1
|
Boukachabia M, Merabet-Khelassi M, Riant O. Condensation of carboxylic acids with amines using the Boc 2O/DMAP system under solvent-free conditions. Org Biomol Chem 2025. [PMID: 39865991 DOI: 10.1039/d4ob01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The present study describes the use of the di-tert-butyl dicarbonate (Boc2O)/4-(N,N-dimethylamino)pyridine (DMAP) system for the amidation of carboxylic acids under neat conditions without heating. A set of carboxylic acids was explored, such as non-steroidal anti-inflammatory drugs (NSAIDs), fatty acids and protected prolines in the presence of aromatic, benzylic and aliphatic amines as nucleophilic partners. The scope of this easy approach was extended to the preparation of thirty-two diverse carboxylic amides, which were recovered with isolated yields varying from moderate to excellent. To increase the value of this protocol, a scalable chemoselective amidation of oleic acid with ethanolamine was successfully established. The corresponding fatty carboxylic amide, N-oleoylethanolamide (OEA), was recovered with 73% yield. This study highlights the potency of the use of mixed anhydrides formed in situ and the pursuit of the reaction profile reveals sequential steps rather than a one-pot process.
Collapse
Affiliation(s)
- Mourad Boukachabia
- Ecocompatible Asymmetric Catalysis Laboratory, (LCAE) Badji Mokhtar Annaba-University, B.P 12, 23000 ANNABA, Algeria.
| | - Mounia Merabet-Khelassi
- Ecocompatible Asymmetric Catalysis Laboratory, (LCAE) Badji Mokhtar Annaba-University, B.P 12, 23000 ANNABA, Algeria.
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences, Molecules Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Bâtiment Lavoisier, Pl. Louis Pasteur, 1, bte 3. 1348, Louvain La Neuve, Belgium
| |
Collapse
|
2
|
Kilimciler NB, Palavecino NM, Gruber N, Vega DR, Orelli LR, Díaz JE. Polyphosphoric Acid Esters Promoted Synthesis of Quinazolin-4(3 H)-imines from 2-Aminobenzonitrile. J Org Chem 2024; 89:13807-13817. [PMID: 36919225 DOI: 10.1021/acs.joc.2c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A novel method for the synthesis of quinazolin-4(3H)-imines (QIs) by trimethylsilyl polyphosphate (PPSE) promoted reaction of 2-aminobenzonitrile with secondary amides is reported. The reaction is general and allows for the synthesis of N3-aryl and N3-alkyl QIs with variable 2-substituents affording high yields. The procedure was extended to derivatives bearing additional functional groups. The method is operationally simple, involves easily available starting materials and a mild dehydrating agent, with wide functional group tolerance. The reaction procedure proved to be suitable for scaling-up. A possible reaction path via an intermediate nitrilium ion is proposed on the basis of literature data and experimental observations.
Collapse
Affiliation(s)
- Natalia B Kilimciler
- Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Nicolás M Palavecino
- Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Nadia Gruber
- Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Daniel R Vega
- Departamento Física de la Materia Condensada, Gerencia de Investigación y Aplicaciones, CNEA y ECyT, Universidad Nacional de General San Martín, Av. Gral. Paz 1499, San Martín, 1650 Buenos Aires, Argentina
| | - Liliana R Orelli
- Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| | - Jimena E Díaz
- Cátedra de Química Orgánica II, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956, 1113 Buenos Aires, Argentina
| |
Collapse
|
3
|
Kumar S, Arora A, Singh SK, Kumar R, Shankar B, Singh BK. Phenyliodine bis(trifluoroacetate) as a sustainable reagent: exploring its significance in organic synthesis. Org Biomol Chem 2024; 22:3109-3185. [PMID: 38529599 DOI: 10.1039/d3ob01964k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Iodine-containing molecules, especially hypervalent iodine compounds, have gained significant attention in organic synthesis. They are valuable and sustainable reagents, leading to a remarkable surge in their use for chemical transformations. One such hypervalent iodine compound, phenyliodine bis(trifluoroacetate)/bis(trifluoroacetoxy)iodobenzene, commonly referred to as PIFA, has emerged as a prominent candidate due to its attributes of facile manipulation, moderate reactivity, low toxicity, and ready availability. PIFA presents an auspicious prospect as a substitute for costly organometallic catalysts and environmentally hazardous oxidants containing heavy metals. PIFA exhibits remarkable catalytic activity, facilitating an array of consequential organic reactions, including sulfenylation, alkylarylation, oxidative coupling, cascade reactions, amination, amidation, ring-rearrangement, carboxylation, and numerous others. Over the past decade, the application of PIFA in synthetic chemistry has witnessed substantial growth, necessitating an updated exploration of this field. In this discourse, we present a concise overview of PIFA's applications as a 'green' reagent in the domain of synthetic organic chemistry. A primary objective of this article is to bring to the forefront the scientific community's awareness of the merits associated with adopting PIFA as an environmentally conscientious alternative to heavy metals.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India.
| | - Rajesh Kumar
- Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur-842002, India
| | - Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
4
|
Phadnis N, Molen JA, Stephens SM, Weierbach SM, Lambert KM, Milligan JA. Green Oxidation of Aromatic Hydrazide Derivatives Using an Oxoammonium Salt. J Org Chem 2024; 89:5841-5845. [PMID: 38568872 DOI: 10.1021/acs.joc.3c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Aromatic diazenes are often prepared by oxidation of the corresponding hydrazides using stoichiometric quantities of nonrecyclable oxidants. We developed a convenient alternative protocol for the oxidation of aromatic hydrazides using Bobbitt's salt (1), a metal-free, recyclable, and commercially available oxoammonium reagent. A variety of aryl hydrazides were oxidized within 75 min at room temperature using the developed protocol. Computational insight suggests that this oxidation occurs by a polar hydride transfer mechanism.
Collapse
Affiliation(s)
- Nidheesh Phadnis
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, Pennsylvania 19144, United States
| | - Jessica A Molen
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, Pennsylvania 19144, United States
| | - Shannon M Stephens
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, Virginia 23529, United States
| | - Shayne M Weierbach
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, Virginia 23529, United States
| | - Kyle M Lambert
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, Virginia 23529, United States
| | - John A Milligan
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, 4201 Henry Ave, Philadelphia, Pennsylvania 19144, United States
| |
Collapse
|
5
|
Winfrey L, Yun L, Passeri G, Suntharalingam K, Pulis AP. H 2 O ⋅ B(C 6 F 5 ) 3 -Catalyzed para-Alkylation of Anilines with Alkenes Applied to Late-Stage Functionalization of Non-Steroidal Anti-Inflammatory Drugs. Chemistry 2024; 30:e202303130. [PMID: 38224207 DOI: 10.1002/chem.202303130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 01/16/2024]
Abstract
Anilines are core motifs in a variety of important molecules including medicines, materials and agrochemicals. We report a straightforward procedure that allows access to new chemical space of anilines via their para-C-H alkylation. The method utilizes commercially available catalytic H2 O ⋅ B(C6 F5 )3 and is highly selective for para-C-alkylation (over N-alkylation and ortho-C-alkylation) of anilines, with a wide scope in both the aniline substrates and alkene coupling partners. Readily available alkenes are used, and include new classes of alkene for the first time. The mild reaction conditions have allowed the procedure to be applied to the late-stage-functionalization of non-steroidal anti-inflammatory drugs (NSAIDs), including fenamic acids and diclofenac. The formed novel NSAID derivatives display improved anti-inflammatory properties over the parent NSAID structure.
Collapse
Affiliation(s)
- Laura Winfrey
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Lei Yun
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ginevra Passeri
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | | | - Alexander P Pulis
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
6
|
Bhattacharjee S, Laru S, Hajra A. Hypervalent iodine( iii)-mediated oxidative dearomatization of 2 H-indazoles towards indazolyl indazolones. Org Biomol Chem 2022; 20:8893-8897. [DOI: 10.1039/d2ob01776h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We accomplished a [bis(trifluoroacetoxy)iodo]benzene mediated oxidative dearomatization of 2H-indazoles, obtaining a new family of N-1 indazolyl indazolone derivatives in good to excellent yields through C–N and C–O bond formations.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|
7
|
Wang Y, Xie R, Huang L, Tian YN, Lv S, Kong X, Li S. Divergent synthesis of unsymmetrical azobenzenes via Cu-catalyzed C–N coupling. Org Chem Front 2021. [DOI: 10.1039/d1qo00945a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient, one-pot, and low-cost metal-catalyzed tandem Chan–Lam coupling/deprotection and Ullmann/Chan–Lam/deprotection reactions to access unsymmetrical azobenzenes are disclosed.
Collapse
Affiliation(s)
- Yuzhou Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Rongrong Xie
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Lingyu Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Ya-Nan Tian
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shihai Lv
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Xiangfei Kong
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Shiqing Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
8
|
Zhang S, Li H, Yamamoto Y, Bao M. Synthesis of 1 H-Indole-2,3-dicarboxylates via Rhodium-Catalyzed C-H Annulation of Arylhydrazines with Maleates. J Org Chem 2020; 85:12544-12552. [PMID: 32864963 DOI: 10.1021/acs.joc.0c01727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This work describes a one-step synthesis of 1H-indole-2,3-dicarboxylates through C-H activation. Rhodium-catalyzed tandem C-H activation and annulation of 2-acetyl-1-phenylhydrazines with maleates proceeded smoothly in the presence of additive NaOAc and oxidant Ag2CO3 and produced the corresponding indole derivatives, 1H-indole-2,3-dicarboxylates, in satisfactory to good yields. A variety of useful functional groups were tolerated on the benzene ring including halogen atoms (F, Cl, Br, and I) and methoxycarbonyl groups.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - He Li
- College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
9
|
Sar S, Chauhan J, Sen S. Generation of Aryl Radicals from Aryl Hydrazines via Catalytic Iodine in Air: Arylation of Substituted 1,4-Naphthoquinones. ACS OMEGA 2020; 5:4213-4222. [PMID: 32149251 PMCID: PMC7057683 DOI: 10.1021/acsomega.9b04014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Arylated building blocks or heterocycles are key to myriad applications, including pharmaceutical drug discovery, materials sciences, and many more. Herein, we have reported a mild and efficient strategy for generation of aryl radicals by reacting appropriate aryl hydrazines with catalytic iodine in open air. The aryl radicals were quenched by diversely substituted 1,4-napthoquinones present in the reaction mixture to afford diversely substituted 2,3-napthoquinones in moderate to excellent yield. Control experiments provided insights into the putative reaction mechanism.
Collapse
|
10
|
Reddy TN, de Lima DP. Recent Advances in the Functionalization of Hydrocarbons: Synthesis of Amides and its Derivatives. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thatikonda Narendar Reddy
- Instituto de Química (INQUI)Universidade Federal de Mato Grosso do Sul 179074-460 Campo Grande, MS Brazil
| | - Dênis Pires de Lima
- Instituto de Química (INQUI)Universidade Federal de Mato Grosso do Sul 179074-460 Campo Grande, MS Brazil
| |
Collapse
|
11
|
He D, Zhuang Z, Wang X, Li J, Li J, Wu W, Zhao Z, Jiang H, Tang BZ. Assembly of 1 H-isoindole derivatives by selective carbon-nitrogen triple bond activation: access to aggregation-induced emission fluorophores for lipid droplet imaging. Chem Sci 2019; 10:7076-7081. [PMID: 31588275 PMCID: PMC6677114 DOI: 10.1039/c9sc01035a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
A method of selectively activating carbon–nitrogen triple bonds has been developed to access 1H-isoindole AIE fluorophores for lipid droplet imaging.
A novel strategy has been established to assemble a series of single (Z)- or (E)-1H-isoindole derivatives through selectively and sequentially activating carbon–nitrogen triple bonds in a multicomponent system containing various nucleophilic and electrophilic sites. The reaction provides efficient access to structurally unique fluorophores with aggregation-induced emission characteristics. These new fluorophores show fluorescence wavelengths and efficiencies that can be modulated and have excellent potential to specifically light up lipid droplets (LDs) in living cells with bright fluorescence, low cytotoxicity and better photostability than commercially available LD-specific dyes.
Collapse
Affiliation(s)
- Dandan He
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Xu Wang
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Jiawei Li
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ; .,State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China .
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guang Dong Province , School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510641 , P. R. China . ;
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices , Center for Aggregation-Induced Emission , South China University of Technology , Guangzhou 510640 , China . .,Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science & Technology , Kowloon , Hong Kong , China
| |
Collapse
|
12
|
|
13
|
Bao H, Zhou B, Jin H, Liu Y. Copper-catalyzed three-component reaction of N-heteroaryl aldehydes, nitriles, and water. Org Biomol Chem 2019; 17:5021-5028. [PMID: 31044206 DOI: 10.1039/c9ob00599d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An efficient and straightforward method for the synthesis of N-heteroaroyl imides has been successfully developed involving a copper-catalyzed radical-triggered three-component reaction of N-heteroaryl aldehydes, nitriles, and water. Mechanistic studies indicate that the reaction may undergo a radical-triggered Ritter-type reaction in which water serves as the oxygen source for the formation of the C-O bond. The reaction has advantages such as a broad substrate scope for the N-heteroaryl aldehydes, atom economy, and simple operation.
Collapse
Affiliation(s)
- Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
14
|
Yuan J, Liu S, Xiao Y, Mao P, Yang L, Qu L. Palladium-catalyzed oxidative amidation of quinoxalin-2(1H)-ones with acetonitrile: a highly efficient strategy toward 3-amidated quinoxalin-2(1H)-ones. Org Biomol Chem 2019; 17:876-884. [PMID: 30628609 DOI: 10.1039/c8ob03061h] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel and convenient palladium-catalyzed direct oxidative amidation of quinoxalin-2(1H)-ones with acetonitrile was developed to synthesize 3-amidated quinoxalin-2(1H)-ones. A series of 3-acetamino quinoxalin-2(1H)-one derivatives were constructed with good to excellent yields. This methodology provided a practical approach to various 3-acetamino quinoxalin-2(1H)-ones from the readily available starting material acetonitrile.
Collapse
Affiliation(s)
- Jinwei Yuan
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, Zhengzhou 450001, P. R. China
| | | | | | | | | | | |
Collapse
|
15
|
Narendar Reddy T, Beatriz A, Jayathirtha Rao V, de Lima DP. Carbonyl Compounds′ Journey to Amide Bond Formation. Chem Asian J 2019; 14:344-388. [DOI: 10.1002/asia.201801560] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Thatikonda Narendar Reddy
- Instituto de Química (INQUI); Universidade Federal de Mato Grosso do Sul; 79074-460 Campo Grande Mato Grosso do Sul Brazil
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka Hyderabad 500007 India
| | - Adilson Beatriz
- Instituto de Química (INQUI); Universidade Federal de Mato Grosso do Sul; 79074-460 Campo Grande Mato Grosso do Sul Brazil
| | - Vaidya Jayathirtha Rao
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka Hyderabad 500007 India
| | - Dênis Pires de Lima
- Instituto de Química (INQUI); Universidade Federal de Mato Grosso do Sul; 79074-460 Campo Grande Mato Grosso do Sul Brazil
| |
Collapse
|
16
|
Cyclization of mercaptopyrimidine derivative: a facile synthetic approach for condensed pyrimidines. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3695-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Hu C, Zhang Z, Gao W, Zhang G, Liu T, Liu Q. PIFA-promoted intramolecular oxidative C(aryl)-H amidation reaction: Synthesis of quinolino[3,4- b ]quinoxalin-6(5 H )-ones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Kumar Y, Jaiswal Y, Kumar A. Two-Step One-Pot Synthesis of Unsymmetrical (Hetero)Aryl 1,2-Diketones by Addition-Oxygenation of Potassium Aryltrifluoroborates to (Hetero)Arylacetonitriles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry; Indian Institute of Technology Patna; 801103 Bihta Bihar India
| | - Yogesh Jaiswal
- Department of Chemistry; Indian Institute of Technology Patna; 801103 Bihta Bihar India
| | - Amit Kumar
- Department of Chemistry; Indian Institute of Technology Patna; 801103 Bihta Bihar India
| |
Collapse
|
19
|
Kiely-Collins HJ, Sechi I, Brennan PE, McLaughlin MG. Mild, calcium catalysed Beckmann rearrangements. Chem Commun (Camb) 2018; 54:654-657. [DOI: 10.1039/c7cc09491d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A mild calcium catalysed Beckmann rearrangement has been realised, which forgoes the more traditional harsh reactions conditions associated with the transformation.
Collapse
Affiliation(s)
- H. J. Kiely-Collins
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building
- Oxford
- UK
| | - I. Sechi
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building
- Oxford
- UK
| | - P. E. Brennan
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building
- Oxford
- UK
- ARUK Oxford Drug Discovery Institute, University of Oxford Oxford
- UK
| | - M. G. McLaughlin
- Structural Genomics Consortium & Target Discovery Institute, University of Oxford, NDM Research Building
- Oxford
- UK
- Faculty of Science & Engineering, Division of Chemistry & Environmental Science, Manchester Metropolitan University
- Manchester
| |
Collapse
|