1
|
Ariai J, Ziegler M, Würtele C, Gellrich U. An N-Heterocyclic Quinodimethane: A Strong Organic Lewis Base Exhibiting Diradical Reactivity. Angew Chem Int Ed Engl 2024; 63:e202316720. [PMID: 38088219 DOI: 10.1002/anie.202316720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
We report the preparation of a new organic σ-donor with a C6H4-linker between an N-heterocyclic carbene (NHC) and an exocyclic methylidene group, which we term N-heterocyclic quinodimethane (NHQ). The aromatization of the C6H4-linker provides a decisive driving force for the reaction of the NHQ with an electrophile and renders the NHQ significantly more basic than analogous NHCs or N-heterocyclic olefins (NHOs), as shown by DFT computations and competition experiments. In solution, the NHQ undergoes an unprecedented dehydrogenative head-to-head dimerization by C-C coupling of the methylidene groups. DFT computations indicate that this reaction proceeds via an open-shell singlet pathway revealing the diradical character of the NHQ. The product of this dimerization can be described as conjugated N-heterocyclic bis-quinodimethane, which according to cyclic voltammetry is a strong organic reducing agent (E1/2=-1.71 V vs. Fc/Fc+) and exhibits a remarkable small singlet-triplet gap of ΔES→T=4.4 kcal mol-1.
Collapse
Affiliation(s)
- Jama Ariai
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Maya Ziegler
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Christian Würtele
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Urs Gellrich
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| |
Collapse
|
2
|
Berg I, Schio L, Reitz J, Molteni E, Lahav L, Bolaños CG, Goldoni A, Grazioli C, Fratesi G, Hansmann MM, Floreano L, Gross E. Self-Assembled Monolayers of N-Heterocyclic Olefins on Au(111). Angew Chem Int Ed Engl 2023; 62:e202311832. [PMID: 37743324 DOI: 10.1002/anie.202311832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO-Au-adatom. This self-assembly pattern was correlated to strong NHO-Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Luca Schio
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Justus Reitz
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Elena Molteni
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Linoy Lahav
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | | | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A, Basovizza SS-14, Km 163.5, Trieste, 34149, Italy
| | - Cesare Grazioli
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Guido Fratesi
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Max M Hansmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Luca Floreano
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| |
Collapse
|
3
|
The tandem reaction of propargylamine/propargyl alcohol with CO2: Reaction mechanism, catalyst activity and product diversity. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Hu Y, Li Y, Zhang Z, Li J, Dong S, Zhang J, Li Wang. Insight into the cation-regulated mechanism for the hydration of propargyl alcohols catalyzed by [Bu4P+][Im-]. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Recent Advances in the Synthesis of Five-Membered Cyclic Carbonates and Carbamates from Allylic or Propargylic Substrates and CO2. Catalysts 2022. [DOI: 10.3390/catal12050547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic carbamates and carbonates are highly desirable compounds that have found a wide range of applications in drug design, medicinal chemistry, material science, and the polymer industry. The development of new catalytic carbonate and carbamate forming reactions, which employ carbon dioxide as a cheap, green, abundant, and easily available reagent, would thus represent an ideal substitution for existing methods. In this review, the advancements in the catalytic conversion of allylic and propargylic alcohols and amines to corresponding five-membered cyclic carbonates and carbamates are summarized. Both the metal- and the organocatalyzed methods are reviewed, as well as the proposed mechanisms and key intermediates of the illustrated carbonate and carbamate forming reactions.
Collapse
|
6
|
Lu YS, Chen W, Wen QL, Zhou H. Pyridinylidenaminophosphines as Versatile Organocatalysts for CO2 Transformations into Value‐Added Chemicals. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuan Shang Lu
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Wei Chen
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Qi Lang Wen
- Dalian University of Technology State Key Laboratory of Fine Chemicals CHINA
| | - Hui Zhou
- Dalian University of Technology State Key of Laboratory of Fine Chemicals Dalian 116024 116024 Dalian CHINA
| |
Collapse
|
7
|
En Route to CO2-Based (a)Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches. Catalysts 2022. [DOI: 10.3390/catal12020124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This review is dedicated to the state-of-the art routes used for the synthesis of CO2-based (a)cyclic carbonates and polycarbonates from alcohol substrates, with an emphasis on their respective main advantages and limitations. The first section reviews the synthesis of organic carbonates such as dialkyl carbonates or cyclic carbonates from the carbonation of alcohols. Many different synthetic strategies have been reported (dehydrative condensation, the alkylation route, the “leaving group” strategy, the carbodiimide route, the protected alcohols route, etc.) with various substrates (mono-alcohols, diols, allyl alcohols, halohydrins, propargylic alcohols, etc.). The second section reviews the formation of polycarbonates via the direct copolymerization of CO2 with diols, as well as the ring-opening polymerization route. Finally, polycondensation processes involving CO2-based dimethyl and diphenyl carbonates with aliphatic and aromatic diols are described.
Collapse
|
8
|
Pathak D, Deuri S, Phukan P. Nucleophilicity and CO2 fixation ability of phosphorus, nitrogen and sulfur ylides: insights on stereoelectronic factors from DFT study. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Liang Q, Hayashi K, Zeng Y, Jimenez-Santiago JL, Song D. Constructing fused N-heterocycles from unprotected mesoionic N-heterocyclic olefins and organic azides via diazo transfer. Chem Commun (Camb) 2021; 57:6137-6140. [PMID: 34042131 DOI: 10.1039/d1cc02245h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesoionic N-heterocyclic olefins (mNHOs) were first reported last year and their reactivity remains largely unexplored. Herein we report the reaction of unprotected mNHOs and organic azides as a novel synthetic route to a variety of pyrazolo[3,4-d][1,2,3]triazoles, an important structural motif in drug candidates and energetic materials. The only byproduct aniline can be easily recycled and converted back to the starting organic azide, in compliance with the green chemistry principle. The reaction mechanism has been explored through experimental and computational studies.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Yimin Zeng
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Jose L Jimenez-Santiago
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
10
|
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
11
|
Gulia N, Pigulski B, Szafert S. Base‐Promoted Double Amination of 1‐Haloalkynes: Direct Synthesis of Ene‐1,1‐diamines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nurbey Gulia
- Faculty of Chemistry University of Wrocław 14 F. Joliot‐Curie 50‐383 Wrocław Poland
| | - Bartłomiej Pigulski
- Faculty of Chemistry University of Wrocław 14 F. Joliot‐Curie 50‐383 Wrocław Poland
| | - Sławomir Szafert
- Faculty of Chemistry University of Wrocław 14 F. Joliot‐Curie 50‐383 Wrocław Poland
| |
Collapse
|
12
|
Delaude L. The Chemistry of Azolium‐Carboxylate Zwitterions and Related Compounds: a Survey of the Years 2009–2020. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lionel Delaude
- Laboratory of CatalysisMolSys Research UnitInstitut de Chimie Organique (B6a)Université de Liège Allée du six Août 13 4000 Liège Belgium
| |
Collapse
|
13
|
Li M, Abdolmohammadi S, Hoseininezhad-Namin MS, Behmagham F, Vessally E. Carboxylative cyclization of propargylic alcohols with carbon dioxide: A facile and Green route to α-methylene cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Hansmann MM, Antoni PW, Pesch H. Stable Mesoionic N-Heterocyclic Olefins (mNHOs). Angew Chem Int Ed Engl 2020; 59:5782-5787. [PMID: 31863704 PMCID: PMC7154647 DOI: 10.1002/anie.201914571] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Indexed: 01/07/2023]
Abstract
We report a new class of stable mesoionic N-heterocyclic olefins, featuring a highly polarized (strongly ylidic) double bond. The ground-state structure cannot be described through an uncharged mesomeric Lewis-structure, thereby structurally distinguishing them from traditional N-heterocyclic olefins (NHOs). mNHOs can easily be obtained through deprotonation of the corresponding methylated N,N'-diaryl-1,2,3-triazolium and N,N'-diaryl-imidazolium salts, respectively. In their reactivity, they represent strong σ-donor ligands as shown by their coordination complexes of rhodium and boron. Their calculated proton affinities, their experimentally derived basicities (competition experiments), as well as donor abilities (Tolman electronic parameter; TEP) exceed the so far reported class of NHOs.
Collapse
Affiliation(s)
- Max M. Hansmann
- Fakultät für Chemie und Chemische BiologieTechnische Universität DortmundOtto-Hahn-Str. 644227DortmundGermany
- Georg-August Universität GöttingenInstitut für Organische und Biomolekulare ChemieTammannstr. 237077GöttingenGermany
| | - Patrick W. Antoni
- Georg-August Universität GöttingenInstitut für Organische und Biomolekulare ChemieTammannstr. 237077GöttingenGermany
| | - Henner Pesch
- Georg-August Universität GöttingenInstitut für Organische und Biomolekulare ChemieTammannstr. 237077GöttingenGermany
| |
Collapse
|
15
|
Hansmann MM, Antoni PW, Pesch H. Stable Mesoionic N‐Heterocyclic Olefins (mNHOs). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Max M. Hansmann
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Germany
- Georg-August Universität Göttingen Institut für Organische und Biomolekulare Chemie Tammannstr. 2 37077 Göttingen Germany
| | - Patrick W. Antoni
- Georg-August Universität Göttingen Institut für Organische und Biomolekulare Chemie Tammannstr. 2 37077 Göttingen Germany
| | - Henner Pesch
- Georg-August Universität Göttingen Institut für Organische und Biomolekulare Chemie Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
16
|
Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Shemyakina OA, Volostnykh OG, Stepanov AV, Ushakov IA. Synthesis of α-Acyloxy-α′-hydroxy Ketones via Cyclic Carbonate Intermediates Generated from Tertiary Bromopropargylic Alcohols and Cs 2
CO 3. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olesya A. Shemyakina
- A. E. Favorsky Irkutsk Institute of Chemistry; Siberian Branch, Russian Academy of Sciences; 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Ol'ga G. Volostnykh
- A. E. Favorsky Irkutsk Institute of Chemistry; Siberian Branch, Russian Academy of Sciences; 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Anton V. Stepanov
- A. E. Favorsky Irkutsk Institute of Chemistry; Siberian Branch, Russian Academy of Sciences; 1 Favorsky Str. 664033 Irkutsk Russian Federation
| | - Igor' A. Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry; Siberian Branch, Russian Academy of Sciences; 1 Favorsky Str. 664033 Irkutsk Russian Federation
| |
Collapse
|
18
|
Naumann S. Synthesis, properties & applications of N-heterocyclic olefins in catalysis. Chem Commun (Camb) 2019; 55:11658-11670. [PMID: 31517349 DOI: 10.1039/c9cc06316a] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Heterocyclic olefins (NHOs), a recently (re-)discovered type of electron-rich, polar alkene, are comprehensively presented. Along with synthetic aspects and chemical properties, special emphasis is put on the multi-faceted impact NHOs already have had on catalysis. This is discussed along the lines of small molecule organocatalysis, organo- and metal-assisted polymerization and of the understanding and application of NHO-ligated organometallic complexes. Highlighted are the strong basicity of NHOs ("superbases"), their high nucleophilicity and the design principles to tailor NHO (organo-)catalysts. It is demonstrated that NHOs can complement, and in many cases out-perform, the much better established N-heterocyclic carbene-based systems. Examples include among others CO2-sequestration, the polymerization of lactones and epoxides or the transfer hydrogenation of carbonyls. Further, the unique ability to selectively address basic or nucleophilic reaction pathways via NHO-mediation is detailed, as is the bonding situation in NHO-metal complexes and the ability of the olefin to act as an electronically flexible ligand.
Collapse
Affiliation(s)
- Stefan Naumann
- University of Stuttgart, Institute of Polymer Chemistry, 70569 Stuttgart, Germany.
| |
Collapse
|
19
|
Schuldt R, Kästner J, Naumann S. Proton Affinities of N-Heterocyclic Olefins and Their Implications for Organocatalyst Design. J Org Chem 2019; 84:2209-2218. [DOI: 10.1021/acs.joc.8b03202] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robin Schuldt
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Johannes Kästner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Stefan Naumann
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
20
|
Zhou H, Zhang R, Zhang H, Mu S, Lu XB. Organocatalytic cycloaddition of carbonyl sulfide with propargylic alcohols to 1,3-oxathiolan-2-ones. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00062c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis base-COS adducts were firstly studied as organocatalysts for the cyclization of propargylic alcohols with carbonyl sulfide.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| | - Rui Zhang
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| | - Hui Zhang
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| | - Sen Mu
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemical
- Dalian University of Technology
- Dalian
- PR China
| |
Collapse
|
21
|
Zhou H, Zhang R, Lu XB. Isolable CO2
Adducts of Polarized Alkenes: High Thermal Stability and Catalytic Activity for CO2
Chemical Transformation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 People's Republic of China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 People's Republic of China
| |
Collapse
|
22
|
Liu AH, Dang YL, Zhou H, Zhang JJ, Lu XB. CO2
Adducts of Carbodicarbenes: Robust and Versatile Organocatalysts for Chemical Transformation of Carbon Dioxide into Heterocyclic Compounds. ChemCatChem 2018. [DOI: 10.1002/cctc.201800148] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- An-Hua Liu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| | - Ya-Li Dang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| | - Jin-Ju Zhang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 P.R. China
| |
Collapse
|
23
|
Scholten PBV, Demarteau J, Gennen S, De Winter J, Grignard B, Debuigne A, Meier MAR, Detrembleur C. Merging CO2-Based Building Blocks with Cobalt-Mediated Radical Polymerization for the Synthesis of Functional Poly(vinyl alcohol)s. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Philip B. V. Scholten
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Jérémy Demarteau
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Sandro Gennen
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOS), University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
| | - Bruno Grignard
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Antoine Debuigne
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| | - Michael A. R. Meier
- Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Christophe Detrembleur
- Department of Chemistry, Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Sart-Tilman B6a, 4000 Liège, Belgium
| |
Collapse
|
24
|
Meisner J, Karwounopoulos J, Walther P, Kästner J, Naumann S. The Lewis Pair Polymerization of Lactones Using Metal Halides and N-Heterocyclic Olefins: Theoretical Insights. Molecules 2018; 23:E432. [PMID: 29462873 PMCID: PMC6017504 DOI: 10.3390/molecules23020432] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 12/05/2022] Open
Abstract
Lewis pair polymerization employing N-Heterocyclic olefins (NHOs) and simple metal halides as co-catalysts has emerged as a useful tool to polymerize diverse lactones. To elucidate some of the mechanistic aspects that remain unclear to date and to better understand the impact of the metal species, computational methods have been applied. Several key aspects have been considered: (1) the formation of NHO-metal halide adducts has been evaluated for eight different NHOs and three different Lewis acids, (2) the coordination of four lactones to MgCl₂ was studied and (3) the deprotonation of an initiator (butanol) was investigated in the presence and absence of metal halide for one specific Lewis pair. It was found that the propensity for adduct formation can be influenced, perhaps even designed, by varying both organic and metallic components. Apart from the NHO backbone, the substituents on the exocyclic, olefinic carbon have emerged as interesting tuning site. The tendency to form adducts is ZnCl₂ > MgCl₂ > LiCl. If lactones coordinate to MgCl₂, the most likely binding mode is via the carbonyl oxygen. A chelating coordination cannot be ruled out and seems to gain importance upon increasing ring-size of the lactone. For a representative NHO, it is demonstrated that in a metal-free setting an initiating alcohol cannot be deprotonated, while in the presence of MgCl₂ the same process is exothermic with a low barrier.
Collapse
Affiliation(s)
- Jan Meisner
- Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Johannes Karwounopoulos
- Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Patrick Walther
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Johannes Kästner
- Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Stefan Naumann
- Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| |
Collapse
|
25
|
Méreau R, Grignard B, Boyaval A, Detrembleur C, Jerome C, Tassaing T. Tetrabutylammonium Salts: Cheap Catalysts for the Facile and Selective Synthesis of α-Alkylidene Cyclic Carbonates from Carbon Dioxide and Alkynols. ChemCatChem 2018. [DOI: 10.1002/cctc.201701567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raphaël Méreau
- Institut des Sciences Moléculaires (ISM), UMR5255 CNRS; Université de Bordeaux; 351 Cours de la libération F-33405 Talence Cedex France
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM); Chemistry Department, B6a; University of Liège; Allée du 6 août 4000 Liege Belgium
| | - Amélie Boyaval
- Institut des Sciences Moléculaires (ISM), UMR5255 CNRS; Université de Bordeaux; 351 Cours de la libération F-33405 Talence Cedex France
- Center for Education and Research on Macromolecules (CERM); Chemistry Department, B6a; University of Liège; Allée du 6 août 4000 Liege Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM); Chemistry Department, B6a; University of Liège; Allée du 6 août 4000 Liege Belgium
| | - Christine Jerome
- Center for Education and Research on Macromolecules (CERM); Chemistry Department, B6a; University of Liège; Allée du 6 août 4000 Liege Belgium
| | - Thierry Tassaing
- Institut des Sciences Moléculaires (ISM), UMR5255 CNRS; Université de Bordeaux; 351 Cours de la libération F-33405 Talence Cedex France
| |
Collapse
|
26
|
Li W, Huang D, Lyu Y. A comparative computational study of N-heterocyclic olefin and N-heterocyclic carbene mediated carboxylative cyclization of propargyl alcohols with CO 2. Org Biomol Chem 2018; 14:10875-10885. [PMID: 27812589 DOI: 10.1039/c6ob01901c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carboxylative cyclization of a propargyl alcohol with CO2 mediated by a N-heterocyclic olefin (NHO) or N-heterocyclic carbene (NHC) has been comparatively studied using density functional theory (DFT) calculations. The calculations show that the advantageous catalytic performance of the NHO in the title reaction can be attributed to two aspects: (i) the active site of the NHO extends outside the imidazolium ring, which enhances the reactivity and stability of the [NHOH]+[carbonate]- ionic pair intermediate. Thus, the turnover frequency (TOF)-determining intramolecular cyclization step is kinetically more favorable in the NHO system. (ii) As the basicity of the NHO is weaker than the NHC, deprotonation of the propargyl alcohol by the NHO is relatively more difficult. Consequently, the side reaction of ring-opening transesterification of the α-alkylidene cyclic carbonate with the nucleophilic [NHOH]+[alkoxide]- ionic pair intermediate can be inhibited using the NHO system. The present mechanistic study provides a basis for further application of these promising organocatalysts in more organic transformations.
Collapse
Affiliation(s)
- Weiyi Li
- School of Science, Xihua University, Chengdu, 610039, Sichuan, P. R. China.
| | - Dongfeng Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China
| | - Yajing Lyu
- School of Science, Xihua University, Chengdu, 610039, Sichuan, P. R. China.
| |
Collapse
|
27
|
Feroci M, Chiarotto I, Orsini M, Pandolfi F, Zane D, Inesi A. Electrogenerated N-Heterocyclic Olefins: Stability and Catalytic Ability. ChemElectroChem 2017. [DOI: 10.1002/celc.201700992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Feroci
- Dept. Fundamental and Applied Sciences for Engineering (SBAI); Sapienza University of Rome; via Castro Laurenziano, 7 00161 Rome Italy
| | - Isabella Chiarotto
- Dept. Fundamental and Applied Sciences for Engineering (SBAI); Sapienza University of Rome; via Castro Laurenziano, 7 00161 Rome Italy
| | - Monica Orsini
- Dept. of Engineering; Università RomaTre; via V. Volterra, 62 00146 Rome Italy
| | - Fabiana Pandolfi
- Dept. Fundamental and Applied Sciences for Engineering (SBAI); Sapienza University of Rome; via Castro Laurenziano, 7 00161 Rome Italy
| | - Daniela Zane
- CNR SMN Istituto per lo Studio dei Materiali Nanostrutturati UOS Sapienza; Via del Castro Laurenziano 7 00161 Roma Italy
| | | |
Collapse
|
28
|
de Lima Batista AP, de Oliveira-Filho AGS, Galembeck SE. CO2
Sequestration by Triazolylidene-Derived N-Heterocyclic Olefins: A Computational Study. ChemistrySelect 2017. [DOI: 10.1002/slct.201700727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ana P. de Lima Batista
- Departamento de Química; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto - SP Brazil
| | - Antonio G. S. de Oliveira-Filho
- Departamento de Química; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto - SP Brazil
| | - Sérgio E. Galembeck
- Departamento de Química; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto - SP Brazil
| |
Collapse
|
29
|
Zhou H, Wang GX, Lu XB. CO2
Adducts of α-Carbon Alkylated N-Heterocyclic Olefins: Highly Active Organocatalysts for CO2
Chemical Transformation. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 China
| | - Guo-Xu Wang
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
30
|
Computational and Experimental Investigation of Immobilization of CuI Nanoparticles on 3-Aminopyridine Modified Poly(styrene-co-maleic anhydride) and Its Catalytic Application in Regioselective Synthesis of 1,2,3-Triazoles. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0530-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
|
32
|
Affiliation(s)
- Bo Zou
- Key Laboratory of Cluster Science, Ministry of Education of China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology; Beijing 100081 China
| | - Changwen Hu
- Key Laboratory of Cluster Science, Ministry of Education of China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology; Beijing 100081 China
| |
Collapse
|
33
|
Boyaval A, Méreau R, Grignard B, Detrembleur C, Jerome C, Tassaing T. Organocatalytic Coupling of CO 2 with a Propargylic Alcohol: A Comprehensive Mechanistic Study. CHEMSUSCHEM 2017; 10:1241-1248. [PMID: 27925442 DOI: 10.1002/cssc.201601524] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/05/2016] [Indexed: 06/06/2023]
Abstract
The metal-free coupling of a propargylic alcohol with CO2 catalysed by guanidine derivatives was investigated in detail through the combination of online kinetic studies by in situ attenuated-total reflection IR (ATR-IR) spectroscopy and DFT calculations. Bicyclic guanidines, namely 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) are effective catalysts for the conversion of 2-methyl-3-butyn-2-ol to α-methylene cyclic carbonate and oxoalkyl acyclic carbonate under mild reaction conditions. The lower selectivity of TBD in comparison with MTBD towards the formation of α-methylene cyclic carbonate was elucidated from DFT calculations and is related to the bifunctional activity (base/H-bond donor) of TBD decreasing the Gibbs free energy of the reaction path for the formation of the acyclic carbonate.
Collapse
Affiliation(s)
- Amélie Boyaval
- Institut des Sciences Moléculaires (ISM), UMR5255 CNRS, Université de Bordeaux, 351 Cours de la libération, 33405, Talence Cedex, France
- Center for Education and Research on Macromolecules (CERM), Chemistry Department, B6a, University of Liège, allée du 6 août, 4000, Liege, Belgium
| | - Raphaël Méreau
- Institut des Sciences Moléculaires (ISM), UMR5255 CNRS, Université de Bordeaux, 351 Cours de la libération, 33405, Talence Cedex, France
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), Chemistry Department, B6a, University of Liège, allée du 6 août, 4000, Liege, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), Chemistry Department, B6a, University of Liège, allée du 6 août, 4000, Liege, Belgium
| | - Christine Jerome
- Center for Education and Research on Macromolecules (CERM), Chemistry Department, B6a, University of Liège, allée du 6 août, 4000, Liege, Belgium
| | - Thierry Tassaing
- Institut des Sciences Moléculaires (ISM), UMR5255 CNRS, Université de Bordeaux, 351 Cours de la libération, 33405, Talence Cedex, France
| |
Collapse
|
34
|
de Lima Batista AP, de Oliveira-Filho AGS, Galembeck SE. Computationally Designed 1,2,4-Triazolylidene-Derived N-Heterocyclic Olefins for CO 2 Capture, Activation, and Storage. ACS OMEGA 2017; 2:299-307. [PMID: 31457230 PMCID: PMC6641026 DOI: 10.1021/acsomega.6b00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 06/10/2023]
Abstract
In this article, triazolylidene-derived N-heterocyclic olefins (trNHOs) are designed using computational quantum tools, and their potential to promote CO2 sequestration is tested and discussed in detail. The low barrier heights related to the trNHO-mediated process indicate that the tailored compounds are very promising for fast CO2 sequestration. The systematic analysis of the presence of distinct substitutes at different N positions of the trNHO ring allows us to rationalize their effect on the carboxylation process and reveal the best N-substituted trNHO systems for CO2 sequestration and improved trNHO carboxylates for faster CO2 capture/release.
Collapse
Affiliation(s)
- Ana Paula de Lima Batista
- Departamento de Química,
Faculdade de Filosofia, Ciências e Letras de Ribeirão
Preto, Universidade de São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| | - Antonio G. S. de Oliveira-Filho
- Departamento de Química,
Faculdade de Filosofia, Ciências e Letras de Ribeirão
Preto, Universidade de São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| | - Sérgio Emanuel Galembeck
- Departamento de Química,
Faculdade de Filosofia, Ciências e Letras de Ribeirão
Preto, Universidade de São Paulo, 14040-901 Ribeirão
Preto, SP, Brazil
| |
Collapse
|
35
|
Finger LH, Guschlbauer J, Harms K, Sundermeyer J. N-Heterocyclic Olefin-Carbon Dioxide and -Sulfur Dioxide Adducts: Structures and Interesting Reactivity Patterns. Chemistry 2016; 22:16292-16303. [DOI: 10.1002/chem.201602973] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Lars H. Finger
- Fachbereich Chemie and Materials Science Centre; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Jannick Guschlbauer
- Fachbereich Chemie and Materials Science Centre; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Klaus Harms
- Fachbereich Chemie and Materials Science Centre; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Materials Science Centre; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35043 Marburg Germany
| |
Collapse
|