1
|
Sahoo A, Dutta S, Sahoo AK. A Precise Route to Tetrasubstituted Allyl Amines via Regioselective Dicarbofunctionalization of Masked Propargyl Amines. Org Lett 2024. [PMID: 39506395 DOI: 10.1021/acs.orglett.4c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Allyl amines are vital components in various biologically important molecules and play a significant role in their function. Presently, most methods are geared toward the preparation of di- and trisubstituted allyl amines, leaving a gap for the development of more versatile approaches. We herein describe an approach to yield tetrasubstituted allyl amines through palladium (Pd)-catalyzed regioselective dicarbofunctionalization of masked N-phthalimide-protected propargyl amines. The cationic Pd-intermediate in conjunction with the masked amine exerts collective control for the reaction regioselectivity. This method accommodates a wide range of alkynes, aryl boronic acids, and aryl diazonium salts offering direct access to a wide range of unusual tetrasubstituted allyl amines.
Collapse
Affiliation(s)
- Aradhana Sahoo
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| |
Collapse
|
2
|
Dalal A, Bodak S, Babu SA. Picolinamide-assisted ortho-C-H functionalization of pyrenylglycine derivatives using aryl iodides. Org Biomol Chem 2024; 22:1279-1298. [PMID: 38258893 DOI: 10.1039/d3ob01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Chemical transformations involving the pyrenylglycine motif (an unnatural amino acid) and practical methods toward it are seldom known. This work aimed at developing a method for synthesizing novel pyrenylglycine (pyrene-based glycine) unnatural amino acid derivatives. To realize this, initially, a new pyrenylglycine substrate possessing the picolinamide moiety was assembled via the Ugi multicomponent reaction. The picolinamide moiety linked to amine substrates is a well-known bidentate directing group for accomplishing the site-selective γ-C-H functionalization of amines. Subsequently, it was aimed at using a Pd(II)-catalyzed bidentate directing group-aided γ-C-H arylation strategy for generating a wide range of unprecedented examples of C(2)-H arylated pyrenylglycines. Accordingly, pyrenylglycine possessing the picolinamide moiety was subjected to Pd(II)-catalyzed C(2)-H arylation in the non-K-region to afford a library of C(2)-arylated pyrenylglycines (π-extended pyrenes). Additionally, pyrenylglycine-based small peptides were assembled using C(2)-arylated pyrenylglycines. The X-ray structure of a representative compound was obtained, which corroborated the structure of pyrenylglycine and the regioselectivity of C(2)-H arylation of the pyrene in the non-K-region.
Collapse
Affiliation(s)
- Arup Dalal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Subhankar Bodak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
3
|
Landge VG, Mishra A, Thotamune W, Bonds AL, Alahakoon I, Karunarathne A, Young MC. Selective C-H Activation of Unprotected Allylamines by Control of Catalyst Speciation. CHEM CATALYSIS 2023; 3:100809. [PMID: 37982045 PMCID: PMC10653252 DOI: 10.1016/j.checat.2023.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An outstanding challenge in the Pd-catalyzed functionalization of allylamines is the control of stereochemistry. Terminal alkenes preferentially undergo Heck-type reactions, while internal alkenes may undergo a mixture of Heck and C-H activation reactions that give mixtures of stereochemical products. In the case of unprotected allylamines, the challenge in achieving C-H activation is that facile in situ formation of Pd nanoparticles leads to preferential formation of trans rather than cis-substituted products. In this study we have demonstrated the feasibility of using mono-protected amino acid (MPAA) ligands as metal protecting groups to prevent aggregation and reduction, allowing the selective synthesis of free cis-arylated allylamines. This method complements Heck-selective methods, allowing complete stereochemical control over the synthesis of cinnamylamines, an important class of amine that can serve as therapeutics directly or as advanced intermediates. To highlight the utility of the methodology, we have demonstrated rapid access to mu opioid receptor ligands.
Collapse
Affiliation(s)
- Vinod G. Landge
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ankita Mishra
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | - Audrey L. Bonds
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Indunil Alahakoon
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, MO 63103, USA
| | - Michael C. Young
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
4
|
γ,γ′-Diarylation of allylamines by a directed chain-walk. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Suwasia S, Venkataramani S, Babu SA. Pd(II)-catalyzed coupling of C-H bonds of carboxamides with iodoazobenzenes toward modified azobenzenes. Org Biomol Chem 2023; 21:1793-1813. [PMID: 36744837 DOI: 10.1039/d2ob02322a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper, we report a synthetic protocol for the construction of biaryl motif-based or π-extended azobenzene and alkylated azobenzene derivatives via the Pd(II)-catalyzed bidentate directing group (DG)-aided C-H activation and functionalization strategy. In the past, the synthesis of biaryl motif-based azobenzenes was accomplished through the traditional cross-coupling reaction involving organometallic reagents and aryl halides or equivalent coupling partners. We have shown the direct coupling of C-H bonds of aromatic/aliphatic carboxamides (possessing a DG) with iodoazobenzenes as the coupling partners through the Pd(II)-catalyzed bidentate DG-aided, site-selective C-H functionalization method. Azobenzene-containing compounds are a versatile class of photo-responsive molecules that have found applications across branches of chemical, biological and materials sciences and are prevalent in medicinally relevant molecules. Accordingly, the synthesis of new and functionalized azobenzene-based scaffolds has been an attractive topic of research. Although the classical methods are efficient, they need pre-functionalized starting materials. This protocol involving the Pd(II)-catalyzed, directing group-aided site-selective C-H arylation of aromatic and aliphatic carboxamides using iodoazobenzene as the coupling partner affording azobenzene-based carboxamides is an additional route and also a contribution towards enriching the library of modified azobenzenes. We have also shown the photoswitching properties of representative compounds synthesized via the Pd(II)-catalyzed directing group-aided site-selective C-H functionalization method.
Collapse
Affiliation(s)
- Sonam Suwasia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
6
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Aggarwal Y, Padmavathi R, Singh P, Arulananda Babu S. Pd(II)‐Catalyzed, γ‐C(sp2)‐H Alkoxylation in α‐Methylbenzylamine, Phenylglycinol, 3‐Amino‐3‐Phenylpropanol Toward Enantiopure Aryl Alkyl Ethers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yashika Aggarwal
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Prabhakar Singh
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
8
|
Tomar R, Kumar A, Dalal A, Bhattacharya D, Singh P, Arulananda Babu S. Expanding the utility of inexpensive pyridine‐N‐oxide directing group for the site‐selective sp2/sp3γ‐C‐H and sp2δ‐C‐H functionalization of carboxamides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Radha Tomar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Amit Kumar
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Arup Dalal
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | | | - Prabhakar Singh
- Indian Institute of Science Education and Research Mohali Chemical Sciences INDIA
| | - Srinivasarao Arulananda Babu
- Indian Institute of Science Education and Research Mohali Department of Chemical Sciences Knowledge City, Sector 81, SAS Nagar,Mohali, Manauli P.O., 140306 Mohali INDIA
| |
Collapse
|
9
|
Kaur R, Banga S, Babu SA. Construction of carbazole-based unnatural amino acid scaffolds via Pd(II)-catalyzed C(sp 3)-H functionalization. Org Biomol Chem 2022; 20:4391-4414. [PMID: 35583129 DOI: 10.1039/d2ob00658h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of carbazole-based unnatural α-amino acid and non-α-amino acid derivatives via a Pd(II)-catalyzed bidentate directing group 8-aminoquinoline-aided β-C(sp3)-H activation/functionalization method. Various N-phthaloyl, DL-, L- and D-carboxamides derived from their corresponding α-amino acids, non-α-amino acids and aliphatic carboxamides were subjected to the β-C(sp3)-H functionalization with 3-iodocarbazoles in the presence of a Pd(II) catalyst to afford the corresponding carbazole moiety installed unnatural amino acid derivatives and aliphatic carboxamides. Carbazole motif-containing racemic (DL) and enantiopure (L and D) amino acid derivatives including phenylalanine, norvaline, leucine, norleucine and 2-aminooctanoic acid with anti-stereochemistry and various non-α-amino acid derivatives including GABA have been synthesized. Removal of the 8-aminoquinoline directing group, deprotection of the phthalimide moiety and the preparation of carbazole amino acid derivatives containing free amino- and carboxylate groups are shown. The carbazole motif is prevalent in alkaloids and biologically active molecules and functional materials. Thus, this work on the synthesis of carbazole-based unnatural amino acid derivatives would enrich the libraries of unnatural amino acid derivatives and carbazoles.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Shefali Banga
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
10
|
Kang T, González JM, Li ZQ, Foo K, Cheng PTW, Engle KM. Alkene Difunctionalization Directed by Free Amines: Diamine Synthesis via Nickel-Catalyzed 1,2-Carboamination. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Taeho Kang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - José Manuel González
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zi-Qi Li
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Klement Foo
- Fibrosis Chemistry, Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Peter T. W. Cheng
- Fibrosis Chemistry, Small Molecule Drug Discovery, Bristol Myers Squibb Research & Early Development, PO Box 4000, Princeton, New Jersey 08543, United States
| | - Keary M. Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
12
|
Liu M, Sun J, Engle KM. Recent advances in the generation and functionalization of C(alkenyl)–Pd species for synthesis of polysubstituted alkenes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Shen C, Zhu Y, Jin S, Xu K, Luo S, Xu L, Zhong G, Zhong L, Zhang J. Regio- and stereo-selective olefinic C–H functionalization of aryl alkenes in ethanol. Org Chem Front 2022. [DOI: 10.1039/d1qo01676h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report on α- and β-olefinic C–H alkenylation of 2-alkenyl benzylamine/benzoic acid derivatives in ethanol to afford aryl dienes/trienes with excellent selectivities, proceeding through 6-/7-membered exo-/endo-cyclometallation.
Collapse
Affiliation(s)
- Cong Shen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yuhang Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shuqi Jin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Kejie Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shuxin Luo
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Lixia Xu
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Guofu Zhong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Liangjun Zhong
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| |
Collapse
|
14
|
Landge VG, Bonds AL, Mncwango TA, Mather CB, Saleh Y, Fields HL, Lee F, Young MC. Amine-Directed Mizoroki-Heck Arylation of Free Allylamines. Org Chem Front 2022. [DOI: 10.1039/d2qo00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition metal-catalyzed Mizoroki−Heck reaction is a powerful method to synthesize C–C bonds, allowing access to several important pharmaceuticals. Traditionally free amines have not been compatible with these approaches due...
Collapse
|
15
|
Garbacz M, Stecko S. Synthesis of chiral branched allylamines through dual photoredox/nickel catalysis. Org Biomol Chem 2021; 19:8578-8585. [PMID: 34553201 DOI: 10.1039/d1ob01624e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Allylamines are versatile building blocks in the synthesis of various naturally occurring products and pharmaceuticals. In contrast to terminal allylamines, the methods of synthesis of their branched congeners with internal, stereodefined double bonds are less explored. This work describes a new approach for the preparation of allylamines via cross-coupling of alkyl bromides with simple 3-bromoallylamines by merging the photoredox approach and Ni catalysis. The reaction proceeds under mild conditions, under blue light irradiation, and in the presence of an organic dye, 4CzIPN, as a photocatalyst. The scope of suitable reaction partners is broad, including alkyl bromides bearing reactive functionalities (e.g., esters, nitriles, aldehydes, ketones, epoxides) and N-protected allylamines, as well as N-allylated secondary and tertiary amines and heterocycles. The employment of non-racemic starting materials allows for rapid and easy construction of complex multifunctional allylamine derivatives without the loss of enantiomeric purity.
Collapse
Affiliation(s)
- Mateusz Garbacz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
16
|
Sun Q, Zhang H, Wang Q, Qiao T, He G, Chen G. Stereoselective Synthesis of C-Vinyl Glycosides via Palladium-Catalyzed C-H Glycosylation of Alkenes. Angew Chem Int Ed Engl 2021; 60:19620-19625. [PMID: 34228869 DOI: 10.1002/anie.202104430] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Indexed: 12/12/2022]
Abstract
C-vinyl glycosides are an important class of carbohydrates and pose a unique synthetic challenge. A new strategy has been developed for stereoselective synthesis of C-vinyl glycosides via Pd-catalyzed directed C-H glycosylation of alkenes with glycosyl chloride donors using an easily removable bidentate auxiliary. Both the γ C-H bond of allylamines and the δ C-H bond of homoallyl amine substrates can be glycosylated in high efficiency and with excellent regio- and stereoselectivity. The resulting C-vinyl glycosides can be further converted to a variety of C-alkyl glycosides with high stereospecificity. These reactions offer a broadly applicable method to streamline the synthesis of complex C-vinyl glycosides from easily accessible starting materials.
Collapse
Affiliation(s)
- Qikai Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huixing Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Quanquan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianjiao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Sun Q, Zhang H, Wang Q, Qiao T, He G, Chen G. Stereoselective Synthesis of
C
‐Vinyl Glycosides via Palladium‐Catalyzed C−H Glycosylation of Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qikai Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Huixing Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Quanquan Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Tianjiao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
18
|
Landge VG, Grant AJ, Fu Y, Rabon AM, Payton JL, Young MC. Palladium-Catalyzed γ,γ'-Diarylation of Free Alkenyl Amines. J Am Chem Soc 2021; 143:10352-10360. [PMID: 34161068 DOI: 10.1021/jacs.1c04261] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The direct difunctionalization of alkenes is an effective way to construct multiple C-C bonds in one-pot using a single functional group. The regioselective dicarbofunctionalization of alkenes is therefore an important area of research to rapidly obtain complex organic molecules. Herein, we report a palladium-catalyzed γ,γ'-diarylation of free alkenyl amines through interrupted chain walking for the synthesis of Z-selective alkenyl amines. Notably, while 1,3-dicarbofunctionalization of allyl groups is well precedented, the present disclosure allows 1,3-dicarbofunctionalization of highly substituted allylamines to give highly Z-selective trisubsubstituted olefin products. This cascade reaction operates via an unprotected amine-directed Mizoroki-Heck (MH) pathway featuring a β-hydride elimination to selectively chain walk to furnish a new terminal olefin which then generates the cis-selective alkenyl amines around the sterically crowded allyl moiety. This operationally simple protocol is applicable to a variety of cyclic, branched, and linear secondary and tertiary alkenylamines, and has a broad substrate scope with regard to the arene coupling partner as well. Mechanistic studies have been performed to help elucidate the mechanism, including the presence of a likely unproductive side C-H activation pathway.
Collapse
Affiliation(s)
- Vinod G Landge
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| | - Aaron J Grant
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| | - Yu Fu
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| | - Allison M Rabon
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| | - John L Payton
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America.,Department of Chemistry, Kenyon College, 106 College Park Dr., Gambier, Ohio 43022, United States of America
| | - Michael C Young
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States of America
| |
Collapse
|
19
|
Sankar R, Bhattacharya D, Arulananda Babu S. Synthesis of 1‐Naphthol‐based Unsymmetrical Triarylmethanes: Heck‐type Desulfitative Reaction of Arylsulfonyl Chlorides with Tetralone‐derived Chalcones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rathinam Sankar
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar 140306 Mohali, Manauli P.O. Punjab India
| | - Debabrata Bhattacharya
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar 140306 Mohali, Manauli P.O. Punjab India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar 140306 Mohali, Manauli P.O. Punjab India
| |
Collapse
|
20
|
Landge V, Maxwell JM, Chand-Thakuri P, Kapoor M, Diemler ET, Young MC. Palladium-Catalyzed Regioselective Arylation of Unprotected Allylamines. JACS AU 2021; 1:13-22. [PMID: 34467268 PMCID: PMC8395680 DOI: 10.1021/jacsau.0c00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 05/03/2023]
Abstract
Palladium-catalyzed organometallic transformations of free amines are often unsuccessful due to side reactions, such as oxidation, that can occur. However, the ability to furnish the free amine products from these reactions is important for improving the utility and sustainability of these processes, especially for accessing their potential as medicinal and agrochemical agents. Notably, the 3,3-diarylallylamine motif is prevalent in a variety of biologically relevant structures, yet there are few catalytic approaches to their synthesis, and none involving the free amine. Herein, we describe a simple protocol for the arylation of cinnamylamines and the diarylation of terminal allylamines to generate a diverse group of 3,3-diarylallylamine products using a PdII precatalyst. Key features of the method are the ability to access relatively mild conditions that facilitate a broad substrate scope as well as direct diarylation of terminal allylamine substrates. In addition, several complex and therapeutically relevant molecules are included to demonstrate the utility of the transformation.
Collapse
Affiliation(s)
- Vinod
G. Landge
- Department
of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Justin M. Maxwell
- Department
of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Pratibha Chand-Thakuri
- Department
of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Mohit Kapoor
- Department
of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Evan T. Diemler
- Department
of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Michael C. Young
- Department
of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
21
|
Zhang J, Lu X, Shen C, Xu L, Ding L, Zhong G. Recent advances in chelation-assisted site- and stereoselective alkenyl C–H functionalization. Chem Soc Rev 2021; 50:3263-3314. [DOI: 10.1039/d0cs00447b] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights recent advances in vicinal- and geminal-group-directed alkenyl C–H functionalizations which proceeded by endo- and exo-cyclometallation.
Collapse
Affiliation(s)
- Jian Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiunan Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Cong Shen
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liangyao Xu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liyuan Ding
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
22
|
Singh P, Arulananda Babu S, Aggarwal Y, Patel P. Pd(II)‐catalyzed, Picolinamide‐aided sp
2
γ−C−H Functionalization of Phenylglycinol: Access to γ−C−H Arylated, Alkylated and Halogenated Phenylglycinol Scaffolds. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prabhakar Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Yashika Aggarwal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Pooja Patel
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
23
|
Zhu Y, Chen F, Cheng D, Chen Y, Zhao X, Wei W, Lu Y, Zhao J. Rhodium(III)-Catalyzed Alkenyl C-H Functionalization to Dienes and Allenes. Org Lett 2020; 22:8786-8790. [PMID: 33147030 DOI: 10.1021/acs.orglett.0c03126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An oxyacetamide-directed Rh(III)-catalyzed Z-type alkenyl C-H functionalization through a rare exo-rhodacyle intermediate is described, forming multisubstituted dienes and allenes. A variety of alkenes and propargylic carbonate coupling partners are suitable for this transformation with high regio- and stereoselectivity. The synthetic utility is demonstrated by the selective late-stage modification of the Z-type natural products as well as the synthesis of the unnatural β-amino acid.
Collapse
Affiliation(s)
- Yuelu Zhu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Feng Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Donghui Cheng
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ying Chen
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| | - Yi Lu
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Shenzhen Research Institute, Nanjing University, Shenzhen 518000, China
| |
Collapse
|
24
|
Han B, Li B, Qi L, Yang P, He G, Chen G. Construction of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Picolinamide-Directed Intramolecular C(sp2)–H Arylation. Org Lett 2020; 22:6879-6883. [DOI: 10.1021/acs.orglett.0c02422] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Boyang Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liping Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Bisht N, Babu SA, Tomar R. Pd(II)‐Catalyzed, Bidentate Directing Group‐aided Alkylation of sp
3
γ‐C−H Bonds: Access to 3‐Alkylated Thiophene/Furan and Benzothiophene/Benzofuran Motifs. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Narendra Bisht
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Radha Tomar
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
26
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
27
|
Mao CL, Zhao S, Zang ZL, Xiao L, Zhou CH, He Y, Cai GX. Pd-Catalyzed Remote Site-Selective and Stereoselective C(Alkenyl)–H Alkenylation of Unactivated Cycloalkenes. J Org Chem 2019; 85:774-787. [DOI: 10.1021/acs.joc.9b02797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chun-Li Mao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Sheng Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhong-Lin Zang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lin Xiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng-He Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gui-Xin Cai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
28
|
Biswas S, Bheemireddy NR, Bal M, Van Steijvoort BF, Maes BUW. Directed C–H Functionalization Reactions with a Picolinamide Directing Group: Ni-Catalyzed Cleavage and Byproduct Recycling. J Org Chem 2019; 84:13112-13123. [DOI: 10.1021/acs.joc.9b02299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sovan Biswas
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | | | - Mathias Bal
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Ben F. Van Steijvoort
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| |
Collapse
|
29
|
Alemán-Ponce de León D, Sánchez-Chávez AC, Polindara-García LA. Pd-Mediated γ-C(sp3)–H Bond Activation in Ammonia–Ugi 4-CR Adducts by Using Picolinamide as Directing Group. J Org Chem 2019; 84:12809-12834. [DOI: 10.1021/acs.joc.9b01436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Diego Alemán-Ponce de León
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, México
| | - Anahí C. Sánchez-Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, México
| | - Luis A. Polindara-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
30
|
Schreib BS, Carreira EM. Palladium-Catalyzed Regioselective C–H Iodination of Unactivated Alkenes. J Am Chem Soc 2019; 141:8758-8763. [DOI: 10.1021/jacs.9b03998] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Singh P, Dalal A, Babu SA. Palladium(II)‐Catalyzed Sp
3
/Sp
2
γ
‐ and
δ
‐C‐H Functionalization of Aryl Amines using 5‐Methylisoxazole‐3‐Carboxamide as Directing Group. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Prabhakar Singh
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Arup Dalal
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
32
|
Luo YC, Yang C, Qiu SQ, Liang QJ, Xu YH, Loh TP. Palladium(II)-Catalyzed Stereospecific Alkenyl C–H Bond Alkylation of Allylamines with Alkyl Iodides. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04415] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yun-Cheng Luo
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sheng-Qi Qiu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiu-Ju Liang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Teck-Peng Loh
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
33
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|