1
|
Mondal S, Nandi S, Das S, Jana R. A chemoselective hydroxycarbonylation and 13C-labeling of aryl diazonium salts using formic acid as the C-1 source. Chem Commun (Camb) 2024. [PMID: 39495083 DOI: 10.1039/d4cc04758c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
We report a one-pot synthesis of aryl carboxylic acids utilizing HCOOH as a CO surrogate with low Pd-catalyst loading. This operationally simple and scalable method does not require use of a high-pressure reactor, two-chamber reaction vessel, phosphine ligand, or base and proceeds in a relatively short amount of time at ambient temperature. Notably, halides, including iodo and bromo groups, and nitro groups remain intact under these mild reaction conditions. This methodology has been successfully applied to synthesizing 13C-labeled aryl carboxylic acids with satisfactory yields.
Collapse
Affiliation(s)
- Shuvam Mondal
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Shantanu Nandi
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Subhodeep Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
2
|
Yang Y, Su J, Guerin T, Nielsen M, Tlili A. Formate Salt as a Bifunctional Reagent for Hydroxylation and Carbonylation Reactions Under Photochemically Driven Nickel Catalysis. Chemistry 2024:e202403221. [PMID: 39215548 DOI: 10.1002/chem.202403221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
In this study, we disclose for the first time that formate salt can be used as a bifunctional reagent for the synthesis of phenol derivatives and as a CO source for carbonylative cross-coupling processes using the COware gas reactor under activation free conditions. Key to this success is the in-situ synthesis of aryl formate via an unprecedented nickel/organophotocatalyst system under blue LED irradiation. This developed system demonstrated high applicability to various aryl iodide substrates for synthesizing phenol derivatives. Moreover, the generated CO could be utilized in a range of carbonylative C-heteroatom and C-C processes. Notably, commercially available H13COONa salt can serve as a bifunctional reagent for both synthesizing phenols and generating 13CO.
Collapse
Affiliation(s)
- Yi Yang
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ICBMS, UMR5246, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
- CNRS, Universite Claude Bernard Lyon 1, CNES, Ariane Group, LHCEP, Villeurbanne, F-69622, France
| | - Junping Su
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ICBMS, UMR5246, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
- CNRS, Universite Claude Bernard Lyon 1, CNES, Ariane Group, LHCEP, Villeurbanne, F-69622, France
| | - Timothe Guerin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ICBMS, UMR5246, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
| | - Martin Nielsen
- Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, Lyngby, DK-2800, Denmark
| | - Anis Tlili
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ICBMS, UMR5246, 43 Bd du 11 Novembre 1918, Villeurbanne, 69622, France
- CNRS, Universite Claude Bernard Lyon 1, CNES, Ariane Group, LHCEP, Villeurbanne, F-69622, France
| |
Collapse
|
3
|
Dake GG, Kaliappan KP. Total Syntheses of Discoipyrroles A, B, and C, Three Marine Natural Products. J Org Chem 2024; 89:5825-5832. [PMID: 38597506 DOI: 10.1021/acs.joc.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Herein, we describe our efforts culminating in the total syntheses of discoipyrroles A, B, and C in 6, 6, and 7 steps respectively with excellent overall yield. Total syntheses of these unique natural products have been accomplished involving microwave-mediated Paal-Knorr pyrrole synthesis, Pd-catalyzed carbonylative transformation, and MoOPH (Vedejs reagent) oxidation as key reactions to construct the 1,2,3,5-tetrasubstituted pyrrole and oxidative cyclization of highly substituted pyrrole as key steps.
Collapse
Affiliation(s)
- Gaurav G Dake
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Krishna P Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
4
|
Kollár L, Takács A, Molnár C, Kovács A, Mika LT, Pongrácz P. Palladium-Catalyzed Selective Amino- and Alkoxycarbonylation of Iodoarenes with Aliphatic Aminoalcohols as Heterobifunctional O,N-Nucleophiles. J Org Chem 2023; 88:5172-5179. [PMID: 37052371 PMCID: PMC10127279 DOI: 10.1021/acs.joc.2c02712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Palladium-catalyzed amino- and alkoxycarbonylation reactions of aryl iodides were investigated in the presence of aliphatic heterobifunctional N,O-nucleophiles. Selective synthesis of amide alcohols and amide esters was realized, controlled by the base and substrate ratio. The effect of iodobenzene substituents was also studied with surprising results in terms of product selectivity. In addition to the model ethanolamine/iodobenzene system, various heteroaromatic substrates and numerous related nucleophiles were tested under optimized conditions, providing moderate to good yields of the target compounds. Reactions of serinol and 1,3-diamino-2-propanol as model trifunctional compounds showed particularly high chemoselectivity on amide ester products. Considering the coordinative properties of the applied nucleophiles, a rational catalytic cycle was proposed.
Collapse
Affiliation(s)
- László Kollár
- ELKH-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6, Pécs H-7624, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20, Pécs H-7624, Hungary
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6, Pécs H-7624, Hungary
| | - Attila Takács
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6, Pécs H-7624, Hungary
| | - Csilla Molnár
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6, Pécs H-7624, Hungary
| | - Andrew Kovács
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6, Pécs H-7624, Hungary
| | - László T Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Müegyetem rkp. 3, Budapest H-1111, Hungary
| | - Péter Pongrácz
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6, Pécs H-7624, Hungary
| |
Collapse
|
5
|
Halder P, Talukdar V, Iqubal A, Das P. Palladium-Catalyzed Aminocarbonylation of Isoquinolines Utilizing Chloroform-COware Chemistry. J Org Chem 2022; 87:13965-13979. [PMID: 36217780 DOI: 10.1021/acs.joc.2c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The carbonyl group forms an integral part of several drug molecules and materials; hence, synthesis of carbonylated compounds remains an intriguing area of research for synthetic and medicinal chemists. Handling toxic CO gas has several limitations; thus, using safe and effective techniques for in or ex situ generation of carbon monoxide from nontoxic and cheap precursors is highly desirable. Among several precursors that have been explored for the generation of CO gas, chloroform can prove to be a promising CO surrogate due to its cost-effectiveness and ready availability. However, the one-pot chloroform-based carbonylation reaction requires strong basic conditions for hydrolysis of chloroform that may affect functional group tolerability of substrates and scale-up reactions. These limitations can be overcome by a two-chamber reactor (COware) that can be utilized for ex situ CO generation through hydrolysis of chloroform in one chamber and facilitating safe carbonylation reactions in another chamber under mild conditions. The versatility of this "Chloroform-COware" technique is explored through palladium-catalyzed aminocarbonylation of medicinally relevant heterocyclic cores, viz., isoquinoline and quinoline.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| |
Collapse
|
6
|
Choudhary N, Abdelgaid M, Mpourmpakis G, Mobin SM. CuNi bimetallic nanocatalyst enables sustainable direct carboxylation reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Efficient hydrocarboxylation of alkynes based on carbodiimide-regulated in situ CO generation from HCOOH: An alternative indirect utilization of CO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63848-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lu Z, Cao Y, Zhang D, Meng X, Guo B, Kong D, Yang Y. Discovery of Thieno[2,3- e]indazole Derivatives as Novel Oral Selective Estrogen Receptor Degraders with Highly Improved Antitumor Effect and Favorable Druggability. J Med Chem 2022; 65:5724-5750. [PMID: 35357160 DOI: 10.1021/acs.jmedchem.2c00008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocrine therapies in the treatment of early and metastatic estrogen receptor α positive (ERα+) breast cancer (BC) are greatly limited by de novo and acquired resistance. Selective estrogen receptor degraders (SERDs) like fulvestrant provide new strategies for endocrine therapy combinations due to unique mechanisms. Herein, we disclose our structure-based optimization of LSZ102 by replacing 6-hydroxybenzothiophene with 6H-thieno[2,3-e]indazole. Subsequent acrylic acid degron modifications led us to identify compound 40 as the preferred candidate. In general, compound 40 showed much better pharmacological profiles than the lead LSZ102, exhibiting growth inhibition of wild-type or tamoxifen-resistant MCF-7 cells, potent ERα degradation, together with superior pharmacokinetic properties, directional target tissue distribution including the brain, and robust antitumor efficacy in the mice breast cancer xenograft model. Currently, 40 is being evaluated in preclinical trials.
Collapse
Affiliation(s)
- Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yangzhi Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Deyu Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Hydrocarboxylation of alkynes with formic acid over multifunctional ligand modified Pd-catalyst with co-catalytic effect. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Yano de Albuquerque D, Teixeira WKO, Sacramento MD, Alves D, Santi C, Schwab RS. Palladium-Catalyzed Carbonylative Synthesis of Aryl Selenoesters Using Formic Acid as an Ex Situ CO Source. J Org Chem 2021; 87:595-605. [PMID: 34962405 DOI: 10.1021/acs.joc.1c02608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new catalytic protocol for the synthesis of selenoesters from aryl iodides and diaryl diselenides has been developed, where formic acid was employed as an efficient, low-cost, and safe substitute for toxic and gaseous CO. This protocol presents a high functional group tolerance, providing access to a large family of selenoesters in high yields (up to 97%) while operating under mild reaction conditions, and avoids the use of selenol which is difficult to manipulate, easily oxidizes, and has a bad odor. Additionally, this method can be efficiently extended to the synthesis of thioesters with moderate-to-excellent yields, by employing for the first time diorganyl disulfides as precursors.
Collapse
Affiliation(s)
- Danilo Yano de Albuquerque
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Wystan K O Teixeira
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| | - Manoela do Sacramento
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Diego Alves
- LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06123 Perugia, Italy
| | - Ricardo S Schwab
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem), Departamento de Química, Universidade Federal de São Carlos─UFSCar, Rodovia Washington Luís, km 235-SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
11
|
Helmstädter M, Kaiser A, Brunst S, Schmidt J, Ronchetti R, Weizel L, Proschak E, Merk D. Second-Generation Dual FXR/sEH Modulators with Optimized Pharmacokinetics. J Med Chem 2021; 64:9525-9536. [PMID: 34165993 DOI: 10.1021/acs.jmedchem.1c00831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) presents as an epidemic chronic liver disease that is closely associated with metabolic disorders and involves hepatic steatosis, inflammation, and fibrosis as key factors. Despite the enormous global prevalence of NASH, effective pharmacological interventions are lacking. Based on the hypothesis that the multifactorial condition NASH may benefit from combined multiple modes of action for enhanced therapeutic efficacy, we have previously developed dual FXR activators/sEH inhibitors (FXRa/sEHi) and observed remarkable antifibrotic effects upon their use in rodent NASH models. However, these first-generation FXRa/sEHi were characterized by moderate metabolic stability and short in vivo half-life. Aiming to overcome these pharmacokinetic drawbacks, we have systematically studied the structure-activity and structure-stability relationships of the chemotype and obtained second-generation FXRa/sEHi with improved pharmacokinetic parameters. With high plasma exposure, a half-life greater than 5 h, and similar dual potency on the intended targets, 13 presents as a substantially optimized FXRa/sEHi for late-stage preclinical development.
Collapse
Affiliation(s)
- Moritz Helmstädter
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jurema Schmidt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Riccardo Ronchetti
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Lilia Weizel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
12
|
Mohammadsaleh F, Jahromi MD, Hajipour AR, Hosseini SM, Niknam K. 1,2,3-Triazole framework: a strategic structure for C-H⋯X hydrogen bonding and practical design of an effective Pd-catalyst for carbonylation and carbon-carbon bond formation. RSC Adv 2021; 11:20812-20823. [PMID: 35479367 PMCID: PMC9034039 DOI: 10.1039/d1ra03356e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
1,2,3-Triazole is an interesting N-heterocyclic framework which can act as both a hydrogen bond donor and metal chelator. In the present study, C-H hydrogen bonding of the 1,2,3-triazole ring was surveyed theoretically and the results showed a good agreement with the experimental observations. The click-modified magnetic nanocatalyst Pd@click-Fe3O4/chitosan was successfully prepared, in which the triazole moiety plays a dual role as both a strong linker and an excellent ligand and immobilizes the palladium species in the catalyst matrix. This nanostructure was well characterized and found to be an efficient catalyst for the CO gas-free formylation of aryl halides using formic acid (HCOOH) as the most convenient, inexpensive and environmentally friendly CO source. Here, the aryl halides are selectively converted to the corresponding aromatic aldehydes under mild reaction conditions and low Pd loading. The activity of this catalyst was also excellent in the Suzuki cross-coupling reaction of various aryl halides with phenylboronic acids in EtOH/H2O (1 : 1) at room temperature. In addition, this catalyst was stable in the reaction media and could be magnetically separated and recovered several times.
Collapse
Affiliation(s)
- Fatemeh Mohammadsaleh
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr Iran
| | | | - Abdol Reza Hajipour
- Pharmaceutical Research Laboratory, Department of Chemistry, Isfahan University of Technology Isfahan 84156 Islamic Republic of Iran.,Department of Pharmacology, University of Wisconsin, Medical School, 1300 University Avenue Madison 53706-1532 WI USA
| | - Seyed Mostafa Hosseini
- Pharmaceutical Research Laboratory, Department of Chemistry, Isfahan University of Technology Isfahan 84156 Islamic Republic of Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr Iran
| |
Collapse
|
13
|
Bouton J, Ferreira de Almeida Fiuza L, Cardoso Santos C, Mazzarella MA, Soeiro MDNC, Maes L, Karalic I, Caljon G, Van Calenbergh S. Revisiting Pyrazolo[3,4- d]pyrimidine Nucleosides as Anti- Trypanosoma cruzi and Antileishmanial Agents. J Med Chem 2021; 64:4206-4238. [PMID: 33784107 DOI: 10.1021/acs.jmedchem.1c00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chagas disease and visceral leishmaniasis are two neglected tropical diseases responsible for numerous deaths around the world. For both, current treatments are largely inadequate, resulting in a continued need for new drug discovery. As both kinetoplastid parasites are incapable of de novo purine synthesis, they depend on purine salvage pathways that allow them to acquire and process purines from the host to meet their demands. Purine nucleoside analogues therefore constitute a logical source of potential antiparasitic agents. Earlier optimization efforts of the natural product tubercidin (7-deazaadenosine) involving modifications to the nucleobase 7-position and the ribofuranose 3'-position led to analogues with potent anti-Trypanosoma brucei and anti-Trypanosoma cruzi activities. In this work, we report the design and synthesis of pyrazolo[3,4-d]pyrimidine nucleosides with 3'- and 7-modifications and assess their potential as anti-Trypanosoma cruzi and antileishmanial agents. One compound was selected for in vivo evaluation in an acute Chagas disease mouse model.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Ludmila Ferreira de Almeida Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Camila Cardoso Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Maria Angela Mazzarella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia 06100, Italy
| | - Maria de Nazaré Correia Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Izet Karalic
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| |
Collapse
|
14
|
Abstract
Formic acid (HCOOH) as an inexpensive and versatile reagent has gained broad
attention in the field of green synthesis and chemical industry. Formic acid acts not only as a
convenient and less toxic CO surrogate, but also as an excellent formylative reagent, C1
source and hydrogen donor in organic reactions. Over the past decades, many exciting contributions
have been made which have helped chemists to understand the mechanisms of these
reactions. The review will examine recent advances in the utilization of formic acid as an
economical, practical and multipurpose reactant in synthetic transformations.
Collapse
Affiliation(s)
- Xiao-Hua Cai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Su-qian Cai
- School of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Bing Xie
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
15
|
Insight into decomposition of formic acid to syngas required for Rh-catalyzed hydroformylation of olefins. J Catal 2021. [DOI: 10.1016/j.jcat.2020.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Khedkar MV, Khan SR, Lambat TL, Chaudhary RG, Abdala AA. CO Surrogates: A Green Alternative in Palladium-Catalyzed CO Gas Free Carbonylation Reactions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200622115655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbonylation reactions with carbon monoxide (CO) provide efficient and attractive
routes for the synthesis of bulk and fine chemicals. However, the practice of using a
large excess of an inflammable, lethal and greenhouse CO gas is always a concern in this
chemistry. The development of CO surrogates has gained substantial interest and become a
green alternative to gaseous CO. Many of the recent studies have focused on the development
of other benign and safe reagents to work as a CO source in carbonylation reactions,
and the assortment of feasible CO surrogates for specific reaction can be accomplished by
the literature data. This review describes the recent developments in palladium-catalyzed
carbonyl insertions without the direct use of gaseous CO.
Collapse
Affiliation(s)
- Mayur V. Khedkar
- Department of Chemistry, Hislop College, Nagpur 440001, Maharashtra, India
| | - Shoeb R. Khan
- Department of Chemistry, Hislop College, Nagpur 440001, Maharashtra, India
| | - Trimurti L. Lambat
- Department of Chemistry, Manoharbhai Patel College of Arts, Commerce & Science, Deori, Gondia 441901, Maharashtra, India
| | - Ratiram G. Chaudhary
- Post Graduate Department of Chemistry, S. K. Porwal College of Arts, Commerce & Science, Kamptee-441001, Maharashtra, India
| | - Ahmed A. Abdala
- Chemical Engineering Program, Texas A & M University at Qatar, P.O.B. 23784, Doha, Qatar
| |
Collapse
|
17
|
Wang K, Lan J, He Z, Cao Z, Wang W, Yang Y, Liu Z. Experimental and density functional theory studies on hydroxymethylation of phenylboronic acids with paraformaldehyde over a RhPPh
3
catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kuan Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jie Lan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Zhen‐Hong He
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Zhe Cao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Weitao Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yang Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
| | - Zhao‐Tie Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an 710021 China
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
18
|
Hussain N, Chhalodia AK, Ahmed A, Mukherjee D. Recent Advances in Metal‐Catalyzed Carbonylation Reactions by Using Formic Acid as CO Surrogate. ChemistrySelect 2020. [DOI: 10.1002/slct.202003395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nazar Hussain
- Natural Product Chemistry Division CSIR-Indian Institute of Integrative Medicine India
| | - Anuj Kumar Chhalodia
- Natural Product Chemistry Division CSIR-Indian Institute of Integrative Medicine India
| | - Ajaz Ahmed
- Natural Product Chemistry Division CSIR-Indian Institute of Integrative Medicine India
| | - Debaraj Mukherjee
- Natural Product Chemistry Division CSIR-Indian Institute of Integrative Medicine India
| |
Collapse
|
19
|
Affiliation(s)
- Debarati Das
- Department of ChemistryInstitute of Chemical Technology, Matunga Mumbai 400019 India
| | | |
Collapse
|
20
|
Zoller B, Zapp J, Huy PH. Rapid Organocatalytic Formation of Carbon Monoxide: Application towards Carbonylative Cross Couplings. Chemistry 2020; 26:9632-9638. [PMID: 32516509 PMCID: PMC7497008 DOI: 10.1002/chem.202002746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/15/2022]
Abstract
Herein, the first organocatalytic method for the transformation of non‐derivatized formic acid into carbon monoxide (CO) is introduced. Formylpyrrolidine (FPyr) and trichlorotriazine (TCT), which is a cost‐efficient commodity chemical, enable this decarbonylation. Utilization of dimethylformamide (DMF) as solvent and catalyst even allows for a rapid CO generation at room temperature. Application towards four different carbonylative cross coupling protocols demonstrates the high synthetic utility and versatility of the new approach. Remarkably, this also comprehends a carbonylative Sonogashira reaction at room temperature employing intrinsically difficult electron‐deficient aryl iodides. Commercial 13C‐enriched formic acid facilitates the production of radiolabeled compounds as exemplified by the pharmaceutical Moclobemide. Finally, comparative experiments verified that the present method is highly superior to other protocols for the activation of carboxylic acids.
Collapse
Affiliation(s)
- Ben Zoller
- Organic Chemistry, Saarland University, P. O. Box 151150, 66041, Saarbrücken, Germany
| | - Josef Zapp
- Institute of Pharmaceutical Biology, Saarland University, Campus C 2.3, 66123, Saarbrücken, Germany
| | - Peter H Huy
- Organic Chemistry, Saarland University, P. O. Box 151150, 66041, Saarbrücken, Germany
| |
Collapse
|
21
|
Powerful and Phosphine-Free Palladium-Catalyzed Selective Formylation of Aryl Halides with Formic Acid as CO Source. Catal Letters 2020. [DOI: 10.1007/s10562-020-03108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Grabovyi GA, Bhatti A, Mohr JT. Total Synthesis of Benzofuran-Based Aspergillusene B via Halogenative Aromatization of Enones. Org Lett 2020; 22:4196-4200. [PMID: 32437168 DOI: 10.1021/acs.orglett.0c01259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gennadii A. Grabovyi
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Aisha Bhatti
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Justin T. Mohr
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
23
|
Ismael A, Skrydstrup T, Bayer A. Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides: synthesis of 2-aroylbenzoate derivatives. Org Biomol Chem 2020; 18:1754-1759. [PMID: 32065204 DOI: 10.1039/d0ob00044b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a carbonylative approach to the synthesis of diversely substituted 2-aroylbenzoate esters featuring a new protocol for the carbonylative coupling of aryl bromides with boronic acids and a new strategy to favour carbonylative over non-carbonylative reactions. Two different synthetic pathways - (i) the alkoxycarbonylation of 2-bromo benzophenones and (ii) the carbonylative Suzuki-Miyaura coupling of 2-bromobenzoate esters - were evaluated. The latter approach provided a broader substrate tolerance, and thus was the preferred pathway. We observed that 2-substituted aryl bromides were challenging substrates for carbonylative chemistry favouring the non-carbonylative pathway. However, we found that carbonylative Suzuki-Miyaura couplings can be improved by slow addition of the boronic acid, suppressing the unwanted direct Suzuki coupling and, thus increasing the yield of the carbonylative reaction.
Collapse
Affiliation(s)
- Aya Ismael
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Annette Bayer
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
24
|
Nanda T, Ravikumar PC. A Palladium-Catalyzed Cascade C–C Activation of Cyclopropenone and Carbonylative Amination: Easy Access to Highly Functionalized Maleimide Derivatives. Org Lett 2020; 22:1368-1374. [DOI: 10.1021/acs.orglett.9b04656] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanmayee Nanda
- National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, HBNI, Jatani, Odisha 752050, India
| | - P. C. Ravikumar
- National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, HBNI, Jatani, Odisha 752050, India
| |
Collapse
|
25
|
Zhou R, Qi X, Wu XF. Selenium-Catalyzed Carbonylative Synthesis of 3,4-Dihydroquinazolin-2(1 H)-one Derivatives with TFBen as the CO Source. ACS COMBINATORIAL SCIENCE 2019; 21:573-577. [PMID: 31318526 DOI: 10.1021/acscombsci.9b00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient and general carbonylative procedure for the synthesis of 3,4-dihydroquinazolin-2(1H)-one from 1-(halomethyl)-2-nitrobenzenes and aryl/alkyl amines have been explored. In this approach, to avoid of using toxic CO gas, a solid and stable CO precursor, TFBen (benzene-1,3,5-triyl triformate), was utilized. With elemental selenium as the catalyst, a variety of aryl/alkyl amines has been tolerated well to afford the corresponding 3,4-dihydroquinazolin-2(1H)-one products in moderate to excellent yields under mild reaction condition.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der, Institution Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
26
|
Ahmed A, Hussain N, Bhardwaj M, Chhalodia AK, Kumar A, Mukherjee D. Palladium catalysed carbonylation of 2-iodoglycals for the synthesis of C-2 carboxylic acids and aldehydes taking formic acid as a carbonyl source. RSC Adv 2019; 9:22227-22231. [PMID: 35519467 PMCID: PMC9066652 DOI: 10.1039/c9ra03626a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
Pd catalyzed carbonylative reaction of 2-iodo-glycals has been developed taking formic acid as a carbonyl source for the synthesis of 2-carboxylic acids of sugars by the hydroxycarbonylation strategy. The methodology was successfully extended to the synthesis of 2-formyl glycals by using a reductive carbonylation approach. Both ester and ether protected glycals undergo the reaction and furnished sugar acids in good yield which is otherwise not possible by literature methods. The C-2 sugar acids were successfully utilized for the construction of 2-amido glycals, 2-dipeptido-glycal by Ugi reaction and C-1 and C-2 branched glycosyl esters.
Collapse
Affiliation(s)
- Ajaz Ahmed
- Academy of Scientific and Innovative Research India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Nazar Hussain
- Academy of Scientific and Innovative Research India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Monika Bhardwaj
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Anuj Kumar Chhalodia
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Amit Kumar
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| |
Collapse
|
27
|
Lai M, Qi X, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of Benzyl Benzoates Employing Benzyl Formates as Both CO Surrogates and Benzyl Alcohol Sources. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ming Lai
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
| | - Xinxin Qi
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus 310018 Hangzhou People's Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
28
|
Mondal K, Halder P, Gopalan G, Sasikumar P, Radhakrishnan KV, Das P. Chloroform as a CO surrogate: applications and recent developments. Org Biomol Chem 2019; 17:5212-5222. [PMID: 31080990 DOI: 10.1039/c9ob00886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carbonyl moiety is one of the indispensable sub-units in organic synthesis with significant applications in medicinal as well as materials chemistry. Hence the insertion of a carbonyl group via simple and highly efficient routes has been one of the most challenging tasks for organic chemists. Though the direct utilisation of CO gas in carbonylation is the fundamental procedure for the construction of carbonyl compounds, it has certain drawbacks due to its toxic and explosive nature. As a result, the need for cheap and efficient CO surrogates has gained much attention nowadays by which CO gas can be easily generated in situ or ex situ. In this review we discuss the advantages of chloroform as CO surrogate and have surveyed recent carbonylation reactions where chloroform has been used as CO source.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Applied Chemistry, IIT(ISM) Dhanbad, Dhanbad 826004, India.
| | | | | | | | | | | |
Collapse
|
29
|
Bodzioch A, Pomikło D, Celeda M, Pietrzak A, Kaszyński P. 3-Substituted Benzo[e][1,2,4]triazines: Synthesis and Electronic Effects of the C(3) Substituent. J Org Chem 2019; 84:6377-6394. [DOI: 10.1021/acs.joc.9b00716] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agnieszka Bodzioch
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
| | - Dominika Pomikło
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
| | | | - Anna Pietrzak
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
- Faculty of Chemistry, Łódź University of Technology, 90-924 Łódź, Poland
| | - Piotr Kaszyński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland
- Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
30
|
Bartal B, Mikle G, Kollár L, Pongrácz P. Palladium catalyzed carbonylations of alkenyl halides with formic acid to get corresponding α,β-unsaturated carboxylic acids and esters. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Qi X, Lai M, Zhu M, Peng J, Ying J, Wu X. 1‐Arylvinyl formats: A New CO Source and Ketone Source in Carbonylative Synthesis of Chalcone Derivatives. ChemCatChem 2019. [DOI: 10.1002/cctc.201900011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinxin Qi
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Ming Lai
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Min‐Jie Zhu
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Jin‐Bao Peng
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Jun Ying
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
| | - Xiao‐Feng Wu
- Department of ChemistryZhejiang Sci-Tech University Xiasha Campus Hangzhou 310018 P. R. China
- Leibniz-Institut für Katalyse e.V.Universität Rostock Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
32
|
Qi X, Zhou R, Peng JB, Ying J, Wu XF. Selenium-Catalyzed Carbonylative Synthesis of 2-Benzimidazolones from 2-Nitroanilines with TFBen as the CO Source. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xinxin Qi
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
| | - Rong Zhou
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
| | - Jin-Bao Peng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
| | - Jun Ying
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campous 310018 Hangzhou People's Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
33
|
You S, Yan C, Zhang R, Cai M. A convenient and practical heterogeneous palladium‐catalyzed carbonylative Suzuki coupling of aryl iodides with formic acid as carbon monoxide source. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shengyong You
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences Nanchang 330029 China
| | - Chenyu Yan
- Affiliated Middle School of Jiangxi Normal University Nanchang 330022 China
| | - Rongli Zhang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 China
| | - Mingzhong Cai
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 China
| |
Collapse
|
34
|
Palladium catalyzed carbonylation of benzyl chlorides: Additive-controlled divergent synthesis of benzyl arylacetates and arylacetic acids. J Catal 2018. [DOI: 10.1016/j.jcat.2018.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
|
36
|
Peng JB, Geng HQ, Li D, Qi X, Ying J, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of α,β-Unsaturated Amides from Styrenes and Nitroarenes. Org Lett 2018; 20:4988-4993. [DOI: 10.1021/acs.orglett.8b02109] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Hui-Qing Geng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Da Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
37
|
Qi X, Li R, Li HP, Peng JB, Ying J, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of N
-Acetyl Benzoxazinones. ChemCatChem 2018. [DOI: 10.1002/cctc.201800532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinxin Qi
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 P.R. China
| | - Rui Li
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 P.R. China
| | - Hao-Peng Li
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 P.R. China
| | - Jin-Bao Peng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 P.R. China
| | - Jun Ying
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 P.R. China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 P.R. China
- Leibniz-Institut für Katalyse e.V. an der; Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
38
|
Lei Y, Lan G, Zhu D, Wang R, Zhou XY, Li G. Urea-based amphiphilic porous organic polymer-supported palladium as a reusable catalyst for Suzuki-Miyaura coupling and hydroxycarbonylation reactions in water. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yizhu Lei
- School of Chemistry and Materials Engineering; Liupanshui Normal University; Liupanshui Guizhou 553004 People's Republic of China
| | - Guosong Lan
- School of Chemistry and Materials Engineering; Liupanshui Normal University; Liupanshui Guizhou 553004 People's Republic of China
| | - Dajian Zhu
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 Wuhan Hubei 430074 People's Republic of China
| | - Renshu Wang
- School of Chemistry and Materials Engineering; Liupanshui Normal University; Liupanshui Guizhou 553004 People's Republic of China
| | - Xiao-Yu Zhou
- School of Chemistry and Materials Engineering; Liupanshui Normal University; Liupanshui Guizhou 553004 People's Republic of China
| | - Guangxing Li
- School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Luoyu Road 1037 Wuhan Hubei 430074 People's Republic of China
| |
Collapse
|
39
|
Qi X, Ai HJ, Zhang N, Peng JB, Ying J, Wu XF. Palladium-catalyzed carbonylative bis(indolyl)methanes synthesis with TFBen as the CO source. J Catal 2018. [DOI: 10.1016/j.jcat.2018.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Wang L, Neumann H, Beller M. A General, Activator-Free Palladium-Catalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Wang
- Leibniz-Institut für Katalyse an der; Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse an der; Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der; Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
41
|
Wang L, Neumann H, Beller M. A General, Activator-Free Palladium-Catalyzed Synthesis of Arylacetic and Benzoic Acids from Formic Acid. Angew Chem Int Ed Engl 2018; 57:6910-6914. [DOI: 10.1002/anie.201802384] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Lin Wang
- Leibniz-Institut für Katalyse an der; Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse an der; Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der; Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
42
|
Wang H, Ying J, Lai M, Qi X, Peng JB, Wu XF. Base-Promoted Carbonylative Cyclization of Propargylic Amines with Selenium under CO Gas-free Conditions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800109] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hai Wang
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Jun Ying
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Ming Lai
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Xinxin Qi
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Jin-Bao Peng
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock; Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
43
|
Roy T, Rydfjord J, Sävmarker J, Nordeman P. Palladium-catalyzed carbonylation of aryl bromides using microwave heating and bis[CP-Fe(II)-(CO)2] as a carbon monoxide source. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|