1
|
Mulyadi C, Uji M, Parmar B, Orihashi K, Yanai N. Triplet-Triplet Annihilation-Based Photon Upconversion with a Macrocyclic Parallel Dimer. PRECISION CHEMISTRY 2024; 2:539-544. [PMID: 39483270 PMCID: PMC11522992 DOI: 10.1021/prechem.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024]
Abstract
The integration of multiple chromophore units into a single molecule is expected to improve the performance of photon upconversion based on triplet-triplet annihilation (TTA-UC) that can convert low energy photons to higher energy photons at low excitation intensity. In this study, a macrocyclic parallel dimer of 9,10-diphenylanthracene (DPA) with a precisely parallel orientation, named MPD-2, is synthesized, and its TTA-UC properties are investigated. MPD-2 shows a green-to-blue TTA-UC emission in the presence of a triplet sensitizer, platinum octaethylporphyrin (PtOEP). Compared to monomeric DPA, MPD-2 results in an enhancement of the spin statistical factor of TTA and a decrease in the excitation light intensity due to the intramolecular TTA process. The obtained structure-property relationship provides important information for the further improvement of TTA-UC properties.
Collapse
Affiliation(s)
- Catherine
H. Mulyadi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanori Uji
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Bhavesh Parmar
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kana Orihashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
2
|
Ovchenkova EN, Tsaturyan AA, Bichan NG, Gruzdev MS, Kudryakova NO, Knyazev PA, Gostev FE, Nadtochenko VA, Lomova TN. Axial Coordinated Manganese(III) Porphyrin/Tetraazaporphyrin - 4-(10-phenylanthracen-9-yl)Pyridine Dyads: Self-Assembly, Structure and Spectral Properties in Ground and Excited States. Chem Asian J 2024; 19:e202400095. [PMID: 38699866 DOI: 10.1002/asia.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Self-assembly of new donor-acceptor systems based on (5,10,15,20-tetraphenylporphinato)manganese(III)/(5,10,15,20-tetra-4-tert-butylphenylporphinato)manganese(III)/(octakis(4-tert-butylphenyl)tetraazaporphinato)manganese(III) acetate ((AcO)MnTPP/(AcO)MnTBPP/(AcO)MnTAP) and 4-(10-phenylanthracen-9-yl)pyridine (PyAn) was studied using fluorescence spectroscopy and mass spectrometry. It was found that the coordination complexes of 1 : 1 composition (dyads) are formed in toluene. The spectral properties, the chemical structures and redox behavior of the dyads were described using 1H NMR, IR, ESR spectroscopy and cyclic voltammetry, respectively. The dynamic processes and the characteristics in the excited state of the dyads were obtained using the femtosecond transient absorption spectroscopy method. Density functional theory (DFT), time-dependent DFT methods were used to elucidate the dyad electronic structures and to establish the differences in their frontier molecular orbitals. The analysis of the lambda parameter and the distance of hole-pair interaction was indicated more favorable charge transfer between the macrocycle and the axial PyAn fragment in (AcO)(PyAn)MnTAP. The calculated values of the zero-field splitting parameters D and E/D, together with the g tensors of the lowest spin-orbit state for (AcO)MnTPP and (AcO)(PyAn)MnTPP were obtained using the combination of DFT and Multireference Perturbation Theory (CASSCF/NEVPT2) simulations. The data obtained develop the fundamental basis in the field of photovoltaics and show the prospects for the study of molecular systems of this class.
Collapse
Affiliation(s)
- Ekaterina N Ovchenkova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Arshak A Tsaturyan
- Université Jean Monnet Saint-Etienne, Laboratoire Hubert Curien UMR 5516, CNRS, Institut d'Optique Graduate School, F-42023, Saint-Etienne, France
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Nataliya G Bichan
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Matvey S Gruzdev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Nadezhda O Kudryakova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Pavel A Knyazev
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia
- Faculty of Chemistry, Moscow State University, Moscow, Russia
| | - Tatyana N Lomova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| |
Collapse
|
3
|
Garci A, Abid S, David AHG, Jones LO, Azad CS, Ovalle M, Brown PJ, Stern CL, Zhao X, Malaisrie L, Schatz GC, Young RM, Wasielewski MR, Stoddart JF. Exciplex Emission and Förster Resonance Energy Transfer in Polycyclic Aromatic Hydrocarbon-Based Bischromophoric Cyclophanes and Homo[2]catenanes. J Am Chem Soc 2023; 145:18391-18401. [PMID: 37565777 DOI: 10.1021/jacs.3c04213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Energy transfer and exciplex emission are not only crucial photophysical processes in many living organisms but also important for the development of smart photonic materials. We report, herein, the rationally designed synthesis and characterization of two highly charged bischromophoric homo[2]catenanes and one cyclophane incorporating a combination of polycyclic aromatic hydrocarbons, i.e., anthracene, pyrene, and perylene, which are intrinsically capable of supporting energy transfer and exciplex formation. The possible coconformations of the homo[2]catenanes, on account of their dynamic behavior, have been probed by Density Functional Theory calculations. The unique photophysical properties of these exotic molecules have been explored by steady-state and time-resolved absorption and fluorescence spectroscopies. The tetracationic pyrene-perylene cyclophane system exhibits emission emanating from a highly efficient Förster resonance energy transfer (FRET) mechanism which occurs in 48 ps, while the octacationic homo[2]catenane displays a weak exciplex photoluminescence following extremely fast (<0.3 ps) exciplex formation. The in-depth fundamental understanding of these photophysical processes involved in the fluorescence of bischromophoric cyclophanes and homo[2]catenanes paves the way for their use in future bioapplications and photonic devices.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luke Malaisrie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
4
|
Della Sala P, Del Regno R, Capobianco A, Iuliano V, Talotta C, Geremia S, Hickey N, Neri P, Gaeta C. Confused-Prism[5]arene: a Conformationally Adaptive Host by Stereoselective Opening of the 1,4-Bridged Naphthalene Flap. Chemistry 2023; 29:e202203030. [PMID: 36317818 DOI: 10.1002/chem.202203030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 12/12/2022]
Abstract
The confused-prism[5]arene macrocycle (c-PrS[5]Me ) shows conformational adaptive behavior in the presence of ammonium guests. Upon guest inclusion, the 1,4-bridged naphthalene flap reverses its planar chirality from pS to pR (with reference to the pS(pR)4 enantiomer). Stereoselective directional threading is also observed in the presence of directional axles, in which up/down stereoisomers of homochiral (pR)5 -c-PrS[5]Me pseudorotaxanes are formed.
Collapse
Affiliation(s)
- Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy
| | - Rocco Del Regno
- Laboratory of Supramolecular Chemistry, Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy
| | - Amedeo Capobianco
- Laboratory of Supramolecular Chemistry, Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy
| | - Veronica Iuliano
- Laboratory of Supramolecular Chemistry, Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Neal Hickey
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Salerno, Italy
| |
Collapse
|
5
|
Kwon H, Newell BS, Bruns CJ. Redox-switchable host-guest complexes of metallocenes and [8]cycloparaphenylene. NANOSCALE 2022; 14:14276-14285. [PMID: 36134555 DOI: 10.1039/d2nr03852h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cycloparaphenylene (CPP) nanocarbons are an appealing family of macrocyclic organic semiconductors with size-tunable structures and unique optoelectronic properties, which can be further modulated by complexation with guest molecules. While many π-π-stabilized CPP-fullerene host-guest complexes are known, CPPs can also host polycyclic guests stabilized by aromatic CH-π interactions. Here we combine experimental and computational results to report that CH-π interactions can also be tapped to include redox-active metallocene guests in [8]cycloparaphenylene ([8]CPP). Oxidation of a metallocene guest is accompanied by an increase in binding affinity and tilt angle. Crystallographically determined solid-state structures reveal CH-π interactions in the ferrocene complex (Fc⊂[8]CPP) and additional π-π interactions in the cobaltocenium complex (CoCp2+⊂[8]CPP). Functionalizing Fc with oxygen-bearing side chains also improves complex stability to a similar extent as oxidation, due to the formation of CH-O hydrogen bonds with the host's p-phenylene units. This work shows that CH-π bonding can be generalized as a driving force for CPP host-guest complexes and combined with other supramolecular forces to enhance stability. Owing to their semiconducting nature, amenability to functionalization, and reversible redox-dependent behavior, the [8]CPP-metallocene host-guest complexes may expand the library of synthons available for designing bespoke nanoelectronics and artificial molecular machines.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309, USA
| | - Brian S Newell
- Materials and Molecular Analysis Center, Analytical Resources Core, Colorado State University, 200 W. Lake Street, Fort Collins, CO 80523, USA
| | - Carson J Bruns
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309, USA
- ATLAS Institute, University of Colorado Boulder, 1125 18th Street, 320 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
6
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
7
|
Wang L, Nagashima Y, Abekura M, Uekusa H, Konishi G, Tanaka K. Rhodium‐Catalyzed Intermolecular Cycloaromatization Route to Cycloparaphenylenes that Exhibit Aggregation‐Induced Emission. Chemistry 2022; 28:e202200064. [DOI: 10.1002/chem.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Li‐Hsiang Wang
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masato Abekura
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hidehiro Uekusa
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
8
|
Kohrs D, Becker J, Wegner HA. A Modular Synthesis of Substituted Cycloparaphenylenes. Chemistry 2022; 28:e202104239. [PMID: 35001444 PMCID: PMC9302675 DOI: 10.1002/chem.202104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/20/2022]
Abstract
Herein, we report a modular synthesis providing access to substituted cycloparaphenylenes (CPPs) of different sizes. A key synthon introducing two geminal ester units was efficiently prepared by [2+2+2] cycloaddition. This building block can be conveniently converted to macrocyclic precursors controlling the ring size of the final CPP. Efficient reductive aromatization through single-electron transfer provided the substituted nanohoops in a straightforward manner. The tBu ester substitution pattern enables a tube-like arrangement in the solid-state governed by van der Waals interactions that exhibits one of the tightest packings of CPPs in tube direction, thus opening new avenues in the crystal design of CPPs.
Collapse
Affiliation(s)
- Daniel Kohrs
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (ZfM/LaMa)Justus Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| | - Jonathan Becker
- Institute of Inorganic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (ZfM/LaMa)Justus Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
9
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero- or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021; 60:15743-15766. [PMID: 32902109 PMCID: PMC9542246 DOI: 10.1002/anie.202007024] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/05/2020] [Indexed: 12/20/2022]
Abstract
In the last 13 years several synthetic strategies were developed that provide access to [n]cycloparaphenylenes ([n]CPPs) and related conjugated nanohoops. A number of potential applications emerged, including optoelectronic devices, and their use as templates for carbon nanomaterials and in supramolecular chemistry. To tune the structural or optoelectronic properties of carbon nanohoops beyond the size-dependent effect known for [n]CPPs, a variety of aromatic rings other than benzene were introduced. In this Review, we provide an overview of the syntheses, properties, and applications of conjugated nanohoops beyond [n]CPPs with intrinsic donor/acceptor structure or such that contain acceptor, donor, heteroaromatic or polycyclic aromatic units within the hoop as well as conjugated nanobelts.
Collapse
Affiliation(s)
- Mathias Hermann
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Daniel Wassy
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Birgit Esser
- Institute for Organic ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
- Freiburg Materials Research CenterUniversity of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
10
|
Mirzaei S, Castro E, Hernández Sánchez R. Conjugated Molecular Nanotubes. Chemistry 2021; 27:8642-8655. [PMID: 33780560 DOI: 10.1002/chem.202005408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 01/09/2023]
Abstract
Molecular compounds with permanent tubular architectures displaying radial π-conjugation are exceedingly rare. Their radial and axial delocalization presents them with unique optical and electronic properties, such as remarkable tuning of their Stokes shifts, and redox switching between global and local aromaticity. Although these tubular compounds display large internal void spaces, these attributes have not been extensively explored, thus presenting future opportunities in the development of materials. By using cutting-edge synthetic methodologies to bend aromatic surfaces, large opportunities in synthesis, property discovery, and applications are expected in new members of this family of conjugated molecular nanotubes.
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry, Dietrich School of Arts & Sciences, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Edison Castro
- Department of Chemistry, Dietrich School of Arts & Sciences, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - Raúl Hernández Sánchez
- Department of Chemistry, Dietrich School of Arts & Sciences, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| |
Collapse
|
11
|
Hermann M, Wassy D, Esser B. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero‐ or Polycyclic Aromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mathias Hermann
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Daniel Wassy
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Birgit Esser
- Institute for Organic Chemistry University of Freiburg Albertstr. 21 79104 Freiburg Germany
- Freiburg Materials Research Center University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
12
|
Velardo A, Landi A, Borrelli R, Peluso A. Reliable Predictions of Benzophenone Singlet-Triplet Transition Rates: A Second-Order Cumulant Approach. J Phys Chem A 2021; 125:43-49. [PMID: 33369419 DOI: 10.1021/acs.jpca.0c07848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fermi golden rule and second-order cumulant expansion of the time-dependent density matrix have been used to compute from first principles the rate of intersystem crossing in benzophenone, using minimum-energy geometries and normal modes of vibrations computed at the TDDFT/CAM-B3LYP level. Both approaches yield reliable values of the S1 decay rate, the latter being almost in quantitative agreement with the results of time-dependent spectroscopic measurements (0.154 ps-1 observed vs 0.25 ps-1 predicted). The Fermi golden rule slightly overestimates the decay rate of S1 state (kd = 0.45 ps-1) but provides better insights into the chemico-physical parameters, which govern the transition from a thermally equilibrated population of S1, showing that the indirect mechanism is much faster than the direct one because of the vanishingly small Franck-Condon weighted density of states at ΔE of transition.
Collapse
Affiliation(s)
- Amalia Velardo
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125 Torino, Italy.,Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
| | - Alessandro Landi
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
| | - Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science, University of Torino, I-10195 Grugliasco, Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
| |
Collapse
|
13
|
Pérez‐Jiménez ÁJ, Sancho‐García JC. Theoretical Insights for Materials Properties of Cyclic Organic Nanorings. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Kawanishi T, Ishida K, Kayahara E, Yamago S. Selective and Gram-Scale Synthesis of [8]Cycloparaphenylene. J Org Chem 2020; 85:2082-2091. [DOI: 10.1021/acs.joc.9b02844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatsuya Kawanishi
- Oji R&D Center, Tokyo Chemical Industry Co., LTD., Toshima, Kita-ku, Tokyo 114-0003, Japan
| | - Kosuke Ishida
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| |
Collapse
|
15
|
Xu Y, Gsänger S, Minameyer MB, Imaz I, Maspoch D, Shyshov O, Schwer F, Ribas X, Drewello T, Meyer B, von Delius M. Highly Strained, Radially π-Conjugated Porphyrinylene Nanohoops. J Am Chem Soc 2019; 141:18500-18507. [DOI: 10.1021/jacs.9b08584] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Youzhi Xu
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sebastian Gsänger
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Martin B. Minameyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Oleksandr Shyshov
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fabian Schwer
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
16
|
|
17
|
Della Sala P, Talotta C, De Rosa M, Soriente A, Geremia S, Hickey N, Neri P, Gaeta C. Synthesis, Characterization, and Solid-State Structure of [8]Cycloparaphenylenes with Inherent Chirality. J Org Chem 2019; 84:9489-9496. [PMID: 31271287 DOI: 10.1021/acs.joc.9b01026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here the synthesis of two [8]cycloparaphenylenes ([8]CPP) derivatives, 1 and 2, bearing a monosubstituted benzene moiety. The presence of the substituent implies a planar chirality for the monosubstituted [8]CPP 1 and 2, whose configuration is here described by applying the chirality descriptors pR and pS. Experimental evidence of this planar chirality has been obtained through 1H VT NMR studies and by addition of Pirkle's reagent. This was confirmed by the X-ray crystal structure of 2, which represents an interesting example of solid-state structure of a monosubstituted [8]CPP derivative. Derivative 2 crystallizes in two monoclinic crystal forms (α and β), which show a herringbone motif. The [8]CPP ring of the α form encapsulates two dichloromethane molecules, held through C-H···π interactions, while in the β form, open channels are partially filled by highly disordered solvent molecules.
Collapse
Affiliation(s)
- Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Carmen Talotta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Margherita De Rosa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Annunziata Soriente
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste , via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Neal Hickey
- Centro di Eccellenza in Biocristallografia Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste , via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Placido Neri
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| |
Collapse
|
18
|
Della Sala P, Buccheri N, Sanzone A, Sassi M, Neri P, Talotta C, Rocco A, Pinchetti V, Beverina L, Brovelli S, Gaeta C. First demonstration of the use of very large Stokes shift cycloparaphenylenes as promising organic luminophores for transparent luminescent solar concentrators. Chem Commun (Camb) 2019; 55:3160-3163. [DOI: 10.1039/c8cc09859j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of [n]CPP derivatives as luminophores in LSC-devices minimises reabsorption losses.
Collapse
Affiliation(s)
- Paolo Della Sala
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Università di Salerno
- I-84084 Fisciano
- Italy
| | - Nunzio Buccheri
- Department of Materials Science
- University of Milano–Bicocca
- Milano I-20125
- Italy
| | - Alessandro Sanzone
- Department of Materials Science
- University of Milano–Bicocca
- Milano I-20125
- Italy
| | - Mauro Sassi
- Department of Materials Science
- University of Milano–Bicocca
- Milano I-20125
- Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Università di Salerno
- I-84084 Fisciano
- Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Università di Salerno
- I-84084 Fisciano
- Italy
| | - Alice Rocco
- Department of Materials Science
- University of Milano–Bicocca
- Milano I-20125
- Italy
| | - Valerio Pinchetti
- Department of Materials Science
- University of Milano–Bicocca
- Milano I-20125
- Italy
| | - Luca Beverina
- Department of Materials Science
- University of Milano–Bicocca
- Milano I-20125
- Italy
| | - Sergio Brovelli
- Department of Materials Science
- University of Milano–Bicocca
- Milano I-20125
- Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia “A. Zambelli”
- Università di Salerno
- I-84084 Fisciano
- Italy
| |
Collapse
|
19
|
Della Sala P, Talotta C, Capobianco A, Soriente A, De Rosa M, Neri P, Gaeta C. Synthesis, Optoelectronic, and Supramolecular Properties of a Calix[4]arene-Cycloparaphenylene Hybrid Host. Org Lett 2018; 20:7415-7418. [PMID: 30431286 DOI: 10.1021/acs.orglett.8b03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel hybrid host has been obtained by fusion of the calix[4]arene skeleton with a cycloparaphenylene (CPP) ring. The CPP-bridged calix[4]arene 1 combines the optoelectronic and structural properties of the CPP rings with the recognition abilities of the calix[4]arene hosts. Thus, calix-CPP 1 shows an unexpected selectivity for the Li+ cation over Na+, as a result of more favorable cation···π interactions of Li+ with the CPP bridge and its better size complementarity.
Collapse
Affiliation(s)
- Paolo Della Sala
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Annunziata Soriente
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Margherita De Rosa
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| |
Collapse
|
20
|
Wu D, Cheng W, Ban X, Xia J. Cycloparaphenylenes (CPPs): An Overview of Synthesis, Properties, and Potential Applications. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800397] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Di Wu
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; No. 122 Luoshi Road Wuhan 430070 China
| | - Wei Cheng
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; No. 122 Luoshi Road Wuhan 430070 China
| | - Xiangtao Ban
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; No. 122 Luoshi Road Wuhan 430070 China
| | - Jianlong Xia
- School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; No. 122 Luoshi Road Wuhan 430070 China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology; No. 122 Luoshi Road Wuhan 430070 China
| |
Collapse
|