1
|
Datta K, Mitra B, Pariyar GC, Ghosh P. KI mediated one-pot cascade reaction for synthesis of 1,3,4-selenadiazoles. RSC Adv 2024; 14:15449-15454. [PMID: 38741970 PMCID: PMC11089885 DOI: 10.1039/d4ra01994f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
An efficient catalytic system consisting of KI and K2S2O8 for a one-pot pseudo three-component cascade reaction in the preparation of a diverse array of 1,3,4-selenadiazole derivatives from easily accessible precursors aldehydes, hydrazine and elemental selenium is demonstrated in this paper. Here, KI is used as the surrogate of iodine and K2S2O8 as the oxidant. The key advantages of this protocol include an easy reaction set up, operational simplicity, high functional group tolerance and utilisation of low toxicity chemicals. Further, a radical quenching reaction was also performed to confirm the mechanistic pathway.
Collapse
Affiliation(s)
- Kumaresh Datta
- Department of Chemistry, University of North Bengal Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| | - Bijeta Mitra
- Department of Chemistry, University of North Bengal Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| | - Gyan Chandra Pariyar
- Department of Food Technology, University of North Bengal Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry, University of North Bengal Darjeeling West Bengal India +91 0353 2699001 +91 0353 2776381
| |
Collapse
|
2
|
Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2- a]pyridines. Org Biomol Chem 2023; 21:7267-7289. [PMID: 37655687 DOI: 10.1039/d3ob00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bhupesh Kumar Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Younis Rasool
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yashika Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Wang Q, Xiao F, Huang Z, Mao G, Deng GJ. CuBr 2-Catalyzed Annulation of 2-Bromo- N-Arylbenzimidamide with Se/S 8 Powder for the Synthesis of Benzo[ d]isoselenazole and Benzo[ d]isothiazole. J Org Chem 2023; 88:1963-1976. [PMID: 36720013 DOI: 10.1021/acs.joc.2c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A CuBr2-catalyzed annulation of 2-bromo-N-arylbenzimidamide with selenium/sulfur powder for the synthesis of benzo[d]isoselenazole and benzo[d]isothiazole in generally good yields was investigated. This synthetic strategy features good substrate scope and functional group tolerance. Furthermore, the corresponding products could be converted into N-aryl indoles via rhodiumIII-catalyzed ortho C-H activation of the N-phenyl ring, providing an efficient approach for axial aromatic molecules.
Collapse
Affiliation(s)
- Quanyuan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhi Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
5
|
Xu-Xu QF, Nishii Y, Miura M. Synthesis of Diarylselenides through Rh-Catalyzed Direct Diarylation of Elemental Selenium with Benzamides. J Org Chem 2022; 87:16887-16894. [DOI: 10.1021/acs.joc.2c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Qing-Feng Xu-Xu
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
7
|
Guo T, Li Z, Bi L, Fan L, Zhang P. Recent advances in organic synthesis applying elemental selenium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Matsumura M, Yasuike S, Kamiya T, Kawakubo M, Hayashi Y, Hyodo T, Murata Y, Yamaguchi K. Synthesis and Optical Properties of Azuleno[1,2-b]benzothiophene and Selenophene. HETEROCYCLES 2022. [DOI: 10.3987/com-21-s(r)3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Ma Y, Liu M, Zhou Y, Wu H. Synthesis of Organoselenium Compounds with Elemental Selenium. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101227] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang‐Tong Ma
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Miao‐Chang Liu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Yun‐Bing Zhou
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Hua‐Yue Wu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
10
|
Morajkar RV, Fatrekar AP, Mohanty A, Vernekar AA. A review on the role of transition metals in selenylation reactions. Curr Org Synth 2021; 19:366-392. [PMID: 34544346 DOI: 10.2174/1570179418666210920150142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has emerged as a distinctive area of research with tremendous utility in the synthesis of biologically and pharmaceutically active molecules. Significant synthetic approaches have been made for the construction of C-Se bonds which find use in other organic transformations. This review focuses on the versatility of transition metal-mediated selenylation reactions, providing insights into various synthetic pathways and mechanistic details. Further, this review aims to offer a broad perspective for designing efficient and novel catalysts to incorporate organoselenium moiety into the inert C-H bonds.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Abhijeet Mohanty
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| |
Collapse
|
11
|
Copper catalyzed synthesis of 3-((arylethynyl)selanyl)-1H-indoles via selenium insertion reaction by using elemental selenium. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Yuan Y, Zhou Z, Zhang L, Li LS, Lei A. Electrochemical Oxidative C3 Acyloxylation of Imidazo[1,2- a]pyridines with Hydrogen Evolution. Org Lett 2021; 23:5932-5936. [PMID: 34296890 DOI: 10.1021/acs.orglett.1c02032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The C3-functionalized imidazo[1,2-a]pyridines are versatile nitrogen-fused heterocycles; however, the methods for the C3 acyloxylation of imidazo[1,2-a]pyridines have never been reported. Herein we demonstrate the electrochemical oxidative C3 acyloxylation of imidazo[1,2-a]pyridines for the first time. Notably, by using electricity, the electrochemical oxidative C3 acyloxylation of imidazo[1,2-a]pyridines was carried out under mild conditions. Moreover, in addition to aromatic carboxylic acids, alkyl carboxylic acids were also competent substrates.
Collapse
Affiliation(s)
- Yong Yuan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.,Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zhilin Zhou
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Lin Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Liang-Sen Li
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.,College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Yadav RK, Sharma R, Gautam D, Joshi J, Chaudhary S. Lewis Acid/Oxidant as Rapid Regioselective Halogenating Reagent System for Direct Halogenation of Fused Bi‐/Tri‐cyclic Hetero‐Aromatic Congeners
via
−H bond Functionalization. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ravi Kant Yadav
- Laboratory of Organic and Medicinal Chemistry (OMC lab) Department of Chemistry Malaviya National Institute of Technology Jaipur Jawaharlal Nehru Marg Jaipur 302017 India
- Department of Chemistry Malaviya National Institute of Technology Jaipur Jawaharlal Nehru Marg Jaipur 302017 India
| | - Richa Sharma
- Laboratory of Organic and Medicinal Chemistry (OMC lab) Department of Chemistry Malaviya National Institute of Technology Jaipur Jawaharlal Nehru Marg Jaipur 302017 India
| | - Deepak Gautam
- Laboratory of Organic and Medicinal Chemistry (OMC lab) Department of Chemistry Malaviya National Institute of Technology Jaipur Jawaharlal Nehru Marg Jaipur 302017 India
| | - Jyoti Joshi
- Department of Chemistry Malaviya National Institute of Technology Jaipur Jawaharlal Nehru Marg Jaipur 302017 India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry (OMC lab) Department of Chemistry Malaviya National Institute of Technology Jaipur Jawaharlal Nehru Marg Jaipur 302017 India
| |
Collapse
|
14
|
Luz EQ, Silvério GL, Seckler D, Lima DB, Santana FS, Barbosa RV, Montes D'Oca CR, Rampon DS. One‐Pot Synthesis of 3‐Halo‐2‐organochalcogenylbenzo[
b
]chalcogenophenes from 1‐(2,2‐Dibromovinyl)‐2‐organochalcogenylbenzenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eduardo Q. Luz
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Gabriel L. Silvério
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Diego Seckler
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - David B. Lima
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Francielli S. Santana
- Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Ronilson V. Barbosa
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Caroline R. Montes D'Oca
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| | - Daniel S. Rampon
- Laboratory of Polymers and Catalysis (LaPoCa), Department of Chemistry Federal University of Paraná-UFPR P. O. Box 19061 Curitiba PR, 81531-980 Brazil
| |
Collapse
|
15
|
Abstract
The synthesis of organoselenium compounds continues to be a very active research area, due
to their distinct chemical, physical and biological properties. Selenium-based methods have developed
rapidly over the past few years and organoselenium chemistry has become a very powerful tool in the
hands of organic chemists. This review describes the synthesis of organocatalysed bioactive selenium
scaffolds especially including transition metal-catalysed diaryl selenide synthesis, Cu-catalysed selenium
scaffolds, Pd-catalysed selenium scaffolds, asymmetric catalysis, Nickel catalysed selenium scaffolds
and Rh-catalysed selenium scaffolds.
Collapse
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501- 1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501- 1193, Japan
| |
Collapse
|
16
|
Konwar D, Bora U. Recent Developments in Transition‐Metal‐Catalyzed Regioselective Functionalization of Imidazo[1, 2‐
a
]pyridine. ChemistrySelect 2021. [DOI: 10.1002/slct.202100144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dipika Konwar
- Department of Chemical Sciences Tezpur University, Napaam, Tezpur PIN 784028 Assam India
| | - Utpal Bora
- Department of Chemical Sciences Tezpur University, Napaam, Tezpur PIN 784028 Assam India
| |
Collapse
|
17
|
Yan K, Liu M, Wen J, Liu W, Li X, Liu X, Sui X, Shang W, Wang X. Copper-catalyzed domino synthesis of benzo[ d]imidazo[5,1- b][1,3]selenazoles involving sequential intermolecular cycloaddition and intramolecular Ullmann-type C–Se bond formation. Org Chem Front 2021. [DOI: 10.1039/d1qo00851j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A copper-catalyzed domino synthesis of benzo[d]imidazo[5,1-b][1,3]selenazoles involving sequential intermolecular cycloaddition and intramolecular Ullmann-type C–Se bond formation has been developed.
Collapse
Affiliation(s)
- Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Min Liu
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Weihua Liu
- Network Security and Information Management Center, Jining University, Qufu, 273165, P. R. China
| | - Xue Li
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiao Liu
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xinlei Sui
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Wenda Shang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiu Wang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
18
|
Hellwig PS, Peglow TJ, Penteado F, Bagnoli L, Perin G, Lenardão EJ. Recent Advances in the Synthesis of Selenophenes and Their Derivatives. Molecules 2020; 25:E5907. [PMID: 33322179 PMCID: PMC7764687 DOI: 10.3390/molecules25245907] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022] Open
Abstract
The selenophene derivatives are an important class of selenium-based heterocyclics. These compounds play an important role in prospecting new drugs, as well as in the development of new light-emitting materials. During the last years, several methods have been emerging to access the selenophene scaffold, employing a diversity of cyclization-based synthetic strategies, involving specific reaction partners and particularities. This review presents a comprehensive discussion on the recent advances in the synthesis of selenophene-based compounds, starting from different precursors, highlighting the main differences, the advantages, and limitations among them.
Collapse
Affiliation(s)
- Paola S. Hellwig
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Thiago J. Peglow
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Luana Bagnoli
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| |
Collapse
|
19
|
Zheng L, Tao K, Guo W. Recent Developments in Photo‐Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| | - Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 People's Republic of China
| |
Collapse
|
20
|
Patel OPS, Nandwana NK, Legoabe LJ, Das BC, Kumar A. Recent Advances in Radical C−H Bond Functionalization of Imidazoheterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000633] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Om P. S. Patel
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Nitesh K. Nandwana
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
| |
Collapse
|
21
|
Samanta S, Ghosh AK, Ghosh S, Ilina AA, Volkova YA, Zavarzin IV, Scherbakov AM, Salnikova DI, Dzichenka YU, Sachenko AB, Shirinian VZ, Hajra A. Fe(iii)-Catalyzed synthesis of steroidal imidazoheterocycles as potent antiproliferative agents. Org Biomol Chem 2020; 18:5571-5576. [PMID: 32662797 DOI: 10.1039/d0ob01241f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient and practical method has been developed for the synthesis of steroidal imidazoheterocycles via cost-effective and environmentally benign FeCl3-catalyzed oxidative amination. A library of steroidal imidazo[1,2-a]pyridines was directly synthesized from readily available 2-aminopyridines and steroidal ketones in aerobic conditions. The synthesized compounds were screened for activity on human microsomal cytochrome P450s CYP7, CYP17 and CYP21. Antiproliferative activity of two lead compounds 3ia and 3la was additionally evaluated against the human MCF-7 (breast cancer), SKOV3 (ovarian cancer), and 22Rv1 (prostate cancer) cell lines. Steroidal imidazo[1,2-a]pyridine 3la which is a substrate molecule for CYP17A1 with IC50 = 1.7 μM (MCF-7), 3.0 (SKOV3), and 6.0 μM (22Rv1) has proved to be more active than reference drug cisplatin.
Collapse
Affiliation(s)
- Sadhanendu Samanta
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen W, Zhu X, Wang F, Yang Y, Deng G, Liang Y. Iodine-Catalyzed Three-Component Cascade Reaction for the Synthesis of Substituted 2-Phenylnaphtho[1,3]selenazoles under Transition-Metal-Free Conditions. J Org Chem 2020; 85:3349-3357. [DOI: 10.1021/acs.joc.9b03154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wenqi Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaoming Zhu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Hunan Province Universities Key Laboratory of Functional Organometallic Materials, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, Hunan 421008, China
| | - Fei Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
23
|
Abenante L, Padilha NB, Anghinoni JM, Penteado F, Rosati O, Santi C, Silva MS, Lenardão EJ. Arylseleninic acid as a green, bench-stable selenylating agent: synthesis of selanylanilines and 3-selanylindoles. Org Biomol Chem 2020; 18:5210-5217. [DOI: 10.1039/d0ob01073a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
C–Se bonds in electron-rich arenes are easily formed by the reaction of bench-stable arylseleninic acids as an electrophilic selenium source. The only waste in the reaction is water.
Collapse
Affiliation(s)
- Laura Abenante
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| | | | - João M. Anghinoni
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| | - Filipe Penteado
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| | - Ornelio Rosati
- Group of Catalysis
- Synthesis and Organic Green Chemistry
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
| | - Claudio Santi
- Group of Catalysis
- Synthesis and Organic Green Chemistry
- Department of Pharmaceutical Sciences
- University of Perugia
- 06123 Perugia
| | - Marcio S. Silva
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| | - Eder J. Lenardão
- LASOL - CCQFA
- Universidade Federal de Pelotas - UFPel
- 96010-900 Pelotas
- Brazil
| |
Collapse
|
24
|
Wang R, Kao W, Shih T. Synthesis of selenium‐containing biindolyls and their Diels–Alder reaction toward the synthesis of heteroannulated [
a
]‐ and [
c
]‐carbazoles. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ruei‐Yu Wang
- Department of ChemistryTamkang University New Taipei City Taiwan, Republic of China
| | - Wei‐Ting Kao
- Department of ChemistryTamkang University New Taipei City Taiwan, Republic of China
| | - Tzenge‐Lien Shih
- Department of ChemistryTamkang University New Taipei City Taiwan, Republic of China
| |
Collapse
|
25
|
Ni P, Tan J, Zhao W, Huang H, Deng G. Metal‐Free Three‐Component Selenopheno[2,3‐
b
]indole Formation through Double C−H Selenylation with Selenium Powder. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Penghui Ni
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Jing Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Wenqi Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
- Beijing National Laboratory for Molecular Sciences and CAS Key Laboratory of Molecular Recognition and Function Institute of ChemistryChinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China
| |
Collapse
|
26
|
Recent developments in the synthesis of Se-heterocycles applying elemental selenium (microreview). Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02559-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Li G, Yan Q, Gan Z, Li Q, Dou X, Yang D. Photocatalyst-Free Visible-Light-Promoted C(sp2)–S Coupling: A Strategy for the Preparation of S-Aryl Dithiocarbamates. Org Lett 2019; 21:7938-7942. [DOI: 10.1021/acs.orglett.9b02921] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guoqing Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Qiuli Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Ziyu Gan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Qin Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiaomeng Dou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
28
|
Matsumura M, Kitamura Y, Yamauchi A, Kanazawa Y, Murata Y, Hyodo T, Yamaguchi K, Yasuike S. Synthesis of benzo[ d]imidazo[2,1- b]benzoselenoazoles: Cs 2CO 3-mediated cyclization of 1-(2-bromoaryl)benzimidazoles with selenium. Beilstein J Org Chem 2019; 15:2029-2035. [PMID: 31501670 PMCID: PMC6720659 DOI: 10.3762/bjoc.15.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
The synthesis of benzimidazo[2,1-b]benzoselenoazoles is described. The novel ring-closure reaction of 1-(2-bromoaryl)benzimidazoles with Se powder is promoted by Cs2CO3 (2 equiv) in DMF at 150 °C. Moreover, the obtained tetracyclic heterocycles are all novel compounds. Single-crystal X-ray analysis of the parent benzimidazo[2,1-b]benzoselenoazole revealed that the tetracyclic ring is almost planar. Absorption spectroscopy data of the benzimidazo[2,1-b]benzoselenoazoles showed the λmax was dependent on the number of rings.
Collapse
Affiliation(s)
- Mio Matsumura
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yuki Kitamura
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Arisa Yamauchi
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yoshitaka Kanazawa
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yuki Murata
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Tadashi Hyodo
- Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Kentaro Yamaguchi
- Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Shuji Yasuike
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
29
|
Samanta S, Mondal S, Ghosh D, Hajra A. Rhodium-Catalyzed Directed C–H Amidation of Imidazoheterocycles with Dioxazolones. Org Lett 2019; 21:4905-4909. [DOI: 10.1021/acs.orglett.9b01832] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sadhanendu Samanta
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Susmita Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Debashis Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
30
|
Rampon DS, Luz EQ, Lima DB, Balaguez RA, Schneider PH, Alves D. Transition metal catalysed direct selanylation of arenes and heteroarenes. Dalton Trans 2019; 48:9851-9905. [PMID: 31120472 DOI: 10.1039/c9dt00473d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysed C-H functionalization has reached an exciting level of sophistication, and, today, it represents a paradigm shift from the standard logic of synthetic chemistry. The direct conversion of C-H bonds into C-heteroatoms remains, however, a critical challenge. Nowadays, there is a great demand in general synthetic chemistry in, for example, the materials science for the development of straightforward C-Se bond formation, in order to fulfil the practical requirements. In this sense, this review summarizes recent outstanding advances in the C-Se bond formation through transition metal-catalysed direct selanylation, providing new insights into their mechanistic aspects and disclosing effective synthetic routes with high atom economy. In addition, this review intends to show the growing opportunities to construct complex chemical scaffolds containing selenium atoms.
Collapse
Affiliation(s)
- Daniel S Rampon
- Laboratório de Polímeros e Catálise - LAPOCA - Universidade Federal do Paraná, P.O. Box 19032, 81531-980, Curitiba-PR, Brazil.
| | - Eduardo Q Luz
- Laboratório de Polímeros e Catálise - LAPOCA - Universidade Federal do Paraná, P.O. Box 19032, 81531-980, Curitiba-PR, Brazil.
| | - David B Lima
- Laboratório de Polímeros e Catálise - LAPOCA - Universidade Federal do Paraná, P.O. Box 19032, 81531-980, Curitiba-PR, Brazil.
| | - Renata A Balaguez
- Laboratório de Síntese Orgânica Limpa, LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Paulo Henrique Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), PO Box 15003, 91501-970 Porto Alegre, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa, LASOL, CCQFA, Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
31
|
Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng GJ. A Three-Component Strategy for Benzoselenophene Synthesis under Metal-Free Conditions Using Selenium Powder. Org Lett 2019; 21:3518-3522. [PMID: 31059274 DOI: 10.1021/acs.orglett.9b00739] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient three-component benzoselenophenes formation has been developed from substituted indoles, acetophenones, and selenium powder under metal-free conditions. 2-Aryl indoles played an important role to promote benzoselenophene formation from acetophenone derivatives and selenium powder. One C-C and two C-Se bonds were selectively formed to provide 40 new benzoselenophenes in good yields.
Collapse
Affiliation(s)
- Penghui Ni
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Jing Tan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Wenqi Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| |
Collapse
|
32
|
Lu LH, Zhou SJ, He WB, Xia W, Chen P, Yu X, Xu X, He WM. Metal-free difunctionalization of alkynes leading to alkenyl dithiocyanates and alkenyl diselenocyanates at room temperature. Org Biomol Chem 2019; 16:9064-9068. [PMID: 30456395 DOI: 10.1039/c8ob02368a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A simple and practical method for the synthesis of alkenyl dithiocyanates and alkenyl diselenocyanates has been developed via stereoselective difunctionalization of alkynes with NaSCN or KSeCN at room temperature. Through this methodology, a series of alkenyl dithiocyanates and alkenyl diselenocyanates could be efficiently and conveniently obtained in moderate to good yields under mild and metal-free conditions by the simple use of oxone and PhI(OAc)2 as the oxidants.
Collapse
Affiliation(s)
- Ling-Hui Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Putta VPRK, Gujjarappa R, Tyagi U, Pujar PP, Malakar CC. A metal- and base-free domino protocol for the synthesis of 1,3-benzoselenazines, 1,3-benzothiazines and related scaffolds. Org Biomol Chem 2019; 17:2516-2528. [PMID: 30758005 DOI: 10.1039/c8ob03058h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient protocols have been described for the synthesis of 1,3-benzoselenazines, 1,3-benzothiazines, 2-aryl thiazin-4-ones and diaryl[b,f][1,5]diazocine-6,12(5H,11H)-diones. These transformations were successfully driven towards the product formation under mild acid catalyzed reaction conditions at room temperature using 2-amino aryl/hetero-aryl alkyl alcohols and amides as substrates. The merits of the present methods also rely on the easy access of rarely explored bioactive scaffolds like 1,3-benzoselenazine derivatives, for which well-documented methods are rarely known in the literature. A broad range of substrates with both electron-rich and electron-deficient groups were well-tolerated under the developed conditions to furnish the desired products in yields up to 98%. The scope of the devised method is not only restricted to the synthesis of 1,3-benzoselenazines, but it was also further extended towards the synthesis of 1,3-benzothiazines, 1,3-benzothiazinones and the corresponding eight membered N-heterocycles such as diaryl[b,f][1,5]diazocine-6,12(5H,11H)-diones.
Collapse
|
34
|
Guo T, Wei XN, Liu Y, Zhang PK, Zhao YH. Oxidative dual C–H selenation of imidazoheterocycles with ethers or alkanes using selenium powder via a radical pathway. Org Chem Front 2019. [DOI: 10.1039/c9qo00198k] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A DCP-mediated oxidative dual C–H selenation radical reaction of imidazoheterocycles with ethers or alkanes using selenium powder was developed.
Collapse
Affiliation(s)
- Tao Guo
- College of Chemistry, Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Xu-Ning Wei
- College of Chemistry, Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Yu Liu
- College of Chemistry, Chemical and Environmental Engineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Pan-Ke Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- PR China
| | - Yun-Hui Zhao
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan
- P. R. China
| |
Collapse
|
35
|
Jakubczyk M, Mkrtchyan S, Madura ID, Marek PH, Iaroshenko VO. Copper-catalyzed direct C–H arylselenation of 4-nitro-pyrazoles and other heterocycles with selenium powder and aryl iodides. Access to unsymmetrical heteroaryl selenides. RSC Adv 2019; 9:25368-25376. [PMID: 35530113 PMCID: PMC9070035 DOI: 10.1039/c9ra05004c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/09/2020] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
A one-pot, Cu-catalyzed direct C–H arylselenation protocol using elemental Se and aryl iodides was developed for nitro-substituted, N-alkylated pyrazoles, imidazoles and other heterocycles including 4H-chromen-4-one. This general and concise method allows one to obtain a large number of unsymmetrical heteroaryl selenides bearing a variety of substituents. The presence of the nitro group was confirmed to be essential for the C–H activation and can also be used for further functionalisation and manipulation. Several examples of heteroannulated benzoselenazines were also synthesized using the developed synthetic protocol. In this work, we elaborated a general and straightforward method which permits the rapid assembly of unsymmetrical heteroaryl-aryl selenides containing 4-nitropyrazole, 4-nitroimidazole and a few other heterocyclic scaffolds.![]()
Collapse
Affiliation(s)
- Michał Jakubczyk
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| | - Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| | - Izabela D. Madura
- Department of Inorganic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- Warsaw
- Poland
| | - Paulina H. Marek
- Department of Inorganic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- Warsaw
- Poland
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Centre of Molecular and Macromolecular Studies
- Polish Academy of Sciences
- PL-90-363 Łodź
- Poland
| |
Collapse
|
36
|
Peterle MM, Scheide MR, Silva LT, Saba S, Rafique J, Braga AL. Copper‐Catalyzed Three‐Component Reaction of Oxadiazoles, Elemental Se/S and Aryl Iodides: Synthesis of Chalcogenyl (Se/S)‐Oxadiazoles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marcos M. Peterle
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| | - Marcos R. Scheide
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| | - Lais T. Silva
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| | - Sumbal Saba
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| | - Jamal Rafique
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
- Instituto de QuímicaUniversidade Federal do Mato Grosso do Sul, Campo Grande 79074-460 MS-Brazil
| | - Antonio L. Braga
- LabselenDepartamento de QuímicaUniversidade Federal de Santa Catarina, Florianopolis 88040-900 SC-Brazil
| |
Collapse
|
37
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
38
|
Zhu J, Zhu W, Xie P, Pittman CU, Zhou A. Nickel-catalyzed C(sp2)-H selenation of imidazo[1,2-α]pyridines with arylboronic acids or alkyl reagents using selenium powder. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Kumaraswamy G, Ramesh V, Gangadhar M, Vijaykumar S. Catalyst and Sensitizer-Free Visible-Light-Induced C(sp2
)−H Chalcogenation of Arenes/ Heteroarenes with Dichalcogenides. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gullapalli Kumaraswamy
- Organic Synthesis & Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 Telangana State India
- Research Academy of Scientific and Innovative (AcSIR); New Delhi India
| | - Vankudoth Ramesh
- Organic Synthesis & Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 Telangana State India
- Research Academy of Scientific and Innovative (AcSIR); New Delhi India
| | - Maram Gangadhar
- Organic Synthesis & Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 Telangana State India
- Research Academy of Scientific and Innovative (AcSIR); New Delhi India
| | - Swargam Vijaykumar
- Organic Synthesis & Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 Telangana State India
| |
Collapse
|
40
|
Bettanin L, Saba S, Doerner CV, Franco MS, Godoi M, Rafique J, Braga AL. NH4I-catalyzed chalcogen(S/Se)-functionalization of 5-membered N-heteroaryls under metal-free conditions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Liu Y, Li C, Mu S, Li Y, Feng R, Sun K. Eco-Friendly Selenoamidation of Alkenes with Sulfamides and Organoseleniums: Rapid access to β-Amidoselenides. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingjie Liu
- Research Center on Life Sciences and Environmental Sciences; Harbin University of Commerce; Harbin Heilongjiang 150076 P. R. China
| | - Changhao Li
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang Henan 455000 P. R. China
| | - Shiqiang Mu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang Henan 455000 P. R. China
| | - Yali Li
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang Henan 455000 P. R. China
| | - Ranran Feng
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang Henan 455000 P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang Henan 455000 P. R. China
| |
Collapse
|
42
|
Putta VRK, Gujjarappa R, Vodnala N, Gupta R, Pujar PP, Malakar CC. The facile and efficient organocatalytic platform for accessing 1,2,4-selenadiazoles and thiadiazoles under aerobic conditions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Liu H, Fang Y, Wang SY, Ji SJ. TEMPO-Catalyzed Aerobic Oxidative Selenium Insertion Reaction: Synthesis of 3-Selenylindole Derivatives by Multicomponent Reaction of Isocyanides, Selenium Powder, Amines, and Indoles under Transition-Metal-Free Conditions. Org Lett 2018; 20:930-933. [PMID: 29392945 DOI: 10.1021/acs.orglett.7b03783] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and efficient approach for the selenium functionalization of indoles was developed with selenium powder as the selenium source, catalyzed by 2,2,6,6-tetramethylpiperidinooxy (TEMPO) and employing O2 as the green oxidant. This protocol provides a practical route for the synthesis of 3-selenylindole derivatives and has the advantages of readily available starting materials, mild reaction conditions, and a wide scope of substrates. Electron spin-resonance (ESR) studies reveal that the approach involves the formation of nitrogen-centered radicals and selenium radicals via oxidation of in situ generated selenoates.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P. R. China
| | - Yi Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P. R. China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
44
|
Rafique J, Saba S, Franco MS, Bettanin L, Schneider AR, Silva LT, Braga AL. Direct, Metal-free C(sp2
)−H Chalcogenation of Indoles and Imidazopyridines with Dichalcogenides Catalysed by KIO3. Chemistry 2018; 24:4173-4180. [DOI: 10.1002/chem.201705404] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jamal Rafique
- Departamento de Química; Universidade Federal de Santa Catarina; Florianopolis 88040-900 SC Brazil
| | - Sumbal Saba
- Departamento de Química; Universidade Federal de Santa Catarina; Florianopolis 88040-900 SC Brazil
| | - Marcelo S. Franco
- Departamento de Química; Universidade Federal de Santa Catarina; Florianopolis 88040-900 SC Brazil
| | - Luana Bettanin
- Departamento de Química; Universidade Federal de Santa Catarina; Florianopolis 88040-900 SC Brazil
| | - Alex R. Schneider
- Departamento de Química; Universidade Federal de Santa Catarina; Florianopolis 88040-900 SC Brazil
| | - Lais T. Silva
- Departamento de Química; Universidade Federal de Santa Catarina; Florianopolis 88040-900 SC Brazil
| | - Antonio L. Braga
- Departamento de Química; Universidade Federal de Santa Catarina; Florianopolis 88040-900 SC Brazil
| |
Collapse
|
45
|
Samanta S, Hajra A. Regioselective synthesis of unsymmetrical biheteroaryls via copper(ii)-catalyzed cascade annulation. Chem Commun (Camb) 2018; 54:3379-3382. [DOI: 10.1039/c8cc00671g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile and efficient copper-catalyzed cascade annulation of an imidazoheterocycle with salicylaldehyde, piperidine, and terminal alkyne was developed to afford unsymmetrical biheteroaryl derivatives in high yields.
Collapse
Affiliation(s)
| | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University)
- India
| |
Collapse
|
46
|
Wang T, Chen J, Wang J, Xu S, Lin A, Yao H, Jiang S, Xu J. Cobalt-catalyzed carbon–sulfur/selenium bond formation: synthesis of benzo[b]thio/selenophene-fused imidazo[1,2-a]pyridines. Org Biomol Chem 2018; 16:3721-3725. [DOI: 10.1039/c8ob00743h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An efficient cobalt-catalyzed C–S/C–Se bond formation method for the synthesis of benzo[b]thio/selenophene-fused imidazo[1,2-a]pyridines has been developed.
Collapse
Affiliation(s)
- Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jichao Chen
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jia Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| |
Collapse
|
47
|
Jana S, Samanta S, Bagdi AK, Shirinian VZ, Hajra A. Metal-free C–H arylation of imidazoheterocycles with aryl hydrazines. RSC Adv 2018; 8:12360-12367. [PMID: 35539413 PMCID: PMC9079221 DOI: 10.1039/c8ra01474d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
Metal-free C–H arylation of imidazo[1,2-a]pyridines at C-3 position with arylhydrazines in presence of DBU has been developed at room temperature under ambient air.
Collapse
Affiliation(s)
- Sourav Jana
- Department of Chemistry
- Visva-Bharati (A Central University) Santiniketan
- India
| | - Sadhanendu Samanta
- Department of Chemistry
- Visva-Bharati (A Central University) Santiniketan
- India
| | - Avik K. Bagdi
- Department of Chemistry
- TDB College
- Burdwan 713347
- India
| | | | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University) Santiniketan
- India
| |
Collapse
|
48
|
Yang D, Li G, Xing C, Cui W, Li K, Wei W. Metal- and photocatalyst-free visible-light-promoted regioselective selenylation of coumarin derivatives via oxidation-induced C–H functionalization. Org Chem Front 2018. [DOI: 10.1039/c8qo00899j] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A visible-light-promoted approach for the regioselective selenylation of 4-amino substituted coumarins has been initially realized under metal- and photocatalyst-free conditions at room temperature.
Collapse
Affiliation(s)
- Daoshan Yang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Guoqing Li
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Chengyu Xing
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Wenwen Cui
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Kexin Li
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Wei Wei
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|
49
|
Kibriya G, Samanta S, Jana S, Mondal S, Hajra A. Visible Light Organic Photoredox-Catalyzed C–H Alkoxylation of Imidazopyridine with Alcohol. J Org Chem 2017; 82:13722-13727. [DOI: 10.1021/acs.joc.7b02582] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Golam Kibriya
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Sadhanendu Samanta
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Sourav Jana
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Susmita Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
50
|
Santos KS, Sandagorda EMA, Cargnelutti R, Barcellos T, Jacob RG, Alves D, Schumacher RF. Copper-Catalyzed Selective Synthesis of 5-Selanyl-imidazo[2,1-b
]thiazoles. ChemistrySelect 2017. [DOI: 10.1002/slct.201702371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kelvin S. Santos
- LASOL - CCQFA -; Universidade Federal de Pelotas - UFPel - P.O. Box; 354 - 96010-310 Pelotas, RS Brazil
| | - Eduardo M. A. Sandagorda
- LASOL - CCQFA -; Universidade Federal de Pelotas - UFPel - P.O. Box; 354 - 96010-310 Pelotas, RS Brazil
| | - Roberta Cargnelutti
- LMI - Departamento de Química; Universidade Federal de Santa Maria - UFSM; 97105-900 Santa Maria, RS Brazil
| | - Thiago Barcellos
- Institute of Biotechnology; University of Caxias do Sul - UCS -; Caxias do Sul, RS Brazil
| | - Raquel G. Jacob
- LASOL - CCQFA -; Universidade Federal de Pelotas - UFPel - P.O. Box; 354 - 96010-310 Pelotas, RS Brazil
| | - Diego Alves
- LASOL - CCQFA -; Universidade Federal de Pelotas - UFPel - P.O. Box; 354 - 96010-310 Pelotas, RS Brazil
| | - Ricardo F. Schumacher
- LASOL - CCQFA -; Universidade Federal de Pelotas - UFPel - P.O. Box; 354 - 96010-310 Pelotas, RS Brazil
| |
Collapse
|