1
|
Ayesha, Ashraf A, Arshad M, Sajid N, Rasool N, Abbas M, Nazeer U, Khalid M, Imran M. Dinuclear Zn-Catalytic System as Brønsted Base and Lewis Acid for Enantioselectivity in Same Chiral Environment. ACS OMEGA 2024; 9:6074-6092. [PMID: 38375498 PMCID: PMC10876046 DOI: 10.1021/acsomega.3c07446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2024]
Abstract
Zinc (Zn) is a crucial element with remarkable significance in organic transformations. The profusion of harmless zinc salts in the Earth's outer layer qualifies zinc as a noteworthy contender for inexpensive and eco-friendly reagents and catalysts. Recently, widely recognized uses of organo-Zn compounds in the field of organic synthesis have undergone extensive expansion toward asymmetric transformations. The ProPhenol ligand, a member of the chiral nitrogenous-crown family, exhibits the spontaneous formation of a dual-metal complex when reacted with alkyl metal (R-M) reagents, e.g., ZnEt2. The afforded Zn complex possesses two active sites, one Lewis acid and the other Brønsted base, thereby facilitating the activation of nucleophiles and electrophiles simultaneously within the same chiral pocket. In this comprehensive analysis, we provide a thorough account of the advancement and synthetic potential of these diverse catalysts in organic synthesis, while emphasizing the reactivity and selectivities, i.e., dr and ee due to the design/structure of the ligands employed.
Collapse
Affiliation(s)
- Ayesha
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Aisha Ashraf
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Mahwish Arshad
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Numan Sajid
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Mujahad Abbas
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Usman Nazeer
- Chemistry
Department, University of Houston, 3585 Cullen Boulvard, Houston, Texas 77204-5003, United States
| | | | - Muhammad Imran
- Chemistry
Department, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Morja MI, Moradiya RB, Chikhalia KH. First-row transition metal for isocyanide-involving multicomponent reactions (IMCR). Mol Divers 2023; 27:2895-2934. [PMID: 36538208 DOI: 10.1007/s11030-022-10583-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
First-row transition metal catalyzed transformations that are able to construct complex molecules from simple, readily obtainable feedstocks have become a keystone of modern synthetic organic chemistry. Particularly, the multicomponent reaction (MCR) involving carbon-carbon (C-C) as well as carbon-heteroatom (C-X) bond formation plays an essential role in many chemical conversions, and insurgencies in these reactions powerfully improve the overall synthetic efficiency. Recently, MCRs emerges rapidly because of its greener sides like eco-friendly nature, swift and straightforward execution, high atom/step economy, and construction of aimed product with lowest or no by-product, usually in quantitative yield. Curiously, the exceptional divalent carbon atoms of isocyanides make them predominantly useful components in multicomponent reactions. As a result of widespread research over the past few decades, numerous well-designed and effective procedures for the first-row TM-catalyzed MCR to afford the various entities have been reported. These aspects are summarized in this review article. A particular focus on comparative discussion of various first-row transition-metal catalyzed isocyanide-based multicomponent reactions through mechanistic details included in the review article.
Collapse
Affiliation(s)
- Mayur I Morja
- Department of Chemistry, Government Science College, Vankal, Surat, Gujarat, 394430, India
| | - Riddhi B Moradiya
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, Gujarat, 395007, India
| | - Kishor H Chikhalia
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, Gujarat, 395007, India.
| |
Collapse
|
3
|
Luo W, Zheng X, Zhang F, Luo Q, Deng WT, Long L, Yu D, Wang ZX, Chen Z. Synthesis of functionalized tetrahydrodibenzo[ b, g][1,8]naphthyridin-1(2 H)-ones through base-promoted annulation of quinoline-derived dipolarophiles and cyclic enaminones. Org Biomol Chem 2023. [PMID: 37997680 DOI: 10.1039/d3ob01547e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
An eco-friendly and metal-free method for the synthesis of tetrahydrodibenzo[b,g][1,8]naphthyridin-1(2H)-ones was established. Quinoline-derived dipolarophiles and cyclic enaminones as starting materials undergo a 1,4-Michael addition/SNAr tandem annulation reaction affording the target products. This approach features transition metal-free conditions, good functional group tolerance and operational simplicity.
Collapse
Affiliation(s)
- Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Xinghua Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Fanglian Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Qiuya Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Wen-Ting Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Zhong-Xia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| |
Collapse
|
4
|
Song S, Wang Y, Yu F. Construction of 1,4-Dihydropyridines: The Evolution of C4 Source. Top Curr Chem (Cham) 2023; 381:30. [PMID: 37749452 DOI: 10.1007/s41061-023-00440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
The field of cascade cyclization for the construction of 1,4-dihydropyridines (1,4-DHPs) has been continuously expanding during the last decades because of their broad-spectrum biological and synthetic importance. To date, many methods have been developed, mainly including the Hantzsch reaction, Hantzsch-like reaction and newly developed cascade cyclization, in which various synthons have been successively developed as C4 sources of 1,4-DHPs. This review presents the cascade cyclization synthesis strategy for the construction of 1,4-DHPs according to various C4 sources from carbonyl compounds, alkenyl fragments, alcohols, aliphatic amines, glycines and other C4 sources.
Collapse
Affiliation(s)
- Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, 650092, People's Republic of China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
5
|
Brusa A, Iapadre D, Casacchia ME, Carioscia A, Giorgianni G, Magagnano G, Pesciaioli F, Carlone A. Acetaldehyde in the Enders triple cascade reaction via acetaldehyde dimethyl acetal. Beilstein J Org Chem 2023; 19:1243-1250. [PMID: 37674523 PMCID: PMC10477997 DOI: 10.3762/bjoc.19.92] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Asymmetric organocatalyzed multicomponent reactions represent an important toolbox in the field of organic synthesis to build complex scaffolds starting from simple starting materials. The Enders three-component cascade reaction was a cornerstone in the field and a plethora of organocatalyzed cascade reactions followed. However, acetaldehyde was not shown as a successful reaction partner, probably because of its high reactivity. Herein, we report the Enders-type cascade reaction using acetaldehyde dimethyl acetal, as a masked form of acetaldehyde. This strategy directly converts acetaldehyde, nitroalkenes and enals into stereochemically dense cyclohexenals in good yield and excellent enantioselectivity.
Collapse
Affiliation(s)
- Alessandro Brusa
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Debora Iapadre
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Maria Edith Casacchia
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
- IUSS Scuola Universitaria Superiore di Pavia, Palazzo del Broletto, Piazza della Vittoria, 15, 27100, Pavia, Italy
| | - Alessio Carioscia
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Giuliana Giorgianni
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Giandomenico Magagnano
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Fabio Pesciaioli
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| | - Armando Carlone
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
- INSTM, Consorzio Nazionale per la Scienza e Tecnologia dei Materiali, RU L’Aquila, Italy
| |
Collapse
|
6
|
Vopálenská A, Dočekal V, Petrželová S, Císařová I, Veselý J. Access to Spirooxindole-Fused Cyclopentanes via a Stereoselective Organocascade Reaction Using Bifunctional Catalysis. J Org Chem 2023. [PMID: 36705518 DOI: 10.1021/acs.joc.2c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study reports an asymmetric organocascade reaction of oxindole-derived alkenes with 3-bromo-1-nitropropane efficiently catalyzed by the bifunctional catalyst. Spirooxindole-fused cyclopentanes were produced in moderate-to-good isolated yields (15-69%) with excellent stereochemical outcomes. The synthetic utility of the protocol was exemplified on a set of additional transformations of the corresponding spirooxindole compounds.
Collapse
Affiliation(s)
- Andrea Vopálenská
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Simona Petrželová
- Department of Teaching and Didactics of Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| |
Collapse
|
7
|
Dmitriev MV, Moroz AA, Sabitov AA, Maslivets AN. Reaction of 1H-pyrrole-2,3-diones with malononitrile and aminocyclohexenones: synthesis of spiro[pyrrole-3,4′-quinolines]. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Pan LN, Sun J, Liu XY, Yan CG. Efficient construction of diverse spiro[indoline-3,4'-pyrrolo[3,4- b]pyridines] via [3 + 3] cycloaddition of MBH carbonates of isatins with β-enamino maleimides. Org Biomol Chem 2022; 20:7099-7104. [PMID: 36040323 DOI: 10.1039/d2ob01257j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient method to construct unique spiro[indoline-3,4'-pyrrolo[3,4-b]pyridines] was successfully developed via a DABCO promoted formal [3 + 3] cycloaddition reaction of MBH carbonates of isatins with β-enamino maleimides in acetonitrile at room temperature. This reaction afforded multifunctionalized spiro[indoline-3,4'-pyrrolo[3,4-b]pyridines] and spiro[dipyrrolo[3,4-b:3',4'-e]pyridine-8,3'-indolines] in good yields and with lower diastereoselectivity. The relative configuration of the two diasteromers of the spiro compounds was clearly elucidated by the determination of eight single crystal structures.
Collapse
Affiliation(s)
- Liu-Na Pan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xue-Yan Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
9
|
Pinate P, Makone S. Novel DABCO based acidic ionic liquid as a green protocol for the synthesis of thiazolidin-4-one derivatives and cytotoxic activity evaluation on human breast cancer cell line. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2099223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Priyanka Pinate
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| | - Sangita Makone
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| |
Collapse
|
10
|
Ali E, Naimi-Jamal MR, Rashid Z, Ghahremanzadeh R. A Novel and Efficient Isocyanide-Catalyzed Addition Reaction of Enaminones to Isatin Derivatives for Oxindoles Synthesis. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1768566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Elham Ali
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Zahra Rashid
- Department of Nano biotechnology, Avicenna Research Institute, Tehran, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Tang P, Wen L, Ma HJ, Yang Y, Jiang Y. Synthesis of acyloxy-2 H-azirine and sulfonyloxy-2 H-azirine derivatives via a one-pot reaction of β-enamino esters, PIDA and carboxylic acid or sulfonic acid. Org Biomol Chem 2022; 20:3061-3066. [PMID: 35344576 DOI: 10.1039/d2ob00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PIDA mediated oxidative acyloxylation/azirination and sulfonyloxylation/azirination of β-enamino esters were investigated. A series of functionalized acyloxy-2H-azirine and sulfonyloxy-2H-azirine derivatives was synthesized in moderate to good yields. This represents the first oxidative sulfonyloxylation/azirination of β-enamino esters with PIDA and sulfonic acid for access to sulfonyloxy-2H-azirine. Hypervalent iodine reagents enable cascade C-O/C-N bond formation. Furthermore, a possible reaction pathway was proposed based on the experimental results.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
12
|
Yuan H, Lu D, Liang C, Mo D. Synthesis of Spirooxindole‐Benzo[d]oxazoles and Dihydrobenzofurans through Cycloaddition and Rearrangement of
N
‐Vinyl Nitrones and Arynes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hao Yuan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Dong‐Liu Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Dong‐Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004 People's Republic of China
| |
Collapse
|
13
|
Matsushima Y, Iino Y, Tsuruta Y, Nakashima K, Hirashima SI, Miura T. Asymmetric conjugate addition–cyclization of cyclohexane-1,2-dione with alkylidenemalononitriles using diaminomethylenemalononitrile organocatalyst. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Freidooni J, Rad-Moghadam K, Saeedi-Mirakmahaleh M. ZrO 2 and Rice-Husk-Xanthate Adduct: An Efficient Bioderived Catalyst for Synthesis of Spiro[4 H-pyran-4,3′-indoline]s. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jannat Freidooni
- Chemistry Department, Payam Noor University of Mashhad, Mashhad, Iran
| | - Kurosh Rad-Moghadam
- Chemistry Department, Faculty of sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
15
|
Babar K, Zahoor AF, Ahmad S, Akhtar R. Recent synthetic strategies toward the synthesis of spirocyclic compounds comprising six-membered carbocyclic/heterocyclic ring systems. Mol Divers 2021; 25:2487-2532. [PMID: 32696299 DOI: 10.1007/s11030-020-10126-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Spirocyclic compounds fascinate the synthetic chemists due to their privileged ring system and efficacy in drug discovery. Many natural compounds comprise spirocyclic moiety in their skeleton and are effective in pharmaceutical industry. Over the years, many synthetic methodologies have been established for the construction of spirocyclic compounds. In this review, recent synthetic approaches to accessing various spirocompounds comprising six-membered carbocycles/heterocycles have been summarized.
Collapse
Affiliation(s)
- Kashaf Babar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology, Faisalabad, 38000, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
16
|
Karami S, Bayat M, Nasri S, Mirzaei F. A three-component cyclocondensation reaction for the synthesis of new triazolo[1,5-a]pyrimidine scaffolds using 3-aminotriazole, aldehydes and ketene N,S-acetal. Mol Divers 2021; 25:2053-2062. [PMID: 32388702 DOI: 10.1007/s11030-020-10096-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/23/2020] [Indexed: 01/16/2023]
Abstract
This study describes the use of 3-aminotriazole, different aldehydes and N-methyl-1-(methylthio)-2-nitroethenamine as a ketene N,S-acetal in a three-component condensation for the synthesis of a novel library of triazolo[1,5-a]pyrimidine scaffolds. The presence of trichloroacetic acid as a Brønsted-Lowry acidic promoter in acetonitrile or water solvent and room temperature condition resulting novel triazolo[1,5-a]pyrimidine systems named N-methyl-6-nitro-5-aryl-3,5-dihydro-[1, 2, 4]triazolo[1,5-a]pyrimidine-7-amine. The structure of products and direction of the N-cyclization could be confirmed using spectral data. The effect of various solvents on the progress of process was investigated in the paper. The presence of five nitrogen heteroatoms, the use of various aldehydes affording a range of skeletally distinct triazolo[1,5-a]pyrimidine-based heterocycles, the potency to create numerous hydrogen bonds in the product structure, and direction of cyclization are attractive features of this reaction.
Collapse
Affiliation(s)
- Solmaz Karami
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Faezeh Mirzaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
17
|
Yan H, Jia SK, Geng YH, Han JJ, Hua YZ, Wang MC. Dinuclear zinc-catalyzed asymmetric Friedel-Crafts alkylation/cyclization of 3-aminophenols with α,α-dicyanoolefins. Chem Commun (Camb) 2021; 57:9854-9857. [PMID: 34490871 DOI: 10.1039/d1cc04177k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An enantioselective Friedel-Crafts alkylation/cyclization tandem reaction of 3-aminophenols with α,α-dicyanoolefins has been performed successfully using a chiral dinuclear zinc catalyst, leading to a range of chiral 2-amino-4H-chromenes (up to 98% yield and >99% ee). To the best of our knowledge, this is the first asymmetric example of the dinuclear zinc-catalysed functionalization of aromatic C(sp2)-H bonds.
Collapse
Affiliation(s)
- Hang Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yu-Huan Geng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jiao-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Parida C, Mondal B, Ghosh A, Pan SC. Organocatalytic Asymmetric Synthesis of Spirooxindole Embedded Oxazolidines. J Org Chem 2021; 86:13082-13091. [PMID: 34448585 DOI: 10.1021/acs.joc.1c00644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The first organocatalytic asymmetric synthesis of spirooxindole embedded oxazolidines has been developed via a domino reaction involving hemiaminal formation, followed by an unprecedented aza-Michael reaction between isatin derived N-Boc ketimines and γ-hydroxy enones. A quinine derived bifunctional squaramide catalyst was found to be efficient for this reaction, and the products were obtained in good diastereoselectivity and with high enantioselectivity.
Collapse
Affiliation(s)
- Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Buddhadeb Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
19
|
Zhong X, Luo J, Zhou W, Cai Q. A Synthesis of Spirooxindole‐Isoindolinones Through Ugi Reaction Followed by Copper‐Catalyzed Tandem C−N/C−C Coupling Process. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xianqiang Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
| | - Jianghao Luo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
| | - Wei Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 People's Republic of China
| |
Collapse
|
20
|
Yang X, Li C, Zhang F, Qi C. An efficient domino strategy for synthesis of 3-substituted 4-oxo-4,5-dihydro-1H-pyrrolo[3,2-c]pyridine derivatives in water. Mol Divers 2021; 26:1663-1674. [PMID: 34414516 DOI: 10.1007/s11030-021-10294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
A strategy for catalyst-free domino reaction of 4-aminopyridin-2(1H)-ones, arylglyoxal hydrates and different 1,3-dicarbonyl compounds in water has been established. The mild and efficient procedure afforded pyrrolo[3,2-c]pyridine derivatives with 76-94% yields after simple crystallization. The present procedure shows promising characteristics, such as readily available starting materials, the use of water as reaction media, simple and efficient one-pot operation, and avoiding the need for any hazardous or expensive catalysts.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Chunmei Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Furen Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
21
|
Lalitha A, Vinoth N, Vadivel P. Expedient Synthesis and Antibacterial Activity of Tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile Derivatives Using Piperidine as Catalyst. Synlett 2021. [DOI: 10.1055/s-0040-1706682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractA convenient synthesis of 2′-amino-7′,7′-dimethyl-2,5′-dioxo-1′-(phenylamino)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile derivatives has been designed using different substituted isatins, various 5,5-dimethyl-3-(2-phenylhydrazinyl)cyclohex-2-enones (arylhydrazones of dimedone) and malononitrile in ethanol with piperidine as catalyst at room temperature. The structures of the synthesized compounds have been elucidated by various spectroscopic techniques. The selected compounds have also been evaluated for their antibacterial activities against human pathogenic bacteria.
Collapse
|
22
|
Convenient construction of spiro[indoline-3,5'-pyrrolo[3,4-c]carbazole] and spiro[indene-2,5'-pyrrolo[3,4-c]carbazole] via acid-catalyzed Diels-Alder reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Brandão P, Marques CS, Carreiro EP, Pineiro M, Burke AJ. Engaging Isatins in Multicomponent Reactions (MCRs) - Easy Access to Structural Diversity. CHEM REC 2021; 21:924-1037. [PMID: 33599390 DOI: 10.1002/tcr.202000167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Multicomponent reactions (MCRs) are a valuable tool in diversity-oriented synthesis. Its application to privileged structures is gaining relevance in the fields of organic and medicinal chemistry. Isatin, due to its unique reactivity, can undergo different MCRs, affording multiple interesting scaffolds, namely oxindole-derivatives (including spirooxindoles, bis-oxindoles and 3,3-disubstituted oxindoles) and even, under certain conditions, ring-opening reactions occur that leads to other heterocyclic compounds. Over the past few years, new methodologies have been described for the application of this important and easily available starting material in MCRs. In this review, we explore these novelties, displaying them according to the structure of the final products obtained.
Collapse
Affiliation(s)
- Pedro Brandão
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal.,LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Carolina S Marques
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - Elisabete P Carreiro
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| | - M Pineiro
- University of Coimbra, CQC and Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Anthony J Burke
- LAQV-REQUIMTE, University of Évora, Rua Romão Ramalho, 59, 7000, Évora, Portugal.,University of Evora, Department of Chemistry, Rua Romão Ramalho, 59, 7000, Évora, Portugal
| |
Collapse
|
24
|
Wang Y, Cobo AA, Franz AK. Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00220a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Catalytic asymmetric MCCRs for enantioselective synthesis of spirooxindoles by using chiral phosphoric acids, amines, bifunctional thiourea/squaramides and metal-based reagents as catalysts.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education
- Yunnan Normal University
- Kunming 650092
- P. R. China
| | - Angel A. Cobo
- Department of Chemistry
- University of California
- Davis
- USA
| | | |
Collapse
|
25
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
26
|
Jaiswal MK, Singh B, De S, Singh N, Singh RP. Stereoselective formal [3 + 3] annulation of 3-alkylidene-2-oxindoles with β,γ-unsaturated α-keto esters. Org Biomol Chem 2020; 18:9852-9862. [PMID: 33295933 DOI: 10.1039/d0ob02046j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Diazabicyclo[2.2.2]octane (DABCO)-catalyzed [3 + 3] cycloaddition reaction of 3-alkylidene-2-oxindole and β,γ-unsaturated α-keto esters under mild reaction conditions afforded the spirocyclohexene-oxindole with excellent diastereoselectivity. The [3 + 3] annulation is found to proceed through a vinylogous Michael-aldol cascade reaction and it allows rapid access to a diverse set of highly functionalized spirocyclohexene-oxindoles. Also, a bioactivity study of the compounds on mammalian sarcoma cells has reflected cell growth inhibitory/anti-cancer properties.
Collapse
Affiliation(s)
- Manish K Jaiswal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi - 110 016, India.
| | | | | | | | | |
Collapse
|
27
|
Li C, Zhang F, Shen Z. An efficient domino strategy for synthesis of novel spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Shamaei A, Mahmoudi B, Kazemnejadi M, Nasseri MA. Mg‐catalyzed one‐pot preparation of benzimidazoles and spirooxindoles by an immobilized chlorophyll
b
on magnetic nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arezoo Shamaei
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
| | - Boshra Mahmoudi
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
- Research Center Sulaimani Polytechnic University Sulaimani Iraq
| | - Milad Kazemnejadi
- Department of Chemistry, Faculty of Science University of Birjand Birjand Iran
| | | |
Collapse
|
29
|
Deng Q, Yu A, Zhou J, Cao Q, Meng X. Construction of Benzothiophene or Benzothiopheno[2,3- e]azepinedione Derivatives via Three-Component Domino or One-Pot Sequences. J Org Chem 2020; 85:12270-12283. [PMID: 32883080 DOI: 10.1021/acs.joc.0c01505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient three-component domino or one-pot strategy has been developed for the synthesis of medicinally important benzothiophene and benzothiopheno[2,3-e]azepinedione derivatives for the first time. Amine-promoted selective cleavage of C-S bond of thioisatin is the key step in this process. The reported methodology benefits from environmentally friendly solvent (H2O), wide substrate scope, good functional group tolerance, and high reaction yields.
Collapse
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jie Zhou
- Large Instruments Sharing Service Centre, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qin Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
30
|
Mirzaei-Mosbat M, Ghorbani-Vaghei R. Condensation–cyclization reaction for one-pot synthesis of 1,3-thiazolidin-4-one derivatives by poly(p-phenylenediamine) grafted on LDHs as a catalyst with green tool. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1812611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maryam Mirzaei-Mosbat
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
31
|
Liu Y, Ahmed S, Qin XY, Rouh H, Wu G, Li G, Jiang B. Synthesis of Diastereoenriched α-Aminomethyl Enaminones via a Brønsted Acid-Catalyzed Asymmetric aza-Baylis-Hillman Reaction of Chiral N-Phosphonyl Imines. Chem Asian J 2020; 15:1125-1131. [PMID: 32067345 DOI: 10.1002/asia.201901734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Indexed: 01/09/2023]
Abstract
An effective chiral GAP methodology for preparing α-aminomethyl enaminones through a (R)-CSA-catalyzed asymmetric aza-Baylis-Hillman reaction is reported. Excellent yields and high diastereoselectivity could be obtained under mild conditions and convenient GAP techniques. The confirmations of the absolute configuration of N-phosphonyl imine and chiral enaminone by X-ray diffraction provides an explicit explanation of the chirality mechanism for GAP chemistry.
Collapse
Affiliation(s)
- Yangxue Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Sultan Ahmed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Xiao-Yan Qin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hossein Rouh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Guanzhao Wu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA.,Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210093, China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA.,Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering Nanjing University, Nanjing, 210093, China
| | - Bo Jiang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
32
|
Maury SK, Kumar D, Kamal A, Singh HK, Kumari S, Singh S. A facile and efficient multicomponent ultrasound-assisted "on water" synthesis of benzodiazepine ring. Mol Divers 2020; 25:131-142. [PMID: 31919739 DOI: 10.1007/s11030-019-10031-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/28/2019] [Indexed: 10/25/2022]
Abstract
A facile and efficient multicomponent synthesis of benzodiazepine ring in water under ultrasound irradiation is reported first time. The current procedure escapes traditional chromatography and purification process and provided the product in excellent yields of 95% as compared to conventional methods. The approach was also validated on gram-scale synthesis.
Collapse
Affiliation(s)
- Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Dhirendra Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Himanshu Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Savita Kumari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
33
|
Nunes PSG, Vidal HDA, Corrêa AG. Recent advances in catalytic enantioselective multicomponent reactions. Org Biomol Chem 2020; 18:7751-7773. [PMID: 32966520 DOI: 10.1039/d0ob01631d] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multicomponent reactions (MCRs) undoubtedly correspond to one of the synthetic strategies that best fit the new demands of chemistry for presenting high atom economy and enabling molecular diversity. However, many challenges still exist when products possessing stereogenic centres are formed. The field of asymmetric catalytic reactions has achieved significant progress in recent decades; new applications for chiral ligands and catalysts have been demonstrated and new catalysts have been specifically designed for challenging chemical conversions. In this sense, highly efficient approaches for classic multicomponent reactions such as the Ugi reaction and a number of new asymmetric MCRs have been described. In this review we discuss the recent developments that enable catalytic enantioselective MCRs including the proposed mechanistic pathways.
Collapse
Affiliation(s)
- Paulo Sérgio Gonçalves Nunes
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | | | | |
Collapse
|
34
|
Zhan SC, Sun J, Liu RZ, Yan CG. Diastereoselective construction of carbazole-based spirooxindoles via the Levy three-component reaction. Org Biomol Chem 2020; 18:163-168. [DOI: 10.1039/c9ob02013f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CuSO4 catalyzed three-component reaction of indole-2-acetate, aromatic aldehydes and 3-methyleneoxindoles in toluene at 130 °C afforded polysubstituted spiro[carbazole-3,3′-indolines] in good yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Shao-Cong Zhan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jing Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Ru-Zhang Liu
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
35
|
Rahimi F, Bayat M, Hosseini H. Synthesis of spiroimidazopyridineoxindole, spiropyridopyrimidineoxindole and spiropyridodiazepineoxindole derivatives based on heterocyclic ketene aminals via a four-component reaction. RSC Adv 2019; 9:16384-16389. [PMID: 35516376 PMCID: PMC9064345 DOI: 10.1039/c8ra10379h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Here, we have described the synthesis of novel spiropyridineoxindole derivatives containing a pyridone ring via a four-component reaction between various diamines, 1,1-bis(methylthio)-2-nitroethylene, isatin derivatives and Meldrum's acid in the presence of p-toluenesulfonic acid. This protocol has some advantages such as the availability of starting materials, good yields, facile separation of products, the use of ethanol as an environmentally benign solvent and easy formation of three new bonds in one operation.
Collapse
Affiliation(s)
- Fatemeh Rahimi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran +98 28 33780040
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran +98 28 33780040
| | - Hajar Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University Qazvin Iran +98 28 33780040
| |
Collapse
|
36
|
Di Carmine G, Ragno D, Brandolese A, Bortolini O, Pecorari D, Sabuzi F, Mazzanti A, Massi A. Enantioselective Desymmetrization of 1,4-Dihydropyridines by Oxidative NHC Catalysis. Chemistry 2019; 25:7469-7474. [PMID: 30947379 DOI: 10.1002/chem.201901243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/21/2022]
Abstract
The unprecedented desymmetrization of prochiral dialdehydes catalyzed by N-heterocyclic carbenes under oxidative conditions was applied to the highly enantioselective synthesis of 1,4-dihydropyridines (DHPs) starting from 3,5-dicarbaldehyde substrates. Synthetic elaboration of the resulting 5-formyl-1,4-DHP-3-carboxylates allowed for access to the class of pharmaceutically relevant 1,4-DHP-3,5-dicarboxylates (Hantzsch esters). DFT calculations suggested that the enantioselectivity of the process is determined by the transition state involving the oxidation of the Breslow intermediate by the external quinone oxidant.
Collapse
Affiliation(s)
- Graziano Di Carmine
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Daniele Ragno
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Arianna Brandolese
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Daniel Pecorari
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, V. Risorgimento 4, I-40136, Bologna, Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Roma Tor Vergata, V. Ricerca Scientifica, I-00131, Roma, Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, V. Risorgimento 4, I-40136, Bologna, Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| |
Collapse
|
37
|
Balaboina R, Thirukovela N, Kankala S, Balasubramanian S, Bathula SR, Vadde R, Jonnalagadda SB, Vasam CS. Synergistic Catalysis of Ag(I) and Organo‐
N
‐heterocyclic Carbenes: One‐Pot Synthesis of New Anticancer Spirooxindole‐1,4‐dihydropyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ramesh Balaboina
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | | | - Shravankumar Kankala
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | - Sridhar Balasubramanian
- X-ray Crystallography DivisionCSIR–Indian Institute of Chemical Technology Hyderabad- 500007, Telangana State India
| | - Surendar Reddy Bathula
- Division of Natural Product ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad- 500007, Telangana State India
| | - Ravinder Vadde
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | - Sreekantha B Jonnalagadda
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalWestville Campus, Chiltern Hills, Durban- 4000, South Africa
| | - Chandra Sekhar Vasam
- Department of Pharmaceutical ChemistryTelangana University Nizamabad- 503322, Telangana State India
| |
Collapse
|
38
|
Liu XL, Zuo X, Wang JX, Chang SQ, Wei QD, Zhou Y. A bifunctional pyrazolone–chromone synthon directed organocatalytic double Michael cascade reaction: forging five stereocenters in structurally diverse hexahydroxanthones. Org Chem Front 2019. [DOI: 10.1039/c9qo00265k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The merging of two or more known natural product-based scaffolds is a powerful and routine strategy to develop bioactive small molecules.
Collapse
Affiliation(s)
- Xiong-Li Liu
- College of Pharmaceutical Sciences
- Guizhou University of Chinese Medicine
- Guiyang
- P. R. China
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
| | - Xiong Zuo
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Jun-Xin Wang
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Shun-qin Chang
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Qi-Di Wei
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine
- Guizhou University
- Guiyang
- P. R. China
| | - Ying Zhou
- College of Pharmaceutical Sciences
- Guizhou University of Chinese Medicine
- Guiyang
- P. R. China
| |
Collapse
|
39
|
Miao YH, Hua YZ, Wang MC. Dinuclear zinc cooperative catalytic three-component reactions for highly enantioselective synthesis of 3,3′-dihydrofuran spirooxindoles. Org Biomol Chem 2019; 17:7172-7181. [DOI: 10.1039/c9ob01233h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new dinuclear zinc cooperative catalytic enantioselective three-component reaction via a domino Knoevenagel/Michael/cyclization sequence has been developed.
Collapse
Affiliation(s)
- Yu-Hang Miao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Yuan-Zhao Hua
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Min-Can Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| |
Collapse
|
40
|
Robert Khumalo M, Maddila SN, Maddila S, Jonnalagadda SB. A multicomponent, facile and catalyst-free microwave-assisted protocol for the synthesis of pyrazolo-[3,4-b]-quinolines under green conditions. RSC Adv 2019; 9:30768-30772. [PMID: 35529349 PMCID: PMC9072209 DOI: 10.1039/c9ra04604f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022] Open
Abstract
A facile, swift and ecofriendly microwave-assisted multi-component/one-pot protocol is designed for the synthesis of novel pyrazolo-[3,4-b]-quinolines at ambient temperature in aqueous ethanol as a reaction medium. The 18 novel pyrazolo-[3,4-b]-quinoline derivatives were synthesized by fusion of chosen aryl aldehyde, dimedone and 5-amino-3-methyl-1-phenylpyrazole in excellent yields (91–98%). All the molecular structures were confirmed by 1H-NMR, 15N-NMR, 13C-NMR, and HRMS data analysis. Operational simplicity, easy handling, one-step simple workup procedure, mild reaction conditions, short reaction time (≤10 min), high selectivity and no by-product formation are the striking features of the protocol. A facile, swift and ecofriendly microwave-assisted multi-component/one-pot protocol is designed for the synthesis of novel pyrazolo-[3,4-b]-quinolines at ambient temperature in aqueous ethanol as a reaction medium.![]()
Collapse
Affiliation(s)
| | | | - Suresh Maddila
- School of Chemistry & Physics
- University of KwaZulu-Natal
- Durban
- South Africa
| | | |
Collapse
|
41
|
Konda S, Jakkampudi S, Arman HD, Zhao JCG. Enantioselective synthesis of spiro[ 4H-pyran-3,3'-oxindole] derivatives catalyzed by cinchona alkaloid thioureas: Significant water effects on the enantioselectivity. SYNTHETIC COMMUN 2019; 49:2971-2982. [PMID: 33012850 DOI: 10.1080/00397911.2019.1651866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
An efficient stereoselective three-component reaction for the synthesis of functionalized spiro[4H-pyran-3,3'-oxindole] derivatives was realized through an organocatalyzed domino Knoevenagel/Michael/cyclization reaction using a cinchonidine-derived thiourea as the catalyst. Using water as the additive was found to improve the product ee values significantly. Under the optimized conditions, the reactions between isatins, malononitrile, and 1,3-dicarbonyl compounds yield the desired spirooxindole products in good yields (71-92%) and moderate to high ee values (up to 87% ee).
Collapse
Affiliation(s)
- Swapna Konda
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - Satish Jakkampudi
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0698, USA
| |
Collapse
|
42
|
TBAI/K
2
S
2
O
8
‐Promoted Multicomponent Domino Reaction of Aryl Methyl Ketones, Enaminones, and Indoles: A Facile Access to Multisubstituted 3‐Indolyl‐pyrroles. ChemistrySelect 2018. [DOI: 10.1002/slct.201803317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Gu Z, Wu B, Jiang GF, Zhou YG. Synthesis of Benzofuran-fused 1,4-Dihydropyridines via
Bifunctional Squaramide-catalyzed Formal [4+2] Cycloaddition of Azadienes with Malononitrile. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800330] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng Gu
- College of Chemistry and Chemical Engineering, Hunan University; Changsha Hunan 410082 China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian Liaoning 116023 China
| | - Guo-Fang Jiang
- College of Chemistry and Chemical Engineering, Hunan University; Changsha Hunan 410082 China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian Liaoning 116023 China
| |
Collapse
|
44
|
Ţînţaş ML, Azzouz R, Peauger L, Gembus V, Petit E, Bailly L, Papamicaël C, Levacher V. Access to Highly Enantioenriched Donepezil-like 1,4-Dihydropyridines as Promising Anti-Alzheimer Prodrug Candidates via Enantioselective Tsuji Allylation and Organocatalytic Aza-Ene-Type Domino Reactions. J Org Chem 2018; 83:10231-10240. [PMID: 30004228 DOI: 10.1021/acs.joc.8b01442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work aims at exploiting both the enantioselective Tsuji allylation of allyl carbonate 6 and an organocatalytic aza-ene-type domino reaction between enal 3a and β-enaminone 4a to develop a straightforward access to all of the four possible stereoisomers of a donepezil-like 1,4-dihydropyridine 1a (er up to 99.5:0.5; overall yield up 64%), an anti-Alzheimer's prodrug candidate. This strategy was extended to the preparation of other enantioenriched 1,4-dihydropyridines 1b-i (eight examples), highlighting its potential in the development of these chiral AChE inhibitors.
Collapse
Affiliation(s)
| | - Rabah Azzouz
- VFP Therapies, R&D , 1 rue Tesnière , 76130 Mont Saint-Aignan , France
| | - Ludovic Peauger
- VFP Therapies, R&D , 1 rue Tesnière , 76130 Mont Saint-Aignan , France
| | - Vincent Gembus
- VFP Therapies, R&D , 1 rue Tesnière , 76130 Mont Saint-Aignan , France
| | - Emilie Petit
- Normandie Université , UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen , France
| | - Laetitia Bailly
- Normandie Université , UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen , France
| | - Cyril Papamicaël
- Normandie Université , UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen , France
| | - Vincent Levacher
- Normandie Université , UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen , France
| |
Collapse
|
45
|
Zhou P, Hu B, Wang Y, Zhang Q, Li X, Yan S, Yu F. Convenient Synthesis of Quinoline-4-carboxylate Derivatives through the Bi(OTf)3
-Catalyzed Domino Cyclization/Esterification Reaction of Isatins with Enaminones in Alcohols. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pan Zhou
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Biao Hu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Yanqin Wang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Qiaohe Zhang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Xiang Li
- Research Center for Analysis and Measurement; Kunming University of Science and Technology; 650500 Kunming P. R. China
| | - Shengjiao Yan
- School of Chemical Science and Technology; Yunnan University; 650500 Kunming P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| |
Collapse
|
46
|
Mohammadi Ziarani G, Moradi R, Lashgari N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Ramachary DB, Reddy PS, Gujral J. Construction of 2-Thiabicyclo[3.3.1]nonanes by Organocatalytic Asymmetric Formal [3+3] Cycloaddition. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - P. Srinivasa Reddy
- Catalysis Laboratory; School of Chemistry; University of Hyderabad; 500 046 Hyderabad- India
| | - Jagjeet Gujral
- Catalysis Laboratory; School of Chemistry; University of Hyderabad; 500 046 Hyderabad- India
| |
Collapse
|
48
|
Ding A, Meazza M, Guo H, Yang JW, Rios R. New development in the enantioselective synthesis of spiro compounds. Chem Soc Rev 2018; 47:5946-5996. [DOI: 10.1039/c6cs00825a] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review we summarize the latest developments in the enantioselective synthesis of spirocompounds. The most important organometallic and organocatalytic methodologies are highlighted.
Collapse
Affiliation(s)
- Aishun Ding
- Department of Chemistry
- Fudan University
- Shanghai
- People's Republic of China
| | - Marta Meazza
- School of Chemistry. University of Southampton. Highfield Campus
- Southampton
- UK
| | - Hao Guo
- Department of Chemistry
- Fudan University
- Shanghai
- People's Republic of China
| | - Jung Woon Yang
- Department of Energy Science
- Sungkyunkwan University
- Suwon 16419
- South Korea
| | - Ramon Rios
- School of Chemistry. University of Southampton. Highfield Campus
- Southampton
- UK
- Department of Energy Science
- Sungkyunkwan University
| |
Collapse
|
49
|
Maruoka H, Shirouzu E, Masumoto E, Okabe-Nakahara F, Yamagata K. One-Pot Three-Component Synthesis of Novel Pyrazole-2,3-pyrroledicarboxylic Acid 2,3-Diesters. HETEROCYCLES 2018. [DOI: 10.3987/com-17-13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Mei GJ, Shi F. Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chem Commun (Camb) 2018; 54:6607-6621. [DOI: 10.1039/c8cc02364f] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The past four years have witnessed significant developments in the field of the catalytic asymmetric synthesis of spirooxindoles, and this feature article outlines the recent progress in this area, including the contributions of our group. This article is divided into sections according to the size and type of the generated spiro-ring fused at the C3-position of the oxindole core.
Collapse
Affiliation(s)
- Guang-Jian Mei
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Feng Shi
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|