1
|
Melesi S, Marabotti P, Milani A, Pigulski B, Gulia N, Pińkowski P, Szafert S, Del Zoppo M, Castiglioni C, Casari CS. Impact of Halogen Termination and Chain Length on π-Electron Conjugation and Vibrational Properties of Halogen-Terminated Polyynes. J Phys Chem A 2024; 128:2703-2716. [PMID: 38507898 PMCID: PMC11017249 DOI: 10.1021/acs.jpca.3c07915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
We explored the optoelectronic and vibrational properties of a new class of halogen-terminated carbon atomic wires in the form of polyynes using UV-vis, infrared absorption, Raman spectroscopy, X-ray single-crystal diffraction, and DFT calculations. These polyynes terminate on one side with a cyanophenyl group and on the other side, with a halogen atom X (X = Cl, Br, I). We focus on the effect of different halogen terminations and increasing lengths (i.e., 4, 6, and 8 sp-carbon atoms) on the π-electron conjugation and the electronic structure of these systems. The variation in the sp-carbon chain length is more effective in tuning these features than changing the halogen end group, which instead leads to a variety of solid-state architectures. Shifts between the vibrational frequencies of samples in crystalline powders and in solution reflect intermolecular interactions. In particular, the presence of head-to-tail dimers in the crystals is responsible for the modulation of the charge density associated with the π-electron system, and this phenomenon is particularly important when strong I··· N halogen bonds occur.
Collapse
Affiliation(s)
- Simone Melesi
- Department
of Energy, Micro and Nanostructured Materials Laboratory - NanoLab,
Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| | - Pietro Marabotti
- Department
of Energy, Micro and Nanostructured Materials Laboratory - NanoLab,
Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
- Institut
für Physik and IRIS Adlershof, Humboldt
Universität zu Berlin, 12489 Berlin, Germany
| | - Alberto Milani
- Department
of Energy, Micro and Nanostructured Materials Laboratory - NanoLab,
Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| | - Bartłomiej Pigulski
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Nurbey Gulia
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Piotr Pińkowski
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Sławomir Szafert
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Mirella Del Zoppo
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Chiara Castiglioni
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Carlo S. Casari
- Department
of Energy, Micro and Nanostructured Materials Laboratory - NanoLab,
Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| |
Collapse
|
2
|
Guda MR, Valieva MI, Kopchuk DS, Aluru R, Khasanov AF, Taniya OS, Novikov AS, Zyryanov GV, Ranu BC. One-pot Synthesis and Photophysical Studies of Α-cycloamino-substituted 5-aryl-2,2'-bipyridines. J Fluoresc 2024; 34:579-586. [PMID: 37326925 DOI: 10.1007/s10895-023-03304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
A series of α-cycloamine substituted 2,2'-bipyridines 3ae'-3ce' was obtained via the one-pot approach based on ipso-substitution of a cyano-group in 1,2,4-triazines, followed by aza-Diels-Alder reaction in good yields. Photophysical properties, including fluorosolvatochromism, were studied for 3ae'-3ce' and were compared with α-unsubstituted 2,2'-bipyridines. In addition, dipole moments differences in ground and excited states were calculated by both Lippert-Mataga equation and DFT studies and were compared to each other. The correlation between the size of cycloamine unit and the dipole moments differences value (based on Lippert-Mataga equation) was observed. In addition charge transfer indices (DCT, Λ, H and t) were calculated to demonstrate influence of molecular structure on the intramolecular charge transfer degree.
Collapse
Affiliation(s)
- Mallikarjuna R Guda
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
| | - Maria I Valieva
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya St. / 20 St., Ekaterinburg, 620137, Russia
| | - Dmitry S Kopchuk
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya St. / 20 St., Ekaterinburg, 620137, Russia
| | - Rammohan Aluru
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
| | - Albert F Khasanov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia.
| | - Olga S Taniya
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
| | - Alexander S Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
- Joint Research Institute of Chemistry, Faculty of Physics, Mathematics and Natural Sciences, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russia
| | - Grigory V Zyryanov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya St. / 20 St., Ekaterinburg, 620137, Russia
| | - Brindaban C Ranu
- Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
3
|
Pigulski B, Misiak K, Męcik P, Szafert S. Cycloaddition-Retro-Electrocyclization Click Reaction of Amine End-Capped Oligoynes with Tetracyanoethylene. Chemistry 2023:e202302725. [PMID: 37702289 DOI: 10.1002/chem.202302725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
This study shows the first example of cycloaddition-retro-electrocyclization (CA-RE) click reaction involving nitrogen end-capped push-pull oligoynes. The reported CA-RE reaction with TCNE (tetracyanoethylene) is fully regioselective and leads exclusively to the unprecedented TCBD (tetracyanobuta-1,3-diene-2,3-diyl) end-capped carbon rods. The molecular structure of the products was unambiguously confirmed using X-ray single crystal diffraction and their optical and electronic properties were investigated experimentally and rationalized using DFT (density functional theory) calculations.
Collapse
Affiliation(s)
- Bartłomiej Pigulski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Klaudia Misiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Patrycja Męcik
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
4
|
Li J, Liu Y, Chen Z, Li J, Ji X, Chen L, Huang Y, Liu Q, Li Y. Synthesis of Substituted Thiophenes through Dehydration and Heterocyclization of Alkynols. J Org Chem 2022; 87:3555-3566. [PMID: 35189680 DOI: 10.1021/acs.joc.1c03114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A protocol was described for obtaining a variety of substituted thiophenes with functional potential via metal-free dehydration and sulfur cyclization of alkynols with elemental sulfur (S8) or EtOCS2K in moderate-to-good yields. The method provides the base-free generation of a trisulfur radical anion (S3•-) and its addition to alkynes as an initiator. This research broadens the applications of S3•- in the synthesis of sulfur-containing heterocycles.
Collapse
Affiliation(s)
- Jian Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Zebin Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Jiaming Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Xiaoliang Ji
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| | - Qiang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China.,Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529090, China
| |
Collapse
|
5
|
Abedinifar F, Babazadeh Rezaei E, Biglar M, Larijani B, Hamedifar H, Ansari S, Mahdavi M. Recent strategies in the synthesis of thiophene derivatives: highlights from the 2012-2020 literature. Mol Divers 2021; 25:2571-2604. [PMID: 32734589 DOI: 10.1007/s11030-020-10128-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Thiophene-based analogs have been fascinated by a growing number of scientists as a potential class of biologically active compounds. Furthermore, they play a vital role for medicinal chemists to improve advanced compounds with a variety of biological effects. The current review envisioned to highlight some recent and particularly remarkable examples of the synthesis of thiophene derivatives by heterocyclization of various substrates from 2012 on.
Collapse
Affiliation(s)
- Fahimeh Abedinifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Elham Babazadeh Rezaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Halleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Samira Ansari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran.
| |
Collapse
|
6
|
Męcik P, Pigulski B, Szafert S. Serendipitous Formation of Various Selenium Heterocycles Hidden in the Classical Synthesis of Selenophene. Org Lett 2021; 23:1066-1070. [PMID: 33502204 PMCID: PMC7874900 DOI: 10.1021/acs.orglett.0c04275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 12/26/2022]
Abstract
Synthesis of complex di(selenophen-3-yl)diselenides and 3-methylene-3H-1,2-diselenoles directly from 1-bromobutadiynes is described. The transformation is performed under conditions used before for the synthesis of simple selenophenes from butadiynes. The reaction is operationally straightforward, and complex products were obtained in high yields. Structures of the final products were unambiguously confirmed by the means of 77Se NMR and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Patrycja Męcik
- Faculty of Chemistry, University
of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Bartłomiej Pigulski
- Faculty of Chemistry, University
of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University
of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
7
|
Abstract
Simple grinding of azulenes with 1-haloalkynes and solid Al2O3 in a mortar leads to alkynylated azulenes without the use of solvents or precious metal catalysts. Such a method was used for the synthesis of azulene end-capped carbon molecular wires.
Collapse
Affiliation(s)
- Agata Jarszak-Tyl
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Bartłomiej Pigulski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Gulia N, Pigulski B, Szafert S. Base‐Promoted Double Amination of 1‐Haloalkynes: Direct Synthesis of Ene‐1,1‐diamines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nurbey Gulia
- Faculty of Chemistry University of Wrocław 14 F. Joliot‐Curie 50‐383 Wrocław Poland
| | - Bartłomiej Pigulski
- Faculty of Chemistry University of Wrocław 14 F. Joliot‐Curie 50‐383 Wrocław Poland
| | - Sławomir Szafert
- Faculty of Chemistry University of Wrocław 14 F. Joliot‐Curie 50‐383 Wrocław Poland
| |
Collapse
|
9
|
Habert L, Diachenko I, Gillaizeau I. Rapid synthesis of 3-amino-1 H-isochromene from ortho-ynamidyl het(aryl) aldehyde derivatives. RSC Adv 2020; 10:9934-9939. [PMID: 35498568 PMCID: PMC9050208 DOI: 10.1039/d0ra00768d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023] Open
Abstract
A simple and original efficient synthesis of 3-amino-1H-isochromene bearing a bromine atom at the C-1 position via a 6-endo-cyclization approach from in situ generated ortho-ynamidyl het(aryl) aldehyde derivatives is achieved under mild reaction conditions and with good yields. Original ortho-ynamidyl benzaldehyde compounds were also successfully obtained. Fast synthesis of 3-amino-1H-isochromene from in situ generated ortho-ynamidyl het(aryl) aldehyde derivatives.![]()
Collapse
Affiliation(s)
- Loïc Habert
- Institute of Organic and Analytical Chemistry
- ICOA
- UMR 7311
- CNRS
- Université d'Orléans, rue de Chartres
| | - Iryna Diachenko
- Institute of Organic and Analytical Chemistry
- ICOA
- UMR 7311
- CNRS
- Université d'Orléans, rue de Chartres
| | - Isabelle Gillaizeau
- Institute of Organic and Analytical Chemistry
- ICOA
- UMR 7311
- CNRS
- Université d'Orléans, rue de Chartres
| |
Collapse
|
10
|
Zhai S, Zhang X, Cheng B, Li H, Li Y, He Y, Li Y, Wang T, Zhai H. Synthesis of tetrasubstituted thiophenes via a [3+2] cascade cyclization reaction of pyridinium 1,4-zwitterionic thiolates and activated allenes. Chem Commun (Camb) 2020; 56:3085-3088. [DOI: 10.1039/d0cc00262c] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A [3+2] cascade cyclization reaction of pyridinium 1,4-zwitterionic thiolates and activated allenes was developed to access tetrasubstituted thiophenes.
Collapse
Affiliation(s)
- Shengxian Zhai
- College of Chemistry and Environmental Engineering
- Anyang Institute of Technology
- Anyang 455000
- China
| | - Xinping Zhang
- Institute of Marine Biomedicine
- Shenzhen Polytechnic
- Shenzhen 518055
- China
- State Key Laboratory of Applied Organic Chemistry
| | - Bin Cheng
- College of Chemistry and Environmental Engineering
- Anyang Institute of Technology
- Anyang 455000
- China
- Institute of Marine Biomedicine
| | - Hui Li
- Institute of Marine Biomedicine
- Shenzhen Polytechnic
- Shenzhen 518055
- China
- State Key Laboratory of Applied Organic Chemistry
| | - Yuntong Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Yixuan He
- Institute of Marine Biomedicine
- Shenzhen Polytechnic
- Shenzhen 518055
- China
- State Key Laboratory of Applied Organic Chemistry
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Taimin Wang
- Institute of Marine Biomedicine
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Hongbin Zhai
- College of Chemistry and Environmental Engineering
- Anyang Institute of Technology
- Anyang 455000
- China
- Institute of Marine Biomedicine
| |
Collapse
|
11
|
Okuda Y, Seo T, Shigezane Y, Watanabe H, Akashi H, Iwanaga T, Orita A. Synthesis of Ph2P(O)-stabilized Ynamines via C(sp)–N Bond Formation and Their Dephosphorylative Copper-catalyzed Click Reaction. CHEM LETT 2019. [DOI: 10.1246/cl.190647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yasuhiro Okuda
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Tomoyo Seo
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Yuki Shigezane
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Hikaru Watanabe
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Haruo Akashi
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Tetsuo Iwanaga
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Akihiro Orita
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
12
|
Travis CR, Mazur LE, Peairs EM, Gaunt GH, Young DD. Mechanistic investigation and further optimization of the aqueous Glaser-Hay bioconjugation. Org Biomol Chem 2019; 17:3396-3402. [PMID: 30869108 PMCID: PMC6482449 DOI: 10.1039/c9ob00327d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Glaser-Hay bioconjugation has recently emerged as an efficient and attractive method to generate stable, useful bioconjugates with numerous applications, specifically in the field of therapeutics. Herein, we investigate the mechanism of the aqueous Glaser-Hay coupling to better understand optimization strategies. In doing so, it was identified that catalase is able to minimize protein oxidation and improve coupling efficiency, suggesting that hydrogen peroxide is produced during the aqueous Glaser-Hay bioconjugation. Further, several new ligands were investigated to minimize protein oxidation and maximize coupling efficiency. Finally, two novel strategies to streamline the Glaser-Hay bioconjugation and eliminate the need for secondary purification have been developed.
Collapse
Affiliation(s)
- Christopher R Travis
- Department of Chemistry, College of William & Mary, PO Box 8795, Williamsburg, VA, USA 23185.
| | | | | | | | | |
Collapse
|
13
|
Kerisit N, Ligny R, Gauthier ES, Guégan J, Toupet L, Guillemin J, Trolez Y. Synthesis and Reactivity of 5‐Bromopenta‐2,4‐diynenitrile (BrC 5N): an Access to π‐Conjugated Scaffolds. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201800232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicolas Kerisit
- Univ RennesEcole Nationale Supérieure de Chimie de RennesCNRSISCR – UMR6226 FR-35000 Rennes France
| | - Romain Ligny
- Univ RennesEcole Nationale Supérieure de Chimie de RennesCNRSISCR – UMR6226 FR-35000 Rennes France
| | - Etienne S. Gauthier
- Univ RennesEcole Nationale Supérieure de Chimie de RennesCNRSISCR – UMR6226 FR-35000 Rennes France
| | - Jean‐Paul Guégan
- Univ RennesEcole Nationale Supérieure de Chimie de RennesCNRSISCR – UMR6226 FR-35000 Rennes France
| | - Loïc Toupet
- Univ RennesCNRSIPR – UMR6251 FR-35000 Rennes France
| | - Jean‐Claude Guillemin
- Univ RennesEcole Nationale Supérieure de Chimie de RennesCNRSISCR – UMR6226 FR-35000 Rennes France
| | - Yann Trolez
- Univ RennesEcole Nationale Supérieure de Chimie de RennesCNRSISCR – UMR6226 FR-35000 Rennes France
| |
Collapse
|
14
|
Pigulski B, Gulia N, Szafert S. Reactivity of Polyynes: Complex Molecules from Simple Carbon Rods. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801350] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bartłomiej Pigulski
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Nurbey Gulia
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Sławomir Szafert
- Faculty of Chemistry; University of Wrocław; F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
15
|
Pigulski B, Jarszak A, Szafert S. Selective synthesis of iridium(iii) end-capped polyynes by oxidative addition of 1-iodopolyynes to Vaska's complex. Dalton Trans 2018; 47:17046-17054. [PMID: 30460964 DOI: 10.1039/c8dt04219e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The reaction of bis(triphenylphosphine)iridium(i) carbonyl chloride (Vaska's complex) with a series of 1-iodopolyynes (1-CnI and 2-CnI) gave σ-polyynyl iridium(iii) complexes with general formula R(C[triple bond, length as m-dash]C)nIr(PPh3)2(Cl)(I)(CO). The use of acetonitrile as a solvent appeared crucial and allowed selectively obtaining only one from a few possible isomers. The X-ray single crystal diffraction experiment for 2-C4[Ir]I allowed the determination of the exact structure of this complex. Further spectroscopic measurements, especially 31P NMR, confirmed the formation of the same type of isomers with trans coordinated phosphines in each case. All complexes were fully characterized with the use of NMR (1H, 13C and 31P), IR, UV/Vis, cyclic voltammetry and (ESI)HRMS techniques. Moreover, DFT calculations were performed for all the resulting species. The complexes with a linear carbon chain from butadiyne to decapentayne are the longest iridium end-capped polyynes known to date since only compounds with a (C[triple bond, length as m-dash]C)2 structural motif have been reported so far. Moreover, we confirmed that the synthetic approach, first used for palladium(ii) end-capped polyynes, may be also applied for the synthesis of other structurally new organometallic polyynes.
Collapse
Affiliation(s)
- Bartłomiej Pigulski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Agata Jarszak
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| |
Collapse
|
16
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
17
|
Nimmo ZM, Halonski JF, Chatkewitz LE, Young DD. Development of optimized conditions for Glaser-Hay bioconjugations. Bioorg Chem 2018; 76:326-331. [PMID: 29227916 PMCID: PMC5818283 DOI: 10.1016/j.bioorg.2017.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 02/02/2023]
Abstract
The efficient preparation of protein bioconjugates represents a route to novel materials, diagnostics, and therapeutics. We previously reported a novel bioorthogonal Glaser-Hay reaction for the preparation of covalent linkages between proteins and a reaction partner; however, deleterious protein degradation was observed under extended reaction conditions. Herein, we describe the systematic optimization of the reaction to increase coupling efficiency and decrease protein degradation. Two optimized conditions were identified varying either the pH of the reaction or the bidentate ligand employed, allowing for more rapid conjugations and/or less protein oxidation.
Collapse
Affiliation(s)
- Zachary M Nimmo
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 23187, USA
| | - John F Halonski
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 23187, USA
| | - Lindsay E Chatkewitz
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 23187, USA
| | - Douglas D Young
- Department of Chemistry, The College of William & Mary, Williamsburg, VA 23187, USA.
| |
Collapse
|
18
|
Wang Z, Qu Z, Xiao F, Huang H, Deng GJ. One-Pot Synthesis of 2,3,5-Trisubstituted Thiophenes through Three-Component Assembly of Arylacetaldehydes, Elemental Sulfur, and 1,3-Dicarbonyls. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701332] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zilong Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 People's Republic of China
- Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry; Chinese Academy of Sciences (CAS); Beijing 100190 People's Republic of China
| |
Collapse
|
19
|
|