1
|
Yao Z, Tang Z, Zhao D. Triflic Anhydride-Mediated Friedel-Crafts Arylation of Quinazolin-4(3H)-ones. Chem Asian J 2025; 20:e202401285. [PMID: 39600234 DOI: 10.1002/asia.202401285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
Since the initial report, the Friedel-Crafts reaction has become a powerful tool to functionalize arenes. Nevertheless, the use of nitrogen heterocycles as electrophiles in Friedel-Crafts reactions has been less explored. Here, we show a Friedel-Crafts-like reaction of electron-rich arenes with quinazolin-4(3H)-ones, enabling late-stage C2-H arylation of quinazolin-4(3H)-ones via triflic anhydride (Tf2O) activation. A series of substrates can be efficiently coupled under mild reaction conditions, affording C(sp3)-C(sp2) coupling product 2-aryl dihydroquinazolinones that can be further converted into the corresponding quinazolinone in the presence of base. This methodology offers efficient access to 2-aryl quinazolin-4(3H)-ones and exhibits good functional group compatibility and site selectivity. Mechanistic investigations reveal the formation of highly electrophilic iminium intermediates upon Tf2O activation of quinazolin-4(3H)-ones, which serve as the key reactive species, enabling the Friedel-Crafts reaction to proceed efficiently.
Collapse
Affiliation(s)
- Zhenying Yao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhanyong Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Tang Z, Yao Z, Yu Y, Huang J, Ma X, Zhao X, Chang Z, Zhao D. Photoredox-Catalyzed [3+2] annulation of Aromatic Amides with Olefins via Iminium Intermediates. Angew Chem Int Ed Engl 2024; 63:e202412152. [PMID: 39425635 DOI: 10.1002/anie.202412152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Despite the preliminary success of transition metal-catalyzed [3+2] annulation of amides with olefins, the corresponding radical-type [3+2] annulation remains a laborious challenge. Herein we report the first photoredox-catalyzed radical-type [3+2] annulation of aromatic amides with olefins. We established an approach to generate unprecedented iminium radicals by reducing the oxyiminium intermediates, formed in situ from corresponding amides with Tf2O, via photoredox catalysis. The [3+2] annulation was achieved via stepwise radical process, instead of forming linear products via other pathways as previously reported. This annulation protocol exhibits excellent functional group tolerance, and a diversity of substrates are united under the photoredox conditions, affording iminium products that can be in situ diversified into 1-indanones, enamines and amines. Mechanistic investigations indicate reduction of the oxyiminium intermediate to the iminium radicals by excited-state of the photocatalyst initiates the catalytic cycle.
Collapse
Affiliation(s)
- Zhanyong Tang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan East Road 132, Guangzhou, China
| | - Zhenying Yao
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan East Road 132, Guangzhou, China
| | - Yueyang Yu
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan East Road 132, Guangzhou, China
| | - Jialin Huang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan East Road 132, Guangzhou, China
| | - Xiaoqiang Ma
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan East Road 132, Guangzhou, China
| | - Xingda Zhao
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan East Road 132, Guangzhou, China
| | - Zhe Chang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan East Road 132, Guangzhou, China
| | - Depeng Zhao
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Waihuan East Road 132, Guangzhou, China
| |
Collapse
|
3
|
Ho KT, Pierce JG. Synthesis of Spiropyrrolines via One-Pot Tf 2O-Mediated Amide Activation/Formal [3 + 2]-Cycloaddition of α-Formylamino Ketones. J Org Chem 2024; 89:13031-13037. [PMID: 39230008 DOI: 10.1021/acs.joc.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
An efficient method for the synthesis of spiropyrrolines from readily accessible α-formylamino ketones is reported. The method involves amide activation using Tf2O, followed by a formal [3 + 2]-cycloaddition of the resulting enolic nitrilium intermediate with Michael acceptors, ultimately affording spiropyrrolines. Mechanistic insights were gained through NMR studies, elucidating the precise role of the base additive and suggesting the formation of an enolic nitrilium intermediate.
Collapse
Affiliation(s)
- Khanh-Toan Ho
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry and Integrative Sciences Initiative, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Li J, Wang Y, Zhang R, Li J, Dong D. Triflic Acid-Promoted 1,2-Amino Migration Reactions in α-Arylaminoacrylamides: Access to Substituted β-Aminoamides. J Org Chem 2024; 89:8861-8870. [PMID: 38845104 DOI: 10.1021/acs.joc.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A straightforward synthesis of substituted β-aminoamides from α-arylamino-β-hydroxyacrylamides, α-arylamino-β-oxoamides, or their tautomeric mixture has been described. The (E)-enol triflate intermediates are readily generated in situ from these substrates in the presence of triflic anhydride (Tf2O) and triethylamine (Et3N) in a chemoselective manner and undergo triflic acid (TfOH)-promoted cyclization and ring-opening reactions with alcohols to deliver the desired products. The one-pot two-step synthetic protocol features the use of readily available starting materials, mild reaction conditions, high chemoselectivity, operational simplicity, and a wide range of synthetic potential of the products.
Collapse
Affiliation(s)
- Jiawang Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Wang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Rui Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiacheng Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dewen Dong
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Zhang C, Lin J, Wang L, Mei Y, Wang L, Xie Y, Lu Y, Tian J, Wang W, Chen L, Guo M, Zhou C. Tf 2O-Mediated Tandem Reaction of Enaminones for the Synthesis of Functionalized Conjugated-Enals/β-Naphthalaldehydes. J Org Chem 2024; 89:373-378. [PMID: 38096478 DOI: 10.1021/acs.joc.3c02108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A highly efficient and regioselective method for constructing functionalized conjugated enals via the Tf2O-mediated tandem reaction of enaminones with thiophenols has been described. Chain products with excellent stereoselectivity could be obtained through substrate regulation. Additionally, a feasible method for synthesizing β-naphthalaldehydes through PhSO2Na/DABCO promoting hydrogen atom transfer process has also been reported here. Mechanism studies have shown that 2-formyl vinyl triflate 8 and sulfonylated enal 9 were the key intermediates in this process.
Collapse
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Li Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yingxuan Mei
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
- Department of Basic Medicine, Yichun Vocational Technical College, Yichun 336000, P. R. China
| | - Lanjing Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yuqing Xie
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yu Lu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jiakai Tian
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Wei Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
6
|
Zhang C, Wang W, Zhu X, Chen L, Luo H, Guo M, Liu D, Liu F, Zhang H, Li Q, Lin J. Synthesis of Indolizines via Tf 2O-Mediated Cascade Reaction of Pyridyl-enaminones with Thiophenols/Thioalcohols. Org Lett 2023; 25:1192-1197. [PMID: 36779678 DOI: 10.1021/acs.orglett.3c00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
A cost-effective, highly regioselective and metal-free version for the synthesis of indolizine derivatives by means of Tf2O-mediated cascade reaction of pyridyl-enaminones and thiophenols/thioalcohols under mild reaction conditions has been reported. Diverse electron-rich indolizine derivatives could be obtained in up to 94% yield via the selective 1,4-addition of vinyl iminium triflate tandem cyclization/aromatization, which allowed the simultaneous construction of C-N and C-S/and one example of C-Se bonds.
Collapse
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Wei Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Xuncheng Zhu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Hejiang Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Dan Liu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Fan Liu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Huisheng Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Qi Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| |
Collapse
|
7
|
Tang Z, Mo K, Ma X, Huang J, Zhao D. para
‐Selective Radical Trifluoromethylation of Benzamide Derivatives via Iminium Intermediates. Angew Chem Int Ed Engl 2022; 61:e202208089. [DOI: 10.1002/anie.202208089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zhanyong Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| | - Ke Mo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| | - Xiaoqiang Ma
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou China
| |
Collapse
|
8
|
Zhao D, Tang Z, Mo K, Ma X, Huang J. para‐Selective Radical Trifluoromethylation of Benzamide Derivatives via Iminium Intermediates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Depeng Zhao
- School of Pharmaceutical Sciences Sun Yat-sen University Waihuan East Road 510006 Guangzhou CHINA
| | - Zhanyong Tang
- Sun Yat-Sen University School of Pharmaceutical Sciences Wai-Huan east roadNo. 132 Guangzhou CHINA
| | - Ke Mo
- Sun Yat-Sen University School of Pharmaceutical Sciences WaiHuan east roadNo 132 Guangzhou CHINA
| | - Xiaoqiang Ma
- Sun Yat-Sen University School of Pharmaceutical Sciences Waihuan east roadNo. 132 Guangzhou CHINA
| | - Jialin Huang
- Sun Yat-Sen University School of Pharmaceutical Sciences Waihuan east roadNo. 132 Guangzhou CHINA
| |
Collapse
|
9
|
Kang JY, Huang H. Triflic Anhydride (Tf2O)-Activated Transformations of Amides, Sulfoxides and Phosphorus Oxides via Nucleophilic Trapping. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1679-8205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractTrifluoromethanesulfonic anhydride (Tf2O) is utilized as a strong electrophilic activator in a wide range of applications in synthetic organic chemistry, leading to the transient generation of a triflate intermediate. This versatile triflate intermediate undergoes nucleophilic trapping with diverse nucleophiles to yield novel compounds. In this review, we describe the features and applications of triflic anhydride in organic synthesis reported in the past decade, especially in amide, sulfoxide, and phosphorus oxide chemistry through electrophilic activation. A plausible mechanistic pathway for each important reaction is also discussed.1 Introduction2 Amide Chemistry2.1 Carbon Nucleophiles2.2 Hydrogen Nucleophiles2.3 Nitrogen Nucleophiles2.4 Oxygen and Sulfur Nucleophiles2.5 hosphorus Nucleophiles2.6 A Vilsmeier-Type Reagent2.7 Umpolung Reactivity in Amides3 Sulfoxide Chemistry3.1 Oxygen Nucleophiles3.2 Carbon Nucleophiles3.3 Nitrogen Nucleophiles3.4 Thionium Reagents4 Phosphorus Chemistry4.1 Hendrickson’s Reagent4.2 Diaryl Phosphine Oxides4.3 Phosphonates, Phosphates and Phosphinates5 Conclusion and Outlook
Collapse
Affiliation(s)
- Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University
| |
Collapse
|
10
|
He Q, Ye JL, Xu FF, Geng H, Chen TT, Chen H, Huang PQ. Tf 2O/TTBP (2,4,6-Tri- tert-butylpyrimidine): An Alternative Amide Activation System for the Direct Transformations of Both Tertiary and Secondary Amides. J Org Chem 2021; 86:16300-16314. [PMID: 34499513 DOI: 10.1021/acs.joc.1c01572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ten types of Tf2O/TTBP-mediated amide transformation reactions were investigated. The results showed that compared with pyridine derivatives 2,6-di-tert-butyl-4-methylpyridine (DTBMP) and 2-fluoropyridine (2-F-Pyr.), TTBP can serve as an alternative amide activation system for the direct transformation of both secondary and tertiary amides. For most surveyed examples, higher or comparable yields were generally obtained. In addition, Tf2O/TTBP combination was used to promote the condensation reactions of 2-(tert-butyldimethylsilyloxy)furan (TBSOF) with both tertiary and secondary amides, the one-pot reductive Bischler-Napieralski-type reaction of tertiary lactams, and Movassaghi and Hill's modern version of the Bischler-Napieralski reaction. The value of the Tf2O/TTBP-based methodology was further demonstrated by the concise and high-yielding syntheses of several natural products.
Collapse
Affiliation(s)
- Qian He
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jian-Liang Ye
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Fang-Fang Xu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui Geng
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Ting-Ting Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hang Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
11
|
Sayebani S, Eshghi H, Naeimabadi M. Synthesis of functionalized pyrrole derivatives via diverse cyclization of azomethine ylide and olefins. Mol Divers 2021; 26:2221-2230. [PMID: 34652591 DOI: 10.1007/s11030-021-10328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
The azomethine ylides are generally used in 1,3-dipolar cycloadditions with various dipolarophiles. In this work, a new and diverse route has been developed for the azomethine ylides, for synthesis of novel pyrrole derivatives. The azomethine ylide, produced via C-H activation of unreactive C(sp3)-H bond of 2-methylquinoline, by molecular iodine, in the presence of pyridine. Herein, we represent novel pyrrole derivatives, synthesized from the reaction of pyridinium ylide with olefins, which formed via a reaction of isatin, dialkyl acetylenedicarboxylate derivatives and pyridine as a base in moderate to excellent yields. Various features of this cyclization, discussed.
Collapse
Affiliation(s)
- Saman Sayebani
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Vakilabad Blvd., Mashhad, 91775-1436, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Vakilabad Blvd., Mashhad, 91775-1436, Iran.
| | - Maryam Naeimabadi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Vakilabad Blvd., Mashhad, 91775-1436, Iran
| |
Collapse
|
12
|
Shelke YG, Hande PE, Gharpure SJ. Recent advances in the synthesis of pyrrolo[1,2- a]indoles and their derivatives. Org Biomol Chem 2021; 19:7544-7574. [PMID: 34524330 DOI: 10.1039/d1ob01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pyrrolo[1,2-a]indole unit is a privileged heterocycle found in numerous natural products and has been shown to exhibit diverse pharmacological properties. Thus, recent years have witnessed immense interest from the synthesis community on the synthesis of this scaffold. In light of the ever-increasing demand for pyrrolo[1,2-a]indoles in drug discovery, this review provides an overview of recent synthesis methods for the preparation of pyrrolo[1,2-a]indoles and their derivatives. The mechanistic pathway and stereo-electronic factors affecting the yield and selectivity of the product are briefly explained. Furthermore, we have attempted to demonstrate the utility of the developed methods in the synthesis of bioactive molecules and natural products, wherever offered.
Collapse
Affiliation(s)
- Yogesh G Shelke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
13
|
Tang X, Zhang N, He G, Li CH, Huang W, Wang XY, Zhan G, Han B. Unconventional [2 + 3] Cyclization Involving [1,4]-Sulfonyl Transfer to Construct Polysubstituted Fluorazones as Inhibitors of Indoleamine 2,3-Dioxygenase 1. Org Lett 2020; 22:7909-7914. [PMID: 32991179 DOI: 10.1021/acs.orglett.0c02836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Cheng-Hao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Xiao-Yun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| |
Collapse
|
14
|
Bauer A, Borsos E, Maulide N. A Novel Class of 7-Membered Heterocyclic Compounds. European J Org Chem 2020; 2020:3971-3974. [PMID: 32982576 PMCID: PMC7496137 DOI: 10.1002/ejoc.202000363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/08/2022]
Abstract
The work presented herein describes the synthesis of a formerly inaccessible class of heterocyclic compounds. The reaction relies on α‐phthalimido‐amides, which are readily prepared from amino acids in 2 simple reactions steps. Under amide activation conditions in which classical keteniminium ions are not formed, the nitrile solvent is incorporated into the new fused 7‐membered ring system. Due to the absence of a keteniminium intermediate, the stereogenic information in the α‐position is fully retained.
Collapse
Affiliation(s)
- Adriano Bauer
- Institute of Organic Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Eszter Borsos
- Institute of Organic Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
15
|
Micellar catalysis enabled synthesis of indolylbenzothiazoles and their functionalization via Mn(II)-catalyzed C2–H amination using pyridones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Záborský O, Petrovičová Ľ, Doháňošová J, Moncol J, Fischer R. Simple and efficient synthesis of bicyclic enol-carbamates: access to brabantamides and their analogues. RSC Adv 2020; 10:6790-6793. [PMID: 35493865 PMCID: PMC9049743 DOI: 10.1039/d0ra00796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 11/21/2022] Open
Abstract
A simple and short synthesis of bicyclic enol-carbamates with high E/Z selectivity and the synthesis of brabantamide A analogue are presented.
Collapse
Affiliation(s)
- Ondrej Záborský
- Institute of Organic Chemistry
- Catalysis and Petrochemistry
- Slovak University of Technology in Bratislava
- Bratislava
- Slovak Republic
| | - Ľudmila Petrovičová
- Institute of Organic Chemistry
- Catalysis and Petrochemistry
- Slovak University of Technology in Bratislava
- Bratislava
- Slovak Republic
| | - Jana Doháňošová
- Central Laboratories
- Slovak University of Technology in Bratislava
- Bratislava
- Slovak Republic
| | - Ján Moncol
- Institute of Inorganic Chemistry, Technology and Materials
- Slovak University of Technology in Bratislava
- Bratislava
- Slovak Republic
| | - Róbert Fischer
- Institute of Organic Chemistry
- Catalysis and Petrochemistry
- Slovak University of Technology in Bratislava
- Bratislava
- Slovak Republic
| |
Collapse
|
17
|
Lorton C, Voituriez A. Synthesis and Applications of 9H
-Pyrrolo[1,2-a
]indole and 9H
-Pyrrolo[1,2-a
]indol-9-one Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Charlotte Lorton
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
18
|
Chen H, Huang YH, Ye JL, Huang PQ. Double Addition of Alkynyllithium Reagents to Amides/Lactams: A Direct and Flexible Synthesis of 3-Amino-1,4-diynes Bearing an Aza-Quaternary Carbon Center. J Org Chem 2019; 84:9270-9281. [PMID: 31287315 DOI: 10.1021/acs.joc.9b01416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient and mild protocol for the direct and flexible synthesis of 3-amino-1,4-diynes bearing an aza-quaternary carbon from tertiary amides and lactams has been established. The one-pot method consists of in situ activation of amides with trifluoromethanesulfonic anhydride, followed by double addition of alkynyllithium reagents at a concentration of 0.5 mol·L-1 in dichloromethane. This constitutes an extension of the method of direct reductive bisalkylation of amides that allows both employing alkynyllithium reagents as the first-addition nucleophiles and incorporating an alkynyl group as the first-introduced group.
Collapse
Affiliation(s)
- Hang Chen
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Ying-Hong Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Jian-Liang Ye
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , P. R. China
| |
Collapse
|
19
|
Nan J, Hu Y, Chen P, Ma Y. Metal-Free Synthesis of 2-Fluoroalkylated Quinolines Using Polyfluoroalkanoic Acids as Direct Fluorine Sources. Org Lett 2019; 21:1984-1988. [DOI: 10.1021/acs.orglett.9b00039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
20
|
Xu H, Sun L, Song C. Base‐MediatedN‐Arylation for the Synthesis of 9H‐Pyrrolo[1,2‐a]indol‐9‐ones and 10H‐Indolo[1,2‐a]indol‐10‐ones. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongjin Xu
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 P. R. China
| | - Li Sun
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 P. R. China
- Huanghe Science and Technology College Zhengzhou 450063 P. R. China
| | - Chuanjun Song
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|