1
|
Yoshioka E, Imoto Y, Yamaoka Y, Ikeda T, Takahashi H, Tanaka R, Hayashi N, Miyabe H. Intramolecular Cyclopropanation of Active Methylene Derivatives Based on FeCl 2 or FeCl 3-Promoted Radical-Polar Crossover Reactions. Chemistry 2024; 30:e202400602. [PMID: 38658317 DOI: 10.1002/chem.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Radical-polar crossover reactions were studied for the intramolecular cyclopropanation of active methylene derivatives. In the presence of FeCl3 as a stoichiometric oxidant and K2HPO4 as a base, the dehydrogenative cyclopropanation of active methylenes proceeded through the FeCl3-promoted oxidative radical cyclization followed by the ionic cyclization to give the bicyclic cyclopropanes. The use of α-chloro-active methylenes leads the subcatalytic cyclopropanation involving two redox pathways. In the presence of K2HPO4, the redox cyclopropanation proceeded by using FeCl2 (20 mol%) in combination with ligand (20 mol%).
Collapse
Affiliation(s)
- Eito Yoshioka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Yuuki Imoto
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Yousuke Yamaoka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Tomoko Ikeda
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Hiroki Takahashi
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Ryousuke Tanaka
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Naoki Hayashi
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| | - Hideto Miyabe
- School of Pharmacy and Department of Pharmacy, Hyogo Medical University Minatojima, Chuo-ku, Kobe, 650-8530, Japan
| |
Collapse
|
2
|
Nambu H, Onuki Y, Aso K, Kanamori M, Tomohara K, Tsuge K, Yakura T. Ring expansion of spirocyclopropanes with stabilized sulfonium ylides: highly diastereoselective synthesis of cyclobutanes. Chem Commun (Camb) 2024; 60:4537-4540. [PMID: 38507284 DOI: 10.1039/d3cc06033k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A novel method was devised for regioselective ring expansion of Meldrum's acid-derived spirocyclopropanes to spirocyclobutanes with stabilized sulfonium ylides, affording 1,2-trans-disubstituted 6,8-dioxaspiro[3.5]nonane-5,9-diones in up to 87% yields without the formation of any isomers. The aforementioned reaction was also applied to the barbituric acid-derived spirocyclopropane, resulting in the formation of the corresponding cyclobutanes.
Collapse
Affiliation(s)
- Hisanori Nambu
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
- Laboratory of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan.
| | - Yuta Onuki
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Kana Aso
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Momoka Kanamori
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| | - Keisuke Tomohara
- Laboratory of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan.
| | - Kiyoshi Tsuge
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan
| | - Takayuki Yakura
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
3
|
Smyrnov V, Waser J. Semipinacol Rearrangement of Cyclopropenylcarbinols for the Synthesis of Highly Substituted Cyclopropanes. Org Lett 2023; 25:6999-7003. [PMID: 37707959 DOI: 10.1021/acs.orglett.3c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An electrophile-induced semipinacol rearrangement of cyclopropenylcarbinols is reported. This transformation gives access to various polyfunctionalized cyclopropanes under mild metal-free conditions. The scope of the reaction includes iodine, sulfur and selenium electrophiles, aryl and strained ring migrating groups, and diverse substitution patterns on the cyclopropene. The reaction is particularly efficient for the synthesis of small ring-containing spirocycles, which are important rigid three-dimensional building blocks for medicinal chemistry.
Collapse
Affiliation(s)
- Vladyslav Smyrnov
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Synthesis of 2-[2-(Ethoxymethoxy)phenyl]spiro[cyclopropane-1,2′-indene]-1′,3′-dione. MOLBANK 2023. [DOI: 10.3390/m1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
An 1,3-indanedione-derived donor–acceptor cyclopropane, bearing the ethoxymethyl-protected phenolic group at the ortho-position of the donor aryl substituent, has been synthesized using a reaction sequence involving the Knoevenagel condensation of 1,3-indanedione with the corresponding protected salicylaldehyde followed by the Corey–Chaykovsky cyclopropanation of the obtained adduct with dimethylsulfoxonium methylide. The structure of the synthesized cyclopropane was unambiguously proved by single-crystal X-ray diffraction data.
Collapse
|
5
|
He ZY, Ning Y, Zhao YF, Diao HL, Zou P, Wang WB, Shu JS, Xu H. Synthesis of spirocyclopropanes via iodine-promoted bimolecular cyclization of 2-benzylidene 1,3-indandiones. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2146513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zeng-Yang He
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Yong Ning
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Yu-Fei Zhao
- Marketing Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Hong-Lin Diao
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Peng Zou
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Wen-Bin Wang
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Jun-Sheng Shu
- Technology Center, China Tobacco Anhui Industrial Co., Ltd, Hefei, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, P. R. China
| |
Collapse
|
6
|
Das S. Recent applications of 1,3-indanedione in organic transformations for the construction of fused- and spiro scaffolds. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Penjarla TR, Shukla AK, Hazra R, Roy D, Kundarapu M, Dixit M, Bhattacharya A. Copper acetate catalysed C-C bond formation en route to the synthesis of spiro indanedione cyclopropylpyrazolones. Org Biomol Chem 2022; 20:3779-3784. [PMID: 35438087 DOI: 10.1039/d1ob02351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis of spiro compounds based on an indanedione-cyclopropane-pyrazolone framework. The reaction relied upon the Michael-initiated ring closure strategy and was carried out under Cu(OAc)2 catalysis, assisted by an oxygen atmosphere and the base Et3N. The final compounds were obtained as an inseparable mixture in most cases with modest to good yields using diverse substrates. Among the two plausible routes, computational studies indicated the feasibility of a route which involves a four-membered Cu containing intermediate. Given the generic nature of the developed method, it may be utilised to synthesise other analogous spiro systems.
Collapse
Affiliation(s)
- Thirupathi Reddy Penjarla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India. .,Department of Medicinal Chemistry, Aragen Life Sciences, Survey Nos: 125 (part) & 126, IDA Mallapur, Hyderabad 500076, India
| | - Adarash Kumar Shukla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Maheshwar Kundarapu
- Department of Medicinal Chemistry, Aragen Life Sciences, Survey Nos: 125 (part) & 126, IDA Mallapur, Hyderabad 500076, India
| | - Mudit Dixit
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India.
| |
Collapse
|
8
|
Chen P, Fan JH, Yu WQ, Xiong BQ, Liu Y, Tang KW, Xie J. Alkylation/Ipso-cyclization of Active Alkynes Leading to 3-Alkylated Aza- and Oxa-spiro[4,5]-trienones. J Org Chem 2022; 87:5643-5659. [PMID: 35416658 DOI: 10.1021/acs.joc.1c03118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the preparation of 3-alkylated spiro[4.5]trienones via alkylation/ipso-cyclization of activated alkynes with 4-alkyl-DHPs under transition-metal-free conditions is proposed. This alkylation successively undergoes the generation of alkyl radicals, addition of alkyl radicals to the alkynes, and intramolecular ipso-cyclization. The mechanism studies suggest that the alkylation/ipso-cyclization involves a radical process. This ipso-cyclization procedure shows a series of advantages, such as accessibility, mild conditions, high efficiency, greater safety, and an environmentally friendly method.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
9
|
Jüstel PM, Stan A, Pignot CD, Ofial AR. Inherent Reactivity of Spiro-Activated Electrophilic Cyclopropanes. Chemistry 2021; 27:15928-15935. [PMID: 34569669 PMCID: PMC9298281 DOI: 10.1002/chem.202103027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/16/2022]
Abstract
The kinetics of the ring-opening reactions of thiophenolates with geminal bis(acceptor)-substituted cyclopropanes in DMSO at 20 °C was monitored by photometric methods. The determined second-order rate constants of the SN 2 reactions followed linear relationships with Mayr nucleophilicity parameters (N/sN ) and Brønsted basicities (pKaH ) of the thiophenolates as well as with Hammett substituent parameters (σ) for groups attached to the thiophenolates. Phenyl-substituted cyclopropanes reacted by up to a factor of 15 faster than their unsubstituted analogues, in accord with the known activating effect of adjacent π-systems in SN 2 reactions. Variation of the electronic properties of substituents at the phenyl groups of the cyclopropanes gave rise to parabolic Hammett relationships. Thus, the inherent SN 2 reactivity of electrophilic cyclopropanes is activated by electron-rich π-systems because of the more advanced C1-C2 bond polarization in the transition state. On the other hand, electron-poor π-systems also lower the energetic barriers for the attack of anionic nucleophiles owing to attractive electrostatic interactions.
Collapse
Affiliation(s)
- Patrick M. Jüstel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Alexandra Stan
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Cedric D. Pignot
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| | - Armin R. Ofial
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
10
|
Barreiro-Costa O, Morales-Noboa G, Rojas-Silva P, Lara-Barba E, Santamaría-Aguirre J, Bailón-Moscoso N, Romero-Benavides JC, Herrera A, Cueva C, Ron-Garrido L, Poveda A, Heredia-Moya J. Synthesis and Evaluation of Biological Activities of Bis(spiropyrazolone)cyclopropanes: A Potential Application against Leishmaniasis. Molecules 2021; 26:4960. [PMID: 34443548 PMCID: PMC8398714 DOI: 10.3390/molecules26164960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
This work focuses on the search and development of drugs that may become new alternatives to the commercial drugs currently available for treatment of leishmaniasis. We have designed and synthesized 12 derivatives of bis(spiropyrazolone)cyclopropanes. We then characterized their potential application in therapeutic use. For this, the in vitro biological activities against three eukaryotic models-S. cerevisiae, five cancer cell lines, and the parasite L. mexicana-were evaluated. In addition, cytotoxicity against non-cancerous mammalian cells has been evaluated and other properties of interest have been characterized, such as genotoxicity, antioxidant properties and, in silico predictive adsorption, distribution, metabolism, and excretion (ADME). The results that we present here represent a first screening, indicating two derivatives of bis(spiropyrazolone)cyclopropanes as good candidates for the treatment of leishmaniasis. They have good specificity against parasites with respect to mammalian cells.
Collapse
Affiliation(s)
- Olalla Barreiro-Costa
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (O.B.-C.); (P.R.-S.)
| | - Gabriela Morales-Noboa
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Patricio Rojas-Silva
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (O.B.-C.); (P.R.-S.)
| | - Eliana Lara-Barba
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Javier Santamaría-Aguirre
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Natalia Bailón-Moscoso
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.B.-M.); (A.H.); (C.C.)
| | | | - Ana Herrera
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.B.-M.); (A.H.); (C.C.)
| | - Cristina Cueva
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (N.B.-M.); (A.H.); (C.C.)
| | - Lenin Ron-Garrido
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito 170521, Ecuador; (G.M.-N.); (E.L.-B.); (J.S.-A.); (L.R.-G.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (O.B.-C.); (P.R.-S.)
| |
Collapse
|
11
|
Chen P, Xie J, Chen Z, Xiong B, Liu Y, Yang C, Tang K. Visible‐Light‐Mediated Nitrogen‐Centered Radical Strategy: Preparation of 3‐Acylated Spiro[4,5]trienones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Bi‐Quan Xiong
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Chang‐An Yang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Ke‐Wen Tang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| |
Collapse
|
12
|
Regioselective synthesis of spirobarbiturate-dihydrofurans and dihydrofuro[2,3-d]pyrimidines via one-pot cascade reaction of barbiturate-based olefins and ethyl acetoacetate. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Deng YH, Chu WD, Shang YH, Yu KY, Jia ZL, Fan CA. P(NMe2)3-Mediated Umpolung Spirocyclopropanation Reaction of p-Quinone Methides: Diastereoselective Synthesis of Spirocyclopropane-Cyclohexadienones. Org Lett 2020; 22:8376-8381. [DOI: 10.1021/acs.orglett.0c02998] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, and School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Dao Chu
- College of Chemistry and Chemical Engineering, China West Normal University, No. 1 Shida Road, Nanchong 637002, China
| | - Yun-Han Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, and School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
| | - Ke-Yin Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Zhi-Long Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
14
|
Tan Y, Zhao Z, Chen Z, Huang S, Jia S, Peng L, Xu D, Qin W, Yan H. N-Iodosuccinimide-Mediated Dimerization of 2-Alkynylnaphthols: A Highly Diastereoselective Construction of Bridged Polycyclic Compounds via Vinylidene ortho-Quinone Methide Intermediate. Org Lett 2020; 22:4461-4466. [DOI: 10.1021/acs.orglett.0c01458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yu Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Zhengxing Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Zhili Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Shiqi Jia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| |
Collapse
|
15
|
Lokshin V, Clavier H, Khodorkovsky V. Spiro 1,3-indandiones: intramolecular photochemical reactions of carbonyl groups with carbon–carbon double bonds. NEW J CHEM 2020. [DOI: 10.1039/d0nj02923h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spiro-1,3-indandiones involving a double CC bond undergo photochemical intramolecular reactions affording a variety of polycyclic products.
Collapse
Affiliation(s)
- Vladimir Lokshin
- Aix Marseille Univ, CNRS, CINaM UMR 7325
- Campus de Luminy – Case 913
- Marseille
- France
| | - Hervé Clavier
- Aix Marseille Univ, CNRS, Centrale Marseille
- iSm2
- 13397 Marseille
- France
| | | |
Collapse
|
16
|
Chagarovskiy AO, Strel’tsova ED, Rybakov VB, Levina II, Trushkov IV. Synthesis of 2,3-diaryl-2,3,4,4а-tetrahydro-5Н-indeno[1,2-c]pyridazin-5-ones. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Yan X, Shao P, Song X, Zhang C, Lu C, Liu S, Li Y. Chemoselective syntheses of spirodihydrofuryl and spirocyclopropyl barbiturates via cascade reactions of barbiturate-based olefins and acetylacetone. Org Biomol Chem 2019; 17:2684-2690. [PMID: 30768085 DOI: 10.1039/c9ob00004f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Michael addition initiated ring closure reaction of barbiturate-based olefins and acetylacetone with NBS has been explored. The efficient and chemoselective approach for the synthesis of barbiturate-fused spirocycles was established. Spirodihydrofuryl barbiturates and spirocyclopropyl barbiturates were synthesized selectively via cascade reactions under different basic conditions in moderate to excellent yields. The structure of 2-(4-chlorophenyl)-1,1-diacetyl-5,7-dimethyl-5,7-diazaspiro[2,5]octane-4,6,8-trione was confirmed by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Xuebin Yan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Ji M, Wu Z, Zhu C. Visible-light-induced consecutive C-C bond fragmentation and formation for the synthesis of elusive unsymmetric 1,8-dicarbonyl compounds. Chem Commun (Camb) 2019; 55:2368-2371. [PMID: 30724971 DOI: 10.1039/c9cc00378a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Synthesis of the valuable unsymmetric 1,8-dicarbonyl compounds remains underexplored currently. Herein, we disclose a new strategy for the synthesis of 1,8-diketones through the coupling of cyclopropanols and cyanohydrins under visible-light irradiation. The protocol features a cascade of intriguing ring opening of cyclopropanols and remote cyano migration. The unfavorable addition of an alkyl radical to an electron-rich alkene is facilitated by the intramolecular cyanohydrin interception. A variety of multiply functionalized 1,8-diketones are furnished in useful yields. The products could be further transformed into other valuable compounds, manifesting the utility of this method.
Collapse
Affiliation(s)
- Meishan Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | | | | |
Collapse
|
19
|
Yang X, Tsui GC. Trifluoromethylation of Unactivated Alkenes with Me3SiCF3 and N-Iodosuccinimide. Org Lett 2019; 21:1521-1525. [DOI: 10.1021/acs.orglett.9b00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xinkan Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
20
|
Zhang XL, Feng KX, Xia AB, Zheng YY, Li C, Du XH, Xu DQ. Asymmetric Synthesis of 2,3-Dihydrofurans by One-Pot Michael Addition/I2
-Mediated Cyclization. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao-Long Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Kai-Xiang Feng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Ai-Bao Xia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Ya-Yun Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Chen Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Xiao-Hua Du
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| |
Collapse
|
21
|
Tomilov YV, Menchikov LG, Novikov RA, Ivanova OA, Trushkov IV. Methods for the synthesis of donor-acceptor cyclopropanes. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4787] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Lai J, Yuan G. A novel synthesis of aryl methyl sulfones and β -hydroxysulfones from sodium sulfinates and di -tert -butyl peroxide in H 2 O medium. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Wang Y, Wang KH, Su Y, Yang Z, Wen L, Liu L, Wang J, Huang D, Hu Y. Cascade Oxidation/Halogenoaminocyclization Reaction of Trifluoromethylated Homoallylic N-Acylhydrazines: Metal-free Synthesis of CF 3-Substituted Pyrazolines. J Org Chem 2018; 83:939-950. [PMID: 29268606 DOI: 10.1021/acs.joc.7b02934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient and practical cascade oxidation/halogenoaminocyclization of trifluoromethylated homoallylic N-acylhydrazines is developed. The protocol enables an efficient access to various biologically interesting CF3-containing pyrazoline compounds from readily accessible trifluoromethylated homoallylic N-acylhydrazines in good to excellent yields under mild conditions without any other additives or catalysts. The produced pyrazoline compounds can be further manipulated to other more complicated derivatives through transformation of residual halogen atom.
Collapse
Affiliation(s)
- Yuxiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Zheng Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Lan Wen
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Lili Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Juanjuan Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University , 967 Anning East Road, Lanzhou 730070, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, P. R. China
| |
Collapse
|
24
|
Xia AB, Zhang XL, Tang CK, Feng KX, Du XH, Xu DQ. One-pot asymmetric synthesis of a spiro[dihydrofurocoumarin/pyrazolone] scaffold by a Michael addition/I 2-mediated cyclization sequence. Org Biomol Chem 2017. [PMID: 28650044 DOI: 10.1039/c7ob00986k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An asymmetric formal one-pot reaction of 4-hydroxycoumarins with unsaturated pyrazolones has been developed by merging a chiral bifunctional organocatalyst with molecular iodine, which furnished a series of optically active spiro[dihydrofurocoumarin/pyrazolone] heterocycles with spiro quaternary stereogenic centers in moderate to excellent yields (up to 99%) with excellent diastereoselectivities (up to >99 : 1 dr) and good to excellent enantioselectivities (up to 99% ee). The application in the gram-scale synthesis of chiral spiro[dihydrofurocoumarin/pyrazolone] compounds was also successfully realized.
Collapse
Affiliation(s)
- Ai-Bao Xia
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiao-Long Zhang
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Cheng-Ke Tang
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Kai-Xiang Feng
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiao-Hua Du
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Centre, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
25
|
Zhang XL, Tang CK, Xia AB, Feng KX, Du XH, Xu DQ. One-Pot Organocatalytic Michael Addition/I2
-Mediated Cyclization Sequence: Metal-Free Synthesis of Spiropyrazolones from 1,3-Diketones and Unsaturated Pyrazolones. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiao-Long Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Cheng-Ke Tang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Ai-Bao Xia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Kai-Xiang Feng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Xiao-Hua Du
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Dan-Qian Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| |
Collapse
|
26
|
Elinson MN, Vereshchagin AN, Korshunov AD, Ryzhkov FV, Egorov MP. Stereoselective cascade assembling of benzylidenecyanoacetates and 1,3-dimethylbarbituric acid into (1R*,2S*)-1-cyano-5,7-dialkyl-4,6,8-trioxo-2-aryl-5,7-diazaspiro[2.5]octane-1-carboxylates. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA new stereoselective cascade reaction of benzylidenecyanoacetates and 1,3-dimethylbarbituric acid by the action of bromine in the presence of a base into substituted (barbituric acid)-5-spirocyclopropanes is described. The yields are in the range of 60%–75%. Nuclear magnetic resonance (NMR) studies indicate that this cascade transformation results in the stereoselective formation of spiro products with trans-configuration of aryl and alkoxycarbonyl substituents in the cyclopropane ring. The products are a perspective class of compounds with prominent pharmacological and physiological activity.
Collapse
Affiliation(s)
- Michail N. Elinson
- 1N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, Moscow 119991, Russia
| | | | - Alexander D. Korshunov
- 1N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, Moscow 119991, Russia
| | - Fedor V. Ryzhkov
- 1N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, Moscow 119991, Russia
| | - Mikhail P. Egorov
- 1N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
27
|
Diastereoselective Synthesis of Spirocyclopropanes under Mild Conditions via Formal [2 + 1] Cycloadditions Using 2,3-Dioxo-4-benzylidene-pyrrolidines. Molecules 2017; 22:molecules22020328. [PMID: 28241452 PMCID: PMC6155796 DOI: 10.3390/molecules22020328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
A highly diastereoselective cyclopropanation of cyclic enones with sulfur ylides was developed under catalyst-free conditions, producing multifunctional spirocyclopropanes in generally excellent yields (up to 99% yield and >99:1 d.r.). The asymmetric version of this method was realized by using an easily available chiral sulfur ylide, affording products with moderate to good stereoselectivity.
Collapse
|
28
|
Tao J, Estrada CD, Murphy GK. Metal-free intermolecular cyclopropanation between alkenes and iodonium ylides mediated by PhI(OAc)2·Bu4NI. Chem Commun (Camb) 2017; 53:9004-9007. [DOI: 10.1039/c7cc04859a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A simple and highly effective synthesis of poly substituted cyclopropanes was developed. This metal-free intermolecular reaction between iodonium ylides and alkenes is mediated by PhI(OAc)2 and Bu4NI.
Collapse
Affiliation(s)
- Jason Tao
- Department of Chemistry
- University of Waterloo
- Waterloo
- Canada
| | | | | |
Collapse
|
29
|
Midya SP, Gopi E, Satam N, Namboothiri INN. Synthesis of fused cyanopyrroles and spirocyclopropanes via addition of N-ylides to chalconimines. Org Biomol Chem 2017; 15:3616-3627. [DOI: 10.1039/c7ob00529f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DABCO-ylides react as a one-carbon source with chalconimines to afford fused cyanopyrrolesvia[4 + 1] annulation and spirocyclopropanesvia[2 + 1] annulation.
Collapse
Affiliation(s)
- Siba Prasad Midya
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | - Elumalai Gopi
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | - Nishikant Satam
- Department of Chemistry Indian Institute of Technology
- Mumbai 400 076
- India
| | | |
Collapse
|