1
|
Yamamoto T, Asakura M, Yamanomoto K, Shibata T, Endo K. Creation of a Chiral All-Carbon Quaternary Center Induced by CF 3 and CH 3 Substituents via Cu-Catalyzed Asymmetric Conjugate Addition. Org Lett 2024; 26:5312-5317. [PMID: 38869935 PMCID: PMC11217942 DOI: 10.1021/acs.orglett.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Cu-catalyzed asymmetric construction of a chiral quaternary center bearing CH3 and CF3 groups was achieved with high to excellent enantioselectivity using our originally developed ligands. The asymmetric conjugate addition of Me3Al to β-CF3-substituted enones and unsaturated ketoesters proceeded efficiently. The use of unsaturated ketoesters gives optically active furanones in high yields with high enantioselectivities. The perfluoroalkyl-substituted enone does not seem to be favorable in the present reaction.
Collapse
Affiliation(s)
- Taiyo Yamamoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Masayuki Asakura
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Ken Yamanomoto
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| | - Takanori Shibata
- Department
of Chemistry and Biochemistry, Graduate School of Science and Technology, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Kohei Endo
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
2
|
Duan S, Zhang X, Li X, Chi Z, Xie Z. Total Synthesis of Guajavadimer A via Lewis Acid-Catalyzed Cascade Double Hetero-Diels-Alder Reactions. Org Lett 2023; 25:6987-6992. [PMID: 37725076 DOI: 10.1021/acs.orglett.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The first total synthesis of guajavadimer A, a dimeric caryophyllene-derived meroterpenoid featuring an unprecedented 4-9-6-6-6-9-4-fused ring system, is reported. Key to the approach is the construction of the pyrano[4,3,2-de]chromene core via a cascade of double hetero-Diels-Alder reactions. Practically, a 4-substituted-2,6-dihydroxybenzaldehyde dimethyl acetal serves as an effective surrogate for ortho-quinone methide, which is generated from the corresponding aldehyde and trimethyl orthoformate, with β-caryophyllene undergoing cycloaddition to generate pyrano[4,3,2-de]chromene derivatives with excellent regioselectivity and stereoselectivity in one pot under mild conditions.
Collapse
Affiliation(s)
- Shengfu Duan
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xing Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangxin Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhiyong Chi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
3
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
4
|
Hui C, Antonchick AP. Concise synthesis of piperarborenine B. Bioorg Med Chem 2022; 67:116817. [PMID: 35609467 DOI: 10.1016/j.bmc.2022.116817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022]
Abstract
A concise synthesis of piperarborenine B is reported. Organocatalytic electrophilic amination of pyrrolidines, stereospecific oxidative ring contraction and an original diastereoselective Krapcho dealkoxycarbonylation/transmethylation contribute to a novel synthetic strategy to the preparation of a non-symmetrical cyclobutane core. Being transition-metal-free, directing-group-free and protecting-group-free, a five-step synthesis of piperarborenine B was accomplished.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany; Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, United Kingdom.
| |
Collapse
|
5
|
Phang YL, Liu S, Zheng C, Xu H. Recent advances in the synthesis of natural products containing the phloroglucinol motif. Nat Prod Rep 2022; 39:1766-1802. [PMID: 35762867 DOI: 10.1039/d1np00077b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: June 2009 to 2021Natural products containing a phloroglucinol motif include simple and oligomeric phloroglucinols, polycyclic polyprenylated acylphloroglucinols, phloroglucinol-terpenes, xanthones, flavonoids, and coumarins. These compounds represent a major class of secondary metabolites which exhibit a wide range of biological activities such as antimicrobial, anti-inflammatory, antioxidant and hypoglycaemic properties. A number of these compounds have been authorized for therapeutic use or are currently being studied in clinical trials. Their structural diversity and utility in both traditional and conventional medicine have made them popular synthetic targets over the years. In this review, we compile and summarise the recent synthetic approaches to the natural products bearing a phloroglucinol motif. Focus has been given on ingenious strategies to functionalize the phloroglucinol moiety at multiple positions. The isolation and bioactivities of the compounds are also provided.
Collapse
Affiliation(s)
- Yee Lin Phang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Song Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Xiong Y, Großkopf J, Jandl C, Bach T. Visible Light-Mediated Dearomative Hydrogen Atom Abstraction/ Cyclization Cascade of Indoles. Angew Chem Int Ed Engl 2022; 61:e202200555. [PMID: 35213774 PMCID: PMC9314014 DOI: 10.1002/anie.202200555] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 11/24/2022]
Abstract
The photochemical synthesis of yet unknown 2‐oxospiro[azetidine‐3,3′‐indolines] (17 examples, 80–95 % yield), 2,4‐dioxospiro[azetidine‐3,3′‐indolines] (eight examples, 87–97 % yield), and 1‐oxo‐1,3‐dihydrospiro[indene‐2,3′‐indolines] (17 examples, 85–97 % yield) is described. Starting from readily accessible 3‐substituted indoles, a dearomatization of the indole core was accomplished upon irradiation at λ=420 nm in the presence of thioxanthen‐9‐one (10 mol%) as the sensitizer. Based on mechanistic evidence (triplet energy determination, deuteration experiments, by‐product analysis) it is proposed that the reaction proceeds by energy transfer via a 1,4‐ or 1,5‐diradical intermediate. The latter intermediates are formed by excited state hydrogen atom transfer from suitable alkyl groups within the C3 substituent to the indole C2 carbon atom. Subsequent ring closure proceeds with pronounced diastereoselectivity to generate a 4‐ or 5‐membered spirocyclic dearomatized product with several options for further functionalization.
Collapse
Affiliation(s)
- Yang Xiong
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
7
|
Zhukovsky D, Dar’in D, Bakulina O, Krasavin M. Preparation and Synthetic Applications of Five-to-Seven-Membered Cyclic α-Diazo Monocarbonyl Compounds. Molecules 2022; 27:2030. [PMID: 35335391 PMCID: PMC8954351 DOI: 10.3390/molecules27062030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The reactivity of cyclic α-diazo monocarbonyl compounds differs from that of their acyclic counterparts. In this review, we summarize the current literature available on the synthesis and synthetic applications of three major classes of cyclic α-diazo monocarbonyl compounds: α-diazo ketones, α-diazo lactones and α-diazo lactams.
Collapse
Affiliation(s)
- Daniil Zhukovsky
- Research & Development Department, BratskChemSyntez LLC, PharmaSyntez Company, 5A/1 Kommunalnaya St., 665717 Bratsk, Russia;
| | - Dmitry Dar’in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
- Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| |
Collapse
|
8
|
Xiong Y, Großkopf J, Jandl C, Bach T. Visible Light‐Mediated Dearomative Hydrogen Atom Abstraction/ Cyclization Cascade of Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Xiong
- Technische Universität München: Technische Universitat Munchen Chemistry GERMANY
| | - Johannes Großkopf
- Technische Universität München: Technische Universitat Munchen Chemistry GERMANY
| | - Christian Jandl
- Technische Universität München: Technische Universitat Munchen Chemistry GERMANY
| | - Thorsten Bach
- Technische Universität München Lehrstuhl für Organische Chemie I Lichtenbergstr. 4 85747 Garching GERMANY
| |
Collapse
|
9
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
10
|
Talbot FJT, Zhang S, Satpathi B, Howell GP, Perry GJP, Crisenza GEM, Procter DJ. Modular Synthesis of Stereodefined Benzocyclobutene Derivatives via Sequential Cu- and Pd-Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fabien J. T. Talbot
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Shibo Zhang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Bishnupada Satpathi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Gareth P. Howell
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | - Gregory J. P. Perry
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | | | - David J. Procter
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
11
|
Zhang Z, Chen S, Tang F, Guo K, Liang XT, Huang J, Yang Z. Total Synthesis of (+)-Cyclobutastellettolide B. J Am Chem Soc 2021; 143:18287-18293. [PMID: 34670366 DOI: 10.1021/jacs.1c08880] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convenient enantioselective total synthesis of (+)-cyclobutastellettolide B via a strategy that involves a diastereoselective Johnson-Claisen rearrangement, a regioselective cyclopropoxytrimethylsilane ring-opening reaction, and a Norrish-Yang cyclization is described. The results of computational and experimental studies indicate that the regio- and stereoselectivity of the Norrish-Yang reaction are controlled by the C-H bond dissociation energy and restricted rotation of the C13-C14 bond.
Collapse
Affiliation(s)
- Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Sijia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fu Tang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Kai Guo
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xin-Ting Liang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Science and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| |
Collapse
|
12
|
Ferreira Macedo JG, Linhares Rangel JM, de Oliveira Santos M, Camilo CJ, Martins da Costa JG, Maria de Almeida Souza M. Therapeutic indications, chemical composition and biological activity of native Brazilian species from Psidium genus (Myrtaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114248. [PMID: 34058313 DOI: 10.1016/j.jep.2021.114248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Brazilian medicinal species of the Psidium genus are rich in secondary metabolites such as terpenes and phenolic compounds and present biological activities for several human diseases. For the native Psidium species, there are no specific research reports for any member of the genus about ethnobotanical research, hindering the joint analysis of its therapeutic indications together with the scientific evidence already investigated. STUDY OBJECTIVE Analyze the therapeutic indications, the main chemical constituents, and the biological activities of native species of the Psidium to Brazil. MATERIALS AND METHODS Systematic research was carried out in the Scopus, ScienceDirect, PubMed, and Web of Science databases over a period of ten years. Articles in English, Portuguese and Spanish were used. The research was divided into three phases, seeking information on ethnobotany, chemical composition and biological activities. The words were combined to structure the descriptors used in the search. RESULTS A total of 13 native species belonging to the Psidium genus were identified in this analysis, Psidium acutangulum DC., Psidium brownianum Mart. ex DC., Psidium cattleyanum Sabine, Psidium densicomum Mart. ex DC., Psidium grandifolium Mart. ex DC., Psidium guineense Sw., Psidium laruotteanum Cambess., Psidium myrsinites DC, Psidium myrtoides O. Berg, Psidium salutare (Kunth) O. Berg, Psidium schenckianum Kiaersk., Psidium sobralianum Proença & Landrum, Psidium striatulum Mart. ex DC. Of these, six were indicated in folk medicine, digestive system disorders being their main therapeutic indication. Most species presented an investigation of chemical composition and biological activity. They are rich in phenolic compounds, flavonoids, and terpenes and have antimicrobial, antioxidant, antiproliferative, and repellent activities. CONCLUSIONS Native species of the Psidium genus are important sources of active ingredients in combating adversities that affect the human health, especially regarding the digestive system. They have a rich chemical composition, responsible for the biological activities demonstrated for the species.
Collapse
Affiliation(s)
| | - Juliana Melo Linhares Rangel
- Laboratório de Ecologia Vegetal, Universidade Regional Do Cariri, Departamento de Ciências Biológicas, 63105-000, Crato, CE, Brazil.
| | - Maria de Oliveira Santos
- Laboratório de Ecologia Vegetal, Universidade Regional Do Cariri, Departamento de Ciências Biológicas, 63105-000, Crato, CE, Brazil.
| | - Cicera Janaine Camilo
- Laboratório de Pesquisa de Produtos Naturais, Universidade Regional Do Cariri, Departamento de Química Biológica, 63105-000, Crato, CE, Brazil.
| | - José Galberto Martins da Costa
- Laboratório de Pesquisa de Produtos Naturais, Universidade Regional Do Cariri, Departamento de Química Biológica, 63105-000, Crato, CE, Brazil.
| | - Marta Maria de Almeida Souza
- Laboratório de Ecologia Vegetal, Universidade Regional Do Cariri, Departamento de Ciências Biológicas, 63105-000, Crato, CE, Brazil.
| |
Collapse
|
13
|
Wang D, Sun J, Yan CG. Diastereoselective synthesis of spiro[chromane-3,3′-indolines] and spiro[chromane-3,2′-indenes] via DBU promoted formal [4 + 2]cycloaddition reaction. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Pourghasemi Lati M, Ståhle J, Meyer M, Verho O. A Study of an 8-Aminoquinoline-Directed C(sp 2)-H Arylation Reaction on the Route to Chiral Cyclobutane Keto Acids from Myrtenal. J Org Chem 2021; 86:8527-8537. [PMID: 34042431 PMCID: PMC8279478 DOI: 10.1021/acs.joc.1c00774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 02/03/2023]
Abstract
This work outlines a synthetic route that can be used to access chiral cyclobutane keto acids with two stereocenters in five steps from the inexpensive terpene myrtenal. Furthermore, the developed route includes an 8-aminoquinoline-directed C(sp2)-H arylation as one of its key steps, which allows a wide range of aryl and heteroaryl groups to be incorporated into the bicyclic myrtenal scaffold prior to the ozonolysis-based ring-opening step that furnishes the target cyclobutane keto acids. This synthetic route is expected to find many applications connected to the synthesis of natural product-like compounds and small molecule libraries.
Collapse
Affiliation(s)
- Monireh Pourghasemi Lati
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jonas Ståhle
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael Meyer
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Oscar Verho
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Department
of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
15
|
Pd-catalyzed methylene γ-C(sp3)—H alkenylation of N-picolinoylcycloalkylamines with alkenyl iodides promoted by 2-tert-butyl-1,4-benzoquinone. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Schuppe AW, Liu Y, Newhouse TR. An invocation for computational evaluation of isomerization transforms: cationic skeletal reorganizations as a case study. Nat Prod Rep 2021; 38:510-527. [PMID: 32931541 PMCID: PMC7956923 DOI: 10.1039/d0np00005a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2010 to 2020This review article describes how cationic rearrangement reactions have been used in natural product total synthesis over the last decade as a case study for the many productive ways by which isomerization reactions are enabling for synthesis. This review argues that isomerization reactions in particular are well suited for computational evaluation, as relatively simple calculations can provide significant insight.
Collapse
Affiliation(s)
- Alexander W Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511-8107, USA.
| | | | | |
Collapse
|
17
|
Khan Tareque R, Hassell-Hart S, Krojer T, Bradley A, Velupillai S, Talon R, Fairhead M, Day IJ, Bala K, Felix R, Kemmitt PD, Brennan P, von Delft F, Díaz Sáez L, Huber K, Spencer J. Deliberately Losing Control of C-H Activation Processes in the Design of Small-Molecule-Fragment Arrays Targeting Peroxisomal Metabolism. ChemMedChem 2020; 15:2513-2520. [PMID: 32812371 DOI: 10.1002/cmdc.202000543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Combined photochemical arylation, "nuisance effect" (SN Ar) reaction sequences have been employed in the design of small arrays for immediate deployment in medium-throughput X-ray protein-ligand structure determination. Reactions were deliberately allowed to run "out of control" in terms of selectivity; for example the ortho-arylation of 2-phenylpyridine gave five products resulting from mono- and bisarylations combined with SN Ar processes. As a result, a number of crystallographic hits against NUDT7, a key peroxisomal CoA ester hydrolase, have been identified.
Collapse
Affiliation(s)
- Raysa Khan Tareque
- Chemistry Deparment, University of Sussex, Falmer, East Sussex, BN1 9QJ, UK
| | - Storm Hassell-Hart
- Chemistry Deparment, University of Sussex, Falmer, East Sussex, BN1 9QJ, UK
| | - Tobias Krojer
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anthony Bradley
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Srikannathasan Velupillai
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Romain Talon
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Fairhead
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Iain J Day
- Chemistry Deparment, University of Sussex, Falmer, East Sussex, BN1 9QJ, UK
| | - Kamlesh Bala
- Chemistry Deparment, University of Sussex, Falmer, East Sussex, BN1 9QJ, UK
| | - Robert Felix
- Bio-Techne (Tocris Bioscience), The Watkins Building, Atlantic Road Avonmouth, Bristol, BS11 9QD, UK
| | - Paul D Kemmitt
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, CB10 1XL, UK
| | - Paul Brennan
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Frank von Delft
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Diamond Light Source (DLS), Harwell Science and Innovation Campus, Didcot, Oxford, OX11 0DE, UK
- Department of Biochemistry, University of Johannesburg, Johannesburg, Auckland Park, 2006, South Africa
| | - Laura Díaz Sáez
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Kilian Huber
- Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - John Spencer
- Chemistry Deparment, University of Sussex, Falmer, East Sussex, BN1 9QJ, UK
| |
Collapse
|
18
|
Vargová D, Némethová I, Šebesta R. Asymmetric copper-catalyzed conjugate additions of organometallic reagents in the syntheses of natural compounds and pharmaceuticals. Org Biomol Chem 2020; 18:3780-3796. [PMID: 32391843 DOI: 10.1039/d0ob00278j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Access to enantiopure complex molecular structures is crucial for the development of new drugs as well as agents used in crop-protection. In this regard, numerous asymmetric methods have been established. Copper-catalyzed 1,4-additions of organometallic reagents are robust C-C bond formation strategies applicable in a wide range of circumstances. This review analyses the syntheses of natural products and pharmaceutical agents, which rely on the application of asymmetric Cu-catalyzed conjugate additions of various organometallic reagents. A wide range of available organometallics, e.g. dialkylzinc, trialkylaluminum, Grignard, and organozirconium, can now be used in conjugate additions to address various synthetic challenges present in targeted natural compounds. Furthermore, efficient catalysts allow high levels of stereofidelity over a diverse array of starting Michael acceptors.
Collapse
Affiliation(s)
- Denisa Vargová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, SK-84215, Bratislava, Slovakia.
| | - Ivana Némethová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, SK-84215, Bratislava, Slovakia.
| | - Radovan Šebesta
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynská dolina, Ilkovičova 6, SK-84215, Bratislava, Slovakia.
| |
Collapse
|
19
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
20
|
Bazioli JM, Costa JH, Shiozawa L, Ruiz ALTG, Foglio MA, Carvalho JED. Anti-Estrogenic Activity of Guajadial Fraction, from Guava Leaves ( Psidium guajava L.). Molecules 2020; 25:E1525. [PMID: 32230839 PMCID: PMC7181212 DOI: 10.3390/molecules25071525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
The research of natural products has allowed for the discovery of biologically relevant compounds inspired by plant secondary metabolites, which contributes to the development of many chemotherapeutic drugs used in cancer treatment. Psidium guajava leaves present a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids, and triterpenes as the major bioactive constituents. Guajadial, a caryophyllene-based meroterpenoid, has been studied for potential anticancer effects tested in tumor cells and animal experimental models. Moreover, guajadial has been reported to have a mechanism of action similar to tamoxifen, suggesting this compound as a promisor phytoestrogen-based therapeutic agent. Herein, the anti-estrogenic action and anti-proliferative activity of guajadial is reported. The enriched guajadial fraction was obtained by sequential chromatographic techniques from the crude P. guajava dichloromethane extract showing promising anti-proliferative activity in vitro with selectivity for human breast cancer cell lines MCF-7 and MCF-7 BUS (Total Growth Inhibition = 5.59 and 2.27 µg·mL-1, respectively). Furthermore, evaluation of anti-estrogenic activity in vivo was performed demonstrating that guajadial enriched fraction inhibited the proliferative effect of estradiol on the uterus of pre-pubescent rats. These results suggest a relationship between anti-proliferative and anti-estrogenic activity of guajadial, which possibly acts in tumor inhibition through estrogen receptors due to the compounds structural similarity to tamoxifen.
Collapse
Affiliation(s)
- Jaqueline Moraes Bazioli
- Faculty of Pharmaceutical Sciences, University of Campinas, 13083-859 Campinas, SP, Brazil
- Institute of Chemistry, University of Campinas, P.O.Box 6154, 13083-970 Campinas, SP, Brazil
| | - Jonas Henrique Costa
- Institute of Chemistry, University of Campinas, P.O.Box 6154, 13083-970 Campinas, SP, Brazil
| | - Larissa Shiozawa
- Faculty of Pharmaceutical Sciences, University of Campinas, 13083-859 Campinas, SP, Brazil
- Postgraduate program in Dentistry, Piracicaba Dental School, University of Campinas, 13 414-903, Piracicaba, SP, Brazil
| | | | - Mary Ann Foglio
- Faculty of Pharmaceutical Sciences, University of Campinas, 13083-859 Campinas, SP, Brazil
| | | |
Collapse
|
21
|
Oschmann M, Johansson Holm L, Pourghasemi-Lati M, Verho O. Synthesis of Elaborate Benzofuran-2-carboxamide Derivatives through a Combination of 8-Aminoquinoline Directed C-H Arylation and Transamidation Chemistry. Molecules 2020; 25:E361. [PMID: 31952313 PMCID: PMC7024369 DOI: 10.3390/molecules25020361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Herein, we present a short and highly modular synthetic route that involves 8-aminoquinoline directed C-H arylation and transamidation chemistry, and which enables access to a wide range of elaborate benzofuran-2-carboxamides. For the directed C-H arylation reactions, Pd catalysis was used to install a wide range of aryl and heteroaryl substituents at the C3 position of the benzofuran scaffold in high efficiency. Directing group cleavage and further diversification of the C3-arylated benzofuran products were then achieved in a single synthetic operation through the utilization of a one-pot, two-step transamidation procedure, which proceeded via the intermediate N-acyl-Boc-carbamates. Given the high efficiency and modularity of this synthetic strategy, it constitutes a very attractive method for generating structurally diverse collections of benzofuran derivatives for small molecule screening campaigns.
Collapse
Affiliation(s)
| | | | | | - Oscar Verho
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden; (M.O.); (L.J.H.); (M.P.-L.)
| |
Collapse
|
22
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
23
|
You Y, Li TT, Yuan SP, Xie KX, Wang ZH, Zhao JQ, Zhou MQ, Yuan WC. Catalytic asymmetric [4+2] cycloaddition of 1-((2-aryl)vinyl)naphthalen-2-ols with in situ generated ortho-quinone methides for the synthesis of polysubstituted chromanes. Chem Commun (Camb) 2020; 56:439-442. [DOI: 10.1039/c9cc08316b] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An asymmetric [4+2] cycloaddition of 1-((2-aryl)vinyl)naphthalen-2-ols with in situ generated ortho-quinone methides enables the highly enantioselective synthesis of polysubstituted chromanes.
Collapse
Affiliation(s)
- Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Shu-Pei Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ke-Xin Xie
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Wei-Cheng Yuan
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
- National Engineering Research Center of Chiral Drugs
| |
Collapse
|
24
|
Xiang M, Li CY, Song XJ, Zou Y, Huang ZC, Li X, Tian F, Wang LX. Organocatalytic and enantioselective [4+2] cyclization between hydroxymaleimides and ortho-hydroxyphenyl para-quinone methide-selective preparation of chiral hemiketals. Chem Commun (Camb) 2020; 56:14825-14828. [DOI: 10.1039/d0cc06777f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly effective and enantioselective organocatalytic [4+2] cyclization has been disclosed, and a series of new chiral hemiketals containing chromane and succinimide frameworks have been firstly prepared in excellent results with 100% atom efficacy.
Collapse
Affiliation(s)
- Min Xiang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Chen-Yi Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Xiang-Jia Song
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ying Zou
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Zhi-Cheng Huang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Xia Li
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Fang Tian
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Li-Xin Wang
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu 610041
- China
| |
Collapse
|
25
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Hancock EN, Wiest JM, Brown MK. Recent advances in the synthesis of gem-dimethylcyclobutane natural products. Nat Prod Rep 2019; 36:1383-1393. [PMID: 30855044 PMCID: PMC6739199 DOI: 10.1039/c8np00083b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: January 2000 to July 2018 gem-Dimethylcyclobutanes are a common motif found in a multitude of natural products, and thus these structures have captivated synthetic chemists for years. However, until the turn of the century, most synthetic efforts relied upon the use of widely available terpenes, such as pinene or caryophyllene, that already contain the gem-dimethylcyclobutane motif. This approach limits the scope of molecules that can be accessed readily. This review highlights recent syntheses in which the gem-dimethylcyclobutane is assembled via de novo approaches. An outlook on the future of this research area is also provided.
Collapse
Affiliation(s)
- Erin N. Hancock
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47405, USA.
| | - Johannes M. Wiest
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47405, USA.
| | - M. Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47405, USA.
| |
Collapse
|
27
|
Ning S, Liu Z, Wang Z, Liao M, Xie Z. Biomimetic Synthesis of Psiguajdianone Guided Discovery of the Meroterpenoids from Psidium guajava. Org Lett 2019; 21:8700-8704. [PMID: 31609125 DOI: 10.1021/acs.orglett.9b03299] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Psiguajdianone (1), a novel caryophyllene-derived meroterpenoid dimer, was isolated from Psidium guajava. The structure of 1 was determined by X-ray analysis and confirmed by total synthesis. Our synthetic strategy involves biomimetic cascade Knoevenagel condensation/hetero-Diels-Alder reaction and dimerization. Notably, the caryophyllene-derived meroterpenoids obtained during our synthesis were first identified as artifacts in the laboratory, and five of them were proven to be natural products present in the plant. Moreover, these compounds show significant anti-inflammatory activity.
Collapse
Affiliation(s)
- Shuai Ning
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , 730000 , China
| | - Zhenling Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , 730000 , China
| | - Zhichao Wang
- College of Chemical Engineering , Northwest Minzu University , Lanzhou , 730030 , China
| | - Minjian Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , 730000 , China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , 730000 , China
| |
Collapse
|
28
|
Hua TB, Yang QQ, Zou YQ. Recent Advances in Enantioselective Photochemical Reactions of Stabilized Diazo Compounds. Molecules 2019; 24:molecules24173191. [PMID: 31480796 PMCID: PMC6749315 DOI: 10.3390/molecules24173191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
Diazo compounds have proven to be a useful class of carbenes or metal carbenoids sources under thermal, photochemical, or metal-catalyzed conditions, which can subsequently undergo a wide range of synthetically important transformations. Recently, asymmetric photocatalysis has provoked increasing research interests, and great advances have been made in this discipline towards the synthesis of optically enriched compounds. In this context, the past two decades have been the most productive period in the developments of enantioselective photochemical reactions of diazo compounds due to a better understanding of the reactivities of diazo compounds and the emergence of new catalytic modes, as well as easier access to and treatment of stabilized diazo compounds. This review highlights these impressive achievements according to the reaction type, and the general mechanisms and stereochemical inductions are briefly discussed as well.
Collapse
Affiliation(s)
- Ting-Bi Hua
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang 443002, Hubei, China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang 443002, Hubei, China.
| | - You-Quan Zou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang 443002, Hubei, China
| |
Collapse
|
29
|
Nicke L, Horx P, Harms K, Geyer A. Directed C(sp 3)-H arylation of tryptophan: transformation of the directing group into an activated amide. Chem Sci 2019; 10:8634-8641. [PMID: 31803437 PMCID: PMC6844298 DOI: 10.1039/c9sc03440d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022] Open
Abstract
The aminoquinoline-directed C–H activation was used to synthezise unnatural tryptophans for solid phase peptide synthesis for the first time.
The 8-aminoquinoline (8AQ) directed C(sp3)–H functionalization was applied in the synthesis of β-arylated tryptophan derivatives. The laborious protecting group reorganization towards α-amino acids compatible for solid phase peptide synthesis (SPPS) was cut short by the transformation of the directing group into an activated amide, which was either used directly in peptide coupling or in the gram scale synthesis of storable Fmoc-protected amino acids for SPPS. In this work, directed C–H activation and nonplanar amide chemistry complement each other for the synthesis of hybrids between phenylalanine and tryptophan with restricted side chain mobility.
Collapse
Affiliation(s)
- Lennart Nicke
- Philipps-Universität Marburg , Fachbereich Chemie , Hans Meerwein Straße , 35032 Marburg , Germany .
| | - Philip Horx
- Philipps-Universität Marburg , Fachbereich Chemie , Hans Meerwein Straße , 35032 Marburg , Germany .
| | - Klaus Harms
- Philipps-Universität Marburg , Fachbereich Chemie , Hans Meerwein Straße , 35032 Marburg , Germany .
| | - Armin Geyer
- Philipps-Universität Marburg , Fachbereich Chemie , Hans Meerwein Straße , 35032 Marburg , Germany .
| |
Collapse
|
30
|
Yamada S, Oshima Y, Fujita Y, Tsuzuki S. The tetraalkylammonium-accelerated Norrish-Yang photocyclization of 2-substituted acetophenones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Ting CP, Tschanen E, Jang E, Maimone TJ. Total synthesis of podophyllotoxin and select analog designs via C–H activation. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Yang GH, Zhao Q, Zhang ZP, Zheng HL, Chen L, Li X. Asymmetric Cycloaddition of ortho-Hydroxyphenyl-Substituted para-Quinone Methides and Enamides Catalyzed by Chiral Phosphoric Acid. J Org Chem 2019; 84:7883-7893. [DOI: 10.1021/acs.joc.9b00749] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guo-Hui Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qun Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi-Pei Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Han-Liang Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Schmitz AJ, Ricke A, Oschmann M, Verho O. Convenient Access to Chiral Cyclobutanes with Three Contiguous Stereocenters from Verbenone by Directed C(sp
3
)−H arylation. Chemistry 2019; 25:5154-5157. [DOI: 10.1002/chem.201806416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Alexander J. Schmitz
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
- Institut für Organische ChemieRWTH Aachen 52056 Aachen Germany
| | - Alexander Ricke
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Michael Oschmann
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Oscar Verho
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
34
|
Arredondo V, Roa DE, Yan S, Liu-Smith F, Van Vranken DL. Total Synthesis of (±)-Pestalachloride C and (±)-Pestalachloride D through a Biomimetic Knoevenagel/Hetero-Diels–Alder Cascade. Org Lett 2019; 21:1755-1759. [DOI: 10.1021/acs.orglett.9b00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vanessa Arredondo
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Daniel E. Roa
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Songyuan Yan
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Feng Liu-Smith
- Department of Medicine, School of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California 92697, United States
| | - David L. Van Vranken
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
35
|
Beck JC, Lacker CR, Chapman LM, Reisman SE. A modular approach to prepare enantioenriched cyclobutanes: synthesis of (+)-rumphellaone A. Chem Sci 2019; 10:2315-2319. [PMID: 30881657 PMCID: PMC6385545 DOI: 10.1039/c8sc05444d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/03/2022] Open
Abstract
A modular synthesis of enantioenriched polyfunctionalized cyclobutanes was developed that features an 8-aminoquinolinamide directed C-H arylation reaction. The C-H arylation products were derivatized through subsequent decarboxylative coupling processes. This synthetic strategy enabled a 9-step enantioselective total synthesis of the antiproliferative meroterpenoid (+)-rumphellaone A.
Collapse
Affiliation(s)
- Jordan C Beck
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Caitlin R Lacker
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Lauren M Chapman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| |
Collapse
|
36
|
|