The catalytic method represents an operationally simple protocol using a stable phosphine oxide as a precatalyst and exhibits broad functional-group tolerance.
Collapse
Affiliation(s)
- Avipsa Ghosh
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Morgan Lecomte
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shin-Ho Kim-Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
39
|
Ghosh A, Lecomte M, Kim‐Lee S, Radosevich AT. Organophosphorus‐Catalyzed Deoxygenation of Sulfonyl Chlorides: Electrophilic (Fluoroalkyl)sulfenylation by P
III
/P
V
=O Redox Cycling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Avipsa Ghosh
- Department of ChemistryMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Morgan Lecomte
- Department of ChemistryMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Shin‐Ho Kim‐Lee
- Department of ChemistryMassachusetts Institute of Technology Cambridge MA 02139 USA
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid (UAM) Cantoblanco 28049 Madrid Spain
| | | |
Collapse
|
40
|
Wu F, Chen L, Wang Y, Zhu S. Gold-catalyzed generation of azafulvenium from an enyne sulfonamide: rapid access to fully substituted pyrroles. Org Chem Front 2019. [DOI: 10.1039/c8qo01278d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A one-pot gold-catalyzed protocol for the synthesis of fully substituted pyrroles from enyne sulfonamides has been developed.
Collapse
Affiliation(s)
- Feng Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
| | - Lianfen Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
| | | | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province
- Guangdong Engineering Research Center for Green Fine Chemicals
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou
| |
Collapse
|
41
|
Xu K, Chen W, Lin J, Chen G, Wang B, Tian X. Facile synthesis of 9H-pyrrolo[1,2-a]indoles via Brønsted acid catalyzed cascade reactions. Chem Commun (Camb) 2019; 55:14613-14616. [PMID: 31742577 DOI: 10.1039/c9cc07228d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Brønsted acid system promotes the Friedel–Crafts alkenylation/1,6-addition/condensation cascade reaction of ynones with indoles to access 9H-pyrrolo[1,2-a]indoles.
Collapse
Affiliation(s)
- Kunhua Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Wenming Chen
- Department of Pharmaceutical Production Center
- The First Affiliated Hospital of Hunan University of Chinese Medicine
- Changsha
- P. R. China
| | - Jin Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Guifang Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Biao Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Xu Tian
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease
- School of Pharmaceutical Sciences & the Fifth Affiliated Hospital
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|
42
|
Grandane A, Longwitz L, Roolf C, Spannenberg A, Murua Escobar H, Junghanss C, Suna E, Werner T. Intramolecular Base-Free Catalytic Wittig Reaction: Synthesis of Benzoxepinones. J Org Chem 2018; 84:1320-1329. [DOI: 10.1021/acs.joc.8b02789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aiga Grandane
- Latvian Institute of Organic Synthesis
, Aizkraukles 21, LV-1006, Riga, Latvia
- Leibniz Institute for Catalysis at the University of Rostock
, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Lars Longwitz
- Leibniz Institute for Catalysis at the University of Rostock
, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Catrin Roolf
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock Ernst-Heydemann-Strasse 6
, 18057 Rostock, Germany
| | - Anke Spannenberg
- Leibniz Institute for Catalysis at the University of Rostock
, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hugo Murua Escobar
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock Ernst-Heydemann-Strasse 6
, 18057 Rostock, Germany
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock Ernst-Heydemann-Strasse 6
, 18057 Rostock, Germany
| | - Edgars Suna
- Latvian Institute of Organic Synthesis
, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Thomas Werner
- Leibniz Institute for Catalysis at the University of Rostock
, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
43
|
Nykaza TV, Cooper JC, Li G, Mahieu N, Ramirez A, Luzung MR, Radosevich AT. Intermolecular Reductive C-N Cross Coupling of Nitroarenes and Boronic Acids by P III/P V═O Catalysis. J Am Chem Soc 2018; 140:15200-15205. [PMID: 30372615 DOI: 10.1021/jacs.8b10769] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A main group-catalyzed method for the synthesis of aryl- and heteroarylamines by intermolecular C-N coupling is reported. The method employs a small-ring organophosphorus-based catalyst (1,2,2,3,4,4-hexamethylphosphetane) and a terminal hydrosilane reductant (phenylsilane) to drive reductive intermolecular coupling of nitro(hetero)arenes with boronic acids. Applications to the construction of both Csp2-N (from arylboronic acids) and Csp3-N bonds (from alkylboronic acids) are demonstrated; the reaction is stereospecific with respect to Csp3-N bond formation. The method constitutes a new route from readily available building blocks to valuable nitrogen-containing products with complementarity in both scope and chemoselectivity to existing catalytic C-N coupling methods.
Collapse
Affiliation(s)
- Trevor V Nykaza
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Julian C Cooper
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Gen Li
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nolwenn Mahieu
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Antonio Ramirez
- Chemical and Synthetic Development , Bristol-Myers Squibb Company , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Michael R Luzung
- Chemical and Synthetic Development , Bristol-Myers Squibb Company , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Alexander T Radosevich
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
44
|
Abstract
The hallmark of nucleophilic phosphine catalysis is the initial nucleophilic addition of a phosphine to an electrophilic starting material, producing a reactive zwitterionic intermediate, generally under mild conditions. In this Review, we classify nucleophilic phosphine catalysis reactions in terms of their electrophilic components. In the majority of cases, these electrophiles possess carbon-carbon multiple bonds: alkenes (section 2), allenes (section 3), alkynes (section 4), and Morita-Baylis-Hillman (MBH) alcohol derivatives (MBHADs; section 5). Within each of these sections, the reactions are compiled based on the nature of the second starting material-nucleophiles, dinucleophiles, electrophiles, and electrophile-nucleophiles. Nucleophilic phosphine catalysis reactions that occur via the initial addition to starting materials that do not possess carbon-carbon multiple bonds are collated in section 6. Although not catalytic in the phosphine, the formation of ylides through the nucleophilic addition of phosphines to carbon-carbon multiple bond-containing compounds is intimately related to the catalysis and is discussed in section 7. Finally, section 8 compiles miscellaneous topics, including annulations of the Hüisgen zwitterion, phosphine-mediated reductions, iminophosphorane organocatalysis, and catalytic variants of classical phosphine oxide-generating reactions.
Collapse
Affiliation(s)
- Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Chiao Fan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Zhanhu Sun
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yang Wu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
45
|
Han X, Saleh N, Retailleau P, Voituriez A. Phosphine-Catalyzed Reaction between 2-Aminobenzaldehydes and Dialkyl Acetylenedicarboxylates: Synthesis of 1,2-Dihydroquinoline Derivatives and Toward the Development of an Olefination Reaction. Org Lett 2018; 20:4584-4588. [DOI: 10.1021/acs.orglett.8b01870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xu Han
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Nidal Saleh
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
46
|
Schoene J, Bel Abed H, Schmieder P, Christmann M, Nazaré M. A General One-Pot Synthesis of 2H-Indazoles Using an Organophosphorus-Silane System. Chemistry 2018; 24:9090-9100. [PMID: 29644761 DOI: 10.1002/chem.201800763] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 11/11/2022]
Abstract
A simple and direct approach for the regioselective construction of the privileged 2H-indazole scaffold is described. The developed one-pot strategy involves phospholene-mediated N-N bond formation to access 2H-indazoles. The amount of organophosphorus reagent was minimized by recycling the phospholene oxide with organosilane reductants. Starting from functionalized 2-nitrobenzaldehydes and primary amines, a mild reductive cyclization, involving the use of commercially available phospholene oxide and silanes, delivered a wide variety of substituted 2H-indazoles in good to excellent yields.
Collapse
Affiliation(s)
- Jens Schoene
- Departments of Chemical Biology and Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Hassen Bel Abed
- Departments of Chemical Biology and Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Peter Schmieder
- Departments of Chemical Biology and Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Mathias Christmann
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustrasse. 3, 14195, Berlin, Germany
| | - Marc Nazaré
- Departments of Chemical Biology and Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Kapelle-Ufer 2, 10117, Berlin, Germany
| |
Collapse
|
47
|
Rocha DHA, Pinto DCGA, Silva AMS. Applications of the Wittig Reaction on the Synthesis of Natural and Natural-Analogue Heterocyclic Compounds. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800523] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Djenisa H. A. Rocha
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Diana C. G. A. Pinto
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA; University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
48
|
Lorton C, Voituriez A. Phosphine-Promoted Synthesis of 9H-Pyrrolo[1,2-a]indole Derivatives via an γ-Umpolung Addition/Intramolecular Wittig Reaction. J Org Chem 2018; 83:5801-5806. [DOI: 10.1021/acs.joc.8b00457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Charlotte Lorton
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
49
|
Zhang K, Cai L, Yang Z, Houk KN, Kwon O. Bridged [2.2.1] bicyclic phosphine oxide facilitates catalytic γ-umpolung addition-Wittig olefination. Chem Sci 2018; 9:1867-1872. [PMID: 29732112 PMCID: PMC5909331 DOI: 10.1039/c7sc04381c] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
A novel bridged [2.2.1] bicyclic phosphine oxide, devised to circumvent the waste generation and burdens of purification that are typical of reactions driven by the generation of phosphine oxides, has been prepared in three steps from commercially available cyclopent-3-ene-1-carboxylic acid. The performance of this novel phosphine oxide was superior to those of current best-in-class counterparts, as verified experimentally through kinetic analysis of its silane-mediated reduction. It has been applied successfully in halide-/base-free catalytic γ-umpolung addition-Wittig olefinations of allenoates and 2-amidobenzaldehydes to produce 1,2-dihydroquinolines with good efficiency. One of the 1,2-dihydroquinoline products was converted to known antitubercular furanoquinolines.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , USA .
| | - Lingchao Cai
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , USA .
| | - Zhongyue Yang
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , USA .
| | - K N Houk
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , USA .
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , USA .
| |
Collapse
|
50
|
Nykaza TV, Ramirez A, Harrison TS, Luzung MR, Radosevich AT. Biphilic Organophosphorus-Catalyzed Intramolecular C sp2-H Amination: Evidence for a Nitrenoid in Catalytic Cadogan Cyclizations. J Am Chem Soc 2018; 140:3103-3113. [PMID: 29389114 DOI: 10.1021/jacs.7b13803] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A small-ring phosphacycloalkane (1,2,2,3,4,4-hexamethylphosphetane, 3) catalyzes intramolecular C-N bond forming heterocyclization of o-nitrobiaryl and -styrenyl derivatives in the presence of a hydrosilane terminal reductant. The method provides scalable access to diverse carbazole and indole compounds under operationally trivial homogeneous organocatalytic conditions, as demonstrated by 17 examples conducted on 1 g scale. In situ NMR reaction monitoring studies support a mechanism involving catalytic PIII/PV═O cycling, where tricoordinate phosphorus compound 3 represents the catalytic resting state. For the catalytic conversion of o-nitrobiphenyl to carbazole, the kinetic reaction order was determined for phosphetane catalyst 3 (first order), substrate (first order), and phenylsilane (zeroth order). For differentially 5-substituted 2-nitrobiphenyls, the transformation is accelerated by electron-withdrawing substituents (Hammett factor ρ = +1.5), consistent with the accrual of negative charge on the nitro substrate in the rate-determining step. DFT modeling of the turnover-limiting deoxygenation event implicates a rate-determining (3 + 1) cheletropic addition between the phosphetane catalyst 3 and 2-nitrobiphenyl substrate to form an unobserved pentacoordinate spiro-bicyclic dioxazaphosphetane, which decomposes via (2 + 2) cycloreversion giving 1 equiv of phosphetane P-oxide 3·[O] and 2-nitrosobiphenyl. Experimental and computational investigations into the C-N bond forming event suggest the involvement of an oxazaphosphirane (2 + 1) adduct between 3 and 2-nitrosobiphenyl, which evolves through loss of phosphetane P-oxide 3·[O] to give the observed carbazole product via C-H insertion in a nitrene-like fashion.
Collapse
Affiliation(s)
- Trevor V Nykaza
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Antonio Ramirez
- Chemical and Synthetic Development, Bristol-Myers Squibb Company , One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tyler S Harrison
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael R Luzung
- Chemical and Synthetic Development, Bristol-Myers Squibb Company , One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|