1
|
Huang RL, Tang W, Wang C, Yan C, Hu Y, Yang HX, Xiang HY, Huang XJ, Hu LJ, Ye WC, Song JG, Wang Y. Antiviral C-geranylated flavonoids from Artocarpus communis. PHYTOCHEMISTRY 2024; 225:114165. [PMID: 38815884 DOI: 10.1016/j.phytochem.2024.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
Ten C-geranylated flavonoids, along with three known analogues, were isolated from the leaves of Artocarpus communis. The chemical structures of these compounds were unambiguously determined via comprehensive spectroscopic analysis, single-crystal X-ray diffraction experiments, and quantum chemical electronic circular dichroism calculations. Structurally, artocarones A-I (1-9) represent a group of unusual, highly modified C-geranylated flavonoids, in which the geranyl chain is cyclised with the ortho-hydroxy group of flavonoids to form various heterocyclic scaffolds. Notably, artocarones E and G-I (5 and 7-9) feature a 6H-benzo[c]chromene core that is hitherto undescribed in C-geranylated flavonoids. Artocarone J (10) is the first example of C-9-C-16 connected C-geranylated aurone. Meanwhile, the plausible biosynthetic pathways for these rare C-geranylated flavonoids were also proposed. Notably, compounds 1, 2, 4, 8, 11, and 12 exhibited promising in vitro inhibitory activities against respiratory syncytial virus and herpes simplex virus type 1.
Collapse
Affiliation(s)
- Rui-Li Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Chaoqun Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Cong Yan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hai-Xia Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hai-Yang Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Li-Jun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, People's Republic of China; Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
2
|
Ponce-Zea JE, Ryu B, Lee JY, Park EJ, Mai VH, Doan TP, Lee HJ, Oh WK. In Vitro and In Silico Analysis of PTP1B Inhibitors from Cleistocalyx operculatus Leaves and Their Effect on Glucose Uptake. Nutrients 2024; 16:2839. [PMID: 39275157 PMCID: PMC11397035 DOI: 10.3390/nu16172839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
As part of our ongoing research on new anti-diabetic compounds from ethnopharmacologically consumed plants, two previously undescribed lupane-type triterpenoids (1 and 2) with dicarboxylic groups, an undescribed nor-taraxastane-type triterpenoid (3), and 14 known compounds (4-17) were isolated from the leaves of Cleistocalyx operculatus. Extensive spectroscopic analysis (IR, HRESIMS, 1D, and 2D NMR) was used for structure elucidation, while the known compounds were compared to reference data reported in the scientific literature. All the isolates (1-17) were evaluated for their inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme. Compounds 6, 9, and 17 showed strong PTP1B inhibitory activities. The mechanism of PTP1B inhibition was studied through enzyme kinetic experiments. A non-competitive mechanism of inhibition was determined using Lineweaver-Burk plots for compounds 6, 9, and 17. Additionally, Dixon plots were employed to determine the inhibition constant. Further insights were gained through a structure-activity relationship study and molecular docking analysis of isolated compounds with the PTP1B crystal structure. Moreover, all isolates (1-17) were tested for their stimulatory effects on the uptake of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) in differentiated 3T3-L1 adipocyte cells. Compounds 6, 13, and 17 exhibited strong glucose absorption stimulation activity in a dose-dependent manner.
Collapse
Affiliation(s)
- Jorge-Eduardo Ponce-Zea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeol Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Yong Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Van-Hieu Mai
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Thi-Phuong Doan
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee-Ju Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Won-Keun Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Mai VH, Ponce-Zea JE, Doan TP, Vu QH, Ryu B, Lee CH, Oh WK. Chalcone-Monoterpene Derivatives from the Buds of Cleistocalyx operculatus and Their Potential as Protein Tyrosine Phosphatase 1B Inhibitors. JOURNAL OF NATURAL PRODUCTS 2024; 87:1903-1913. [PMID: 39046805 DOI: 10.1021/acs.jnatprod.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Four new compounds, racemic chalcone-monoterpene hybrids (1-3) and a chalcone (9), along with nine known compounds (4-8, 10-13), have been isolated from the buds of Cleistocalyx operculatus. The chemical structures of the isolated compounds were identified through NMR data analysis and confirmed by computational methods, including electronic circular dichroism (ECD) calculations, and further synthetic approaches. Compounds 1-5 were synthesized via a Diels-Alder reaction, a process informed by biomimetic condensation studies that combined chalcones and monoterpenes. These synthetic approaches also yielded various unnatural chalcone-monoterpene derivatives (14-23). The inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) of both naturally isolated and synthetically obtained compounds were evaluated. Compounds 4, 9, 13, and 16b exhibited potent PTP1B inhibitory activity, with IC50 values ranging from 0.9 ± 0.2 to 3.9 ± 0.7 μM. The enantiomers (+)-4 and (-)-16b showed enhanced activity compared to their respective enantiomers. Kinetic studies indicate that all active compounds inhibit PTP1B through mixed mechanisms, and molecular docking simulations agree with the experimental assays on PTP1B. Our results suggest that chalcone-meroterpene adducts from the buds of C. operculatus exhibit potential as antidiabetic agents, partly due to their PTP1B enzyme inhibition.
Collapse
Affiliation(s)
- Van-Hieu Mai
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jorge Eduardo Ponce-Zea
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Thi-Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Quang Huy Vu
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Byeol Ryu
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Won-Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Li SH, Li MY, Yuan TT, Wang GW, Zeng JB, Shi Z, Liu JH, Su JC. Osthole Activates the Cholinergic Anti-Inflammatory Pathway via α7nAChR Upregulation to Alleviate Inflammatory Responses. Chem Biodivers 2024; 21:e202400290. [PMID: 38389159 DOI: 10.1002/cbdv.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
Osthole (also known as Osthol) is the main anti-inflammatory coumarin found in Cnidium monnieri and severs as the exclusive quality-controlled component according the Chinese Pharmacopoeia. However, its underlying anti-inflammatory mechanism remains unknown. In this study, we demonstrated that Osthole treatment significantly inhibited the generation of TNF-α, but not IL-6 in the classical LPS-stimulated RAW264.7 macrophage model. In addition, LPS induced the activation of both MAPK and NF-κB signalling pathways, of which the former was dose-dependently restrained by Osthole via suppressing the phosphorylation of JNK and P38 proteins, while the phosphorylation of IκB and P65 proteins remained unaffected. Interestingly, Osthole dose-dependently up-regulated the expression of the key cholinergic anti-inflammatory pathway regulator α7nAChR, and the TNF-α inhibition effect of Osthole was also significantly alleviated by the treatment of α7nAChR antagonist methylbetaine. These results demonstrate that Osthole may regulate TNF-α by promoting the expression of α7nAChR, thereby activate the vagus nerve-dependent cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Shu-Hang Li
- Beihai Hospital of Chinese Medicine, Beihai, Guangxi, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Meng-Ying Li
- Beihai Hospital of Chinese Medicine, Beihai, Guangxi, China
| | - Tao-Tao Yuan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Guo-Wei Wang
- Beihai Hospital of Chinese Medicine, Beihai, Guangxi, China
| | - Jian-Bin Zeng
- Beihai Hospital of Chinese Medicine, Beihai, Guangxi, China
| | - Zhimian Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Jian-Hang Liu
- Beihai Hospital of Chinese Medicine, Beihai, Guangxi, China
| | - Jun-Cheng Su
- Beihai Hospital of Chinese Medicine, Beihai, Guangxi, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
5
|
Peron G, López AM, Cabada-Aquirre P, Garay Buenrosto KD, Ostos Mendoza KC, Mahady GB, Seidel V, Sytar O, Koirala N, Gurung R, Acharya Z, Adhikari S, Sureda A, Martorell M, Sharifi-Rad J. Antiviral and antibacterial properties of phloroglucinols: a review on naturally occurring and (semi)synthetic derivatives with potential therapeutic interest. Crit Rev Biotechnol 2024; 44:319-336. [PMID: 36593064 DOI: 10.1080/07388551.2022.2160695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/03/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Phloroglucinol and derived compounds comprise a huge class of secondary metabolites widely distributed in plants and brown algae. A vast array of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer has been associated to this class of compounds. In this review, the available data on the antiviral and antibacterial capacity of phloroglucinols have been analyzed. Some of these compounds and derivatives show important antimicrobial properties in vitro. Phloroglucinols have been shown to be effective against viruses, such as human immunodeficiency virus (HIV), herpes or enterovirus, and preliminary data through docking analysis suggest that they can be effective against SARS-CoV-19. Also, some phloroglucinols derivatives have shown antibacterial effects against diverse bacteria strains, including Bacillus subtilis and Staphylococcus aureus, and (semi)synthetic development of novel compounds have led to phloroglucinols with a significantly increased biological activity. However, therapeutic use of these compounds is hindered by the absence of in vivo studies and scarcity of information on their mechanisms of action, and hence further research efforts are required. On the basis of this consideration, our work aims to gather data regarding the efficacy of natural-occurring and synthetic phloroglucinol derivatives as antiviral and antibacterial agents against human pathogens, which have been published during the last three decades. The recollection of results reported in this review represents a valuable source of updated information that will potentially help researchers in the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Brescia, Italy
| | - Alice M López
- Department of Chemistry and Nanotechnology, Tecnológico University de Monterrey, Monterrey, Mexico
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paulina Cabada-Aquirre
- Department of Chemistry and Nanotechnology, Tecnológico University de Monterrey, Monterrey, Mexico
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Karen D Garay Buenrosto
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
- School of Medicine and Health Sciences, Tecnológico University de Monterrey, Monterrey, México
| | - Keila C Ostos Mendoza
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
- School of Medicine and Health Sciences, Tecnológico University de Monterrey, Monterrey, México
| | - Gail B Mahady
- Department of Pharmacy Practice, College of Pharmacy, PAHO/WHO Collaborating Centre for Traditional Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
| | - Roshani Gurung
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
- Department of Pharmacy, Shree Medical and Technical College, Purbanchal University, Chitwan, Nepal
| | - Zenisha Acharya
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, Nepal
| | - Sundar Adhikari
- Department of Pharmacy, Shree Medical and Technical College, Purbanchal University, Chitwan, Nepal
- Department of Pharmacy, Fishtail Hospital and Research Center Pvt. Ltd, Pokhara, Nepal
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa, University of Balearic Islands-IUNICS, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico - UDT, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
6
|
Song JG, Liu JX, Huang RL, Tang W, Huang XJ, Wang Y, Ye WC. Tautomeric cinnamoylphloroglucinol-monoterpene adducts from Cleistocalyx operculatus and their antiviral activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:38-51. [PMID: 38190257 DOI: 10.1080/10286020.2023.2288290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Guided by 1H NMR spectroscopic experiments using the characteristic enol proton signals as probes, three pairs of new tautomeric cinnamoylphloroglucinol-monoterpene adducts (1-3) were isolated from the buds of Cleistocalyx operculatus. Their structures with absolute configurations were established by spectroscopic analysis, modified Mosher's method, and quantum chemical electronic circular dichroism calculation. Compounds 1-3 represent a novel class of cinnamoylphloroglucinol-monoterpene adducts featuring an unusual C-4-C-1' linkage between 2,2,4-trimethyl-cinnamyl-β-triketone and modified linear monoterpenoid motifs. Notably, compounds 1-3 exhibited significant in vitro antiviral activity against respiratory syncytial virus (RSV).
Collapse
Affiliation(s)
- Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jia-Xin Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rui-Li Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Wang J, Song JG, Zhong DL, Duan ZZ, Peng ZJ, Tang W, Song QY, Huang XJ, Hu LJ, Wang Y, Ye WC. Biomimetic Synthesis of an Antiviral Cinnamoylphloroglucinol Collection from Cleistocalyx operculatus: A Synthetic Strategy Based on Biogenetic Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202312568. [PMID: 37848394 DOI: 10.1002/anie.202312568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
A synthetic strategy based on biogenetic building blocks for the collective and divergent biomimetic synthesis of cleistoperlones A-F, a cinnamoylphloroglucinol collection discovered from Cleistocalyx operculatus, has been developed. These syntheses proceeded successfully in only six to seven steps starting from commercially available 1,3,5-benzenetriol and involving oxidative activation of stable biogenetic building blocks as a crucial step. Key features of the syntheses include a unique Michael addition/ketalization/1,6-addition/enol-keto tautomerism cascade reaction for the construction of the dihydropyrano[3,2-d]xanthene tetracyclic core of cleistoperlones A and B, and a rare inverse-electron-demand hetero-Diels-Alder cycloaddition for the establishment of benzopyran ring in cleistoperlones D-F. Moreover, cleistoperlone A exhibited significant antiviral activity against acyclovir-resistant strains of herpes simplex virus type 1 (HSV-1/Blue and HSV-1/153).
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jian-Guo Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dong-Lin Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhi-Zhang Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qiao-Yun Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jun Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Li-Jun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
8
|
Mai H, Li J, Luo Y, Ou J, Chen G, Ye L. Anti-Herpes Simplex Virus Type 1 Activity Evaluation of Natural Derived Phloroglucinol Derivatives and Their Molecular Mechanisms Study. Chem Biodivers 2023; 20:e202301111. [PMID: 38009609 DOI: 10.1002/cbdv.202301111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
HSV-1 is a common infection that can cause cold sores. In this study, the anti-HSV-1 virus activity of three series compounds A1-A9, B1-B12, C1-C22 was screened by MTT assay, qRT-PCR assay, Western blot assay and viruses' plaque assays. The results of MTT assay disclosed that phloroglucinol derivatives C2 and C3 effectively inhibited the death of HSV-1 infected vero cells with the CC50 values of C2 and C3 were 72.64 μmol/L and 32.62 μmol/L in HaCaT cells, 137.6 μmol/L and 48.55 μmol/L in Hela cells. The IC50 values of C3 in vero cells and Hela cells were 19.26 μmol/L and 22.98 μmol/L, respectively. In the qRT-PCR experiments, it showed that C2 and C3 effectively reduced the synthesis of HSV-1 early viral gene VP16 and late viral gene gD. The Western blot results showed that both C2 and C3 inhibited the expression of HSV-1 gD protein in a concentration-dependent manner. Lastly, viruses' plaque assay results showed that C2 and C3 inhibited the production of HSV-1 progeny virus in Hela cells and HaCaT cells in a concentration-dependent manner. Taken together, these results suggest that C2 and C3 are promising candidate that warrants further attention in the development of anti-HSV-1 drugs.
Collapse
Affiliation(s)
- Haiyan Mai
- The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, P. R. China
| | - Junjian Li
- Zhaoqing Hospital, The Third Affiliated Hospital of Sun Yat-sen University, No.1 Yanyang Road, Dinghu District, Zhaoqing, P. R. China
| | - Yuyan Luo
- The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, P. R. China
| | - Jiayi Ou
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| | - Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| |
Collapse
|
9
|
Gu JH, Liu JS, Lin JH, Liu F, Wu ZL, Zheng YR, Ye WC, Wang L. Five New Phenylpropanoyl Phloroglucinol Derivatives from Leptospermum scoparium. Chem Biodivers 2023; 20:e202201111. [PMID: 36546830 DOI: 10.1002/cbdv.202201111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Leptosperols C-G (1-5), five new phenylpropanoyl phloroglucinol derivatives were isolated from the leaves of Leptospermum scoparium. Compounds 1-3 are phenylpropanoyl phloroglucinol-sesquiterpene adducts with new carbon skeletons. Their structures with absolute configurations were elucidated by detailed spectroscopic analyses, single-crystal X-ray diffraction, and electronic circular dichroism (ECD) calculation. Compounds 2 and 3 exhibited moderate anti-inflammatory activity in zebrafish acute inflammatory models.
Collapse
Affiliation(s)
- Ji-Hong Gu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Jun-Shan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jia-Hui Lin
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Fen Liu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhen-Long Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yuan-Ru Zheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
10
|
Lv LX, Wu Y, He HX, Li NP, Zhao W, Fan YQ, Wei X, Su JC, Wang Q, Gu JH. Acronyrones A-C, unusual prenylated acetophenones from Acronychia pedunculata. Fitoterapia 2022; 163:105303. [PMID: 36152926 DOI: 10.1016/j.fitote.2022.105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022]
Abstract
Two novel prenylated acetophenones with new carbon skeletons, acronyrones A and B (1 and 2), and a new analogue, acronyrone C (3), together with two known compounds (4 and 5) were isolated from the leaves of Acronychia pedunculata. Their structures with absolute configurations were identified by interpretation of spectroscopic data, single crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations. Compounds 1 and 2 represent the first example of prenylated acetophenones possessed a C7 (1) and a C6 (2) side chain, forming a 4-isobutylchroman-2-one unit and a 3-(2-methylpropylidene)benzofuran-2(3H)-one moiety with the acetophenone core, respectively. In addition, compound 4 exhibited significant dose-dependent transcriptional activation effect against retinoid X receptor-α (RXRα), and could be regarded as a new type of non-classical RXR ligand.
Collapse
Affiliation(s)
- Li-Xia Lv
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Yan Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Hao-Xuan He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Ni-Ping Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Yun-Qi Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Xia Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China.
| | - Ji-Hong Gu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China.
| |
Collapse
|
11
|
Rare Carbon-Bridged Citrinin Dimers from the Starfish-Derived Symbiotic Fungus Penicillium sp. GGF16-1-2. Mar Drugs 2022; 20:md20070443. [PMID: 35877736 PMCID: PMC9317178 DOI: 10.3390/md20070443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Four novel, rare carbon-bridged citrinin dimers, namely dicitrinones G–J (1–4), and five known analogs (5–9) were isolated from the starfish-derived fungus Penicillium sp. GGF 16-1-2. Their structures were elucidated by extensive spectroscopic analysis and quantum chemical calculations. Compounds 1–9 exhibited strong antifungal activities against Colletotrichum gloeosporioides with LD50 values from 0.61 μg/mL to 16.14 μg/mL. Meanwhile, all compounds were evaluated for their cytotoxic activities against human pancreatic cancer BXPC-3 and PANC-1 cell lines; as a result, compound 1 showed more significant cytotoxicities than the positive control against both cell lines. In addition, based on the analyses of the protein-protein interaction (PPI) network and Western blot, 1 could induce apoptosis by activating caspase 3 proteins (CASP3).
Collapse
|
12
|
Zhan Q, Wu YY, Liu F, Li NP, Zhou X, Wang CQ, Wu Y, Zhao W, Ye WC, Wang L. (+)- and (-)-Xanthostones A-D: Four Pairs of Enantiomeric Cinnamoyl-β-Triketone Derivatives from Xanthostemon chrysanthus. Chem Biodivers 2022; 19:e202200356. [PMID: 35581725 DOI: 10.1002/cbdv.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022]
Abstract
Four pairs of cinnamoyl-β-triketone derivative enantiomers, (+)- and (-)-xanthostones A-D ((+)- and (-)-1-4), were isolated from Xanthostemon chrysanthus. Compounds 1 and 2 feature a new rearranged cinnamoyl-phloroglucinol scaffold fused with a cinnamyl-β-triketone framework. Compounds 1, 3, and 4 are the first examples of natural products with a peculiar phenethyl-pyranone acid unit. Their structures with absolute configurations were determined by spectroscopic data, X-ray diffraction analysis and electronic circular dichroism (ECD) calculation. Interestingly, these novel compounds showed a tautomeric behavior in solution, which was revealed by NMR spectroscopy and density functional theory calculation. A plausible biosynthetic pathway toward xanthostones A-D was proposed. Additionally, the anti-inflammatory and antibacterial activities of xanthostones A-D were evaluated.
Collapse
Affiliation(s)
- Qiong Zhan
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan-Yi Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Fen Liu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ni-Ping Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xun Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Chao-Qun Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Wu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
13
|
Su JC, Pan Q, Xu X, Wei X, Lei X, Zhang P. Structurally diverse steroids from an endophyte of Aspergillus tennesseensis 1022LEF attenuates LPS-induced inflammatory response through the cholinergic anti-inflammatory pathway. Chem Biol Interact 2022; 362:109998. [DOI: 10.1016/j.cbi.2022.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022]
|
14
|
Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4817-4838. [PMID: 35418233 DOI: 10.1021/acs.jafc.2c00532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phloroglucinol (PG) is a natural product isolated from plants, algae, and microorganisms. Aside from that, the number of PG derivatives has expanded due to the discovery of their potential biological roles. Aside from its diverse biological activities, PG and its derivatives have been widely utilized to treat microbial infections caused by bacteria, fungus, and viruses. The rapid emergence of antimicrobial-resistant microbial infections necessitates the chemical synthesis of numerous PG derivatives in order to meet the growing demand for drugs. This review focuses on the use of PG and its derivatives to control microbial infection and the underlying mechanism of action. Furthermore, as future perspectives, some of the various alternative strategies, such as the use of PG and its derivatives in conjugation, nanoformulation, antibiotic combination, and encapsulation, have been thoroughly discussed. This review will enable the researcher to investigate the possible antibacterial properties of PG and its derivatives, either free or in the form of various formulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
15
|
Pyranodipyran Derivatives with Tyrosyl DNA Phosphodiesterase 1 Inhibitory Activities and Fluorescent Properties from Aspergillus sp. EGF 15-0-3. Mar Drugs 2022; 20:md20030211. [PMID: 35323510 PMCID: PMC8954640 DOI: 10.3390/md20030211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/02/2022] Open
Abstract
Four new benzodipyran racemates, namely (±)-aspergiletals A–D (3–6), representing a rare pyrano[4,3-h]chromene scaffold were isolated together with eurotiumide G (1) and eurotiumide F (2) from the soft-coral-derived fungus Aspergillus sp. EGF 15-0-3. All the corresponding optically pure enantiomers were successfully separated by a chiral HPLC column. The structures and configurations of all the compounds were elucidated based on the combination of NMR and HRESIMS data, chiral separation, single-crystal X-ray diffraction, quantum chemical 13C NMR, and electronic circular dichroism calculations. Meanwhile, the structure of eurotiumide G was also revised. The TDP1 inhibitor activities and photophysical properties of the obtained compounds were evaluated. In the TDP1 inhibition assay, as a result of synergy between (+)-6 and (−)-6, (±)-6 displayed strong inhibitory activity to TDP1 with IC50 values of 6.50 ± 0.73 μM. All compounds had a large Stokes shift and could be utilized for elucidating the mode of bioactivities by fluorescence imaging.
Collapse
|
16
|
Yu JH, Yu ZP, Capon RJ, Zhang H. Natural Enantiomers: Occurrence, Biogenesis and Biological Properties. Molecules 2022; 27:1279. [PMID: 35209066 PMCID: PMC8880303 DOI: 10.3390/molecules27041279] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The knowledge that natural products (NPs) are potent and selective modulators of important biomacromolecules (e.g., DNA and proteins) has inspired some of the world's most successful pharmaceuticals and agrochemicals. Notwithstanding these successes and despite a growing number of reports on naturally occurring pairs of enantiomers, this area of NP science still remains largely unexplored, consistent with the adage "If you don't seek, you don't find". Statistically, a rapidly growing number of enantiomeric NPs have been reported in the last several years. The current review provides a comprehensive overview of recent records on natural enantiomers, with the aim of advancing awareness and providing a better understanding of the chemical diversity and biogenetic context, as well as the biological properties and therapeutic (drug discovery) potential, of enantiomeric NPs.
Collapse
Affiliation(s)
- Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Zhi-Pu Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (J.-H.Y.); (Z.-P.Y.)
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hua Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Khamto N, Chaichuang L, Rithchumpon P, Phupong W, Bhoopong P, Tateing S, Pompimon W, Semakul N, Chomsri NO, Meepowpan P. Synthesis, cytotoxicity evaluation and molecular docking studies on 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone derivatives. RSC Adv 2021; 11:31433-31447. [PMID: 35496846 PMCID: PMC9041536 DOI: 10.1039/d1ra05445g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC, 1) was isolated from seeds of Syzygium nervosum A.Cunn. ex DC. exhibiting intriguing biological activities. Herein, thirty three DMC derivatives including 4′-O-monosubstituted-DMC (2), 7-O-acylated-4-hydroxycoumarin derivatives (3), stilbene–coumarin derivatives (4), 2′,4′-disubstituted-DMC (5), and flavanone derivatives (6), were synthesised through acylation, alkylations, and sulfonylation. These semi-synthetic DMC derivatives were evaluated for in vitro cytotoxicity against six carcinoma cell lines. It was found that most derivatives exhibited higher cytotoxicity than DMC. In particular, 4′-O-caproylated-DMC (2b) and 4′-O-methylated-DMC (2g) displayed the strongest cytotoxicity against SH-SY5Y with IC50 values of 5.20 and 7.52 μM, respectively. Additionally, 4′-O-benzylated-DMC (2h) demonstrated the strongest cytotoxicity against A-549 and FaDu with IC50 values of 9.99 and 13.98 μM, respectively. Our structure–activity relationship (SAR) highlights the importance of 2′-OH and the derivatisation pattern of 4′-OH. Furthermore, molecular docking simulation studies shed further light on how these bioactive compounds interact with cyclin-dependent kinase 2 (CDK2). Semi-synthetic DMC derivatives were synthesised and displayed biological potency against various cancer cell lines. ![]()
Collapse
Affiliation(s)
- Nopawit Khamto
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Lada Chaichuang
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Graduate School, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Worrapong Phupong
- School of Science, Walailak University 222 Thaiburi Nakhon Si Thammarat 80161 Thailand
| | - Phuangthip Bhoopong
- School of Allied Health Science, Walailak University 222 Thaiburi Nakhon Si Thammarat 80161 Thailand
| | - Suriya Tateing
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Wilart Pompimon
- Laboratory of Natural Products, Centre for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University Lampang 52100 Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Center of Excellence in Materials Science and Technology, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| | - Ni-Orn Chomsri
- Agricultural Technology Research Institute (ATRI), Rajamangala University of Technology Lanna 202 Pichai District Lampang 52100 Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand .,Center of Excellence in Materials Science and Technology, Chiang Mai University 239 Huay Kaew Road Chiang Mai 50200 Thailand
| |
Collapse
|
18
|
Mechanism of Cross-Resistance to Fusion Inhibitors Conferred by the K394R Mutation in Respiratory Syncytial Virus Fusion Protein. J Virol 2021; 95:e0120521. [PMID: 34379500 PMCID: PMC8475503 DOI: 10.1128/jvi.01205-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion glycoprotein (F) is essential for respiratory syncytial virus (RSV) entry and has become an attractive target for anti-RSV drug development. Despite the promising prospect of RSV F inhibitors, issues of drug resistance remain challenging. In this study, we established a dual-luciferase protocol for RSV fusion inhibitor discovery. A small-molecule inhibitor, salvianolic acid R (LF-6), was identified to inhibit virus-cell and cell-cell fusion mediated by the RSV F protein. Sequence analysis of the resultant resistant viruses identified a K394R mutation in the viral F protein. The K394R mutant virus also conferred cross-resistance to multiple RSV fusion inhibitors, including several inhibitors undergoing clinical trials. Our study further showed that K394R mutation not only increased the triggering rate of F protein in prefusion conformation but also enhanced the fusion activity of F protein, both of which were positively correlated with resistance to fusion inhibitors. Moreover, the K394R mutation also showed cooperative effects with other escape mutations to increase the fusion activity of F protein. By substitution of K394 into different amino acids, we found that K394R or K394H substitution resulted in hyperfusiogenic F proteins, whereas F variants with other substitutions exhibited less fusion activity. Both K394R and K394H in F protein exhibited cross-resistance to RSV fusion inhibitors. Collectively, these findings reveal a positive correlation between the membrane fusion activity of F protein and the resistance of corresponding inhibitors. All of the results demonstrate that K394R in F protein confers cross-resistance to fusion inhibitors through destabilizing F protein and increasing its membrane fusion activity. IMPORTANCE Respiratory syncytial virus (RSV) causes serious respiratory tract disease in children and the elderly. Therapeutics against RSV infection are urgently needed. This study reports the discovery of a small-molecule inhibitor of RSV fusion glycoprotein by using a dual-luciferase protocol. The escape mutation (K394R) of this compound also confers cross-resistance to multiple RSV fusion inhibitors that have been reported previously, including two candidates currently in clinical development. The combination of K394R with other escape mutations can increase the resistance of F protein to these inhibitors through destabilizing F protein and enhancing the membrane fusion activity of F protein. By amino acid deletion or substitution, we found that a positively charged residue at the 394th site is crucial for the fusion ability of F protein, as well as for the cross-resistance against RSV fusion inhibitors. These results reveal the mechanism of cross-resistance conferred by the K394R mutation and the possible cross-resistance risk of RSV fusion inhibitors.
Collapse
|
19
|
Peng X, Tan Q, Zhou H, Xu J, Gu Q. Discovery of phloroglucinols from Hypericum japonicum as ferroptosis inhibitors. Fitoterapia 2021; 153:104984. [PMID: 34216691 DOI: 10.1016/j.fitote.2021.104984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023]
Abstract
Ferroptosis is a new type of cell death, which involves central neuronal system. Inhibition of ferroptosis is a promising strategy to prevent and treat neurological diseases. Thirteen phloroglucinols (1-13) were obtained from the whole plants of Hypericum japonicum. Of them, compounds 1-3 are new ones. Their structures were elucidated by extensive analysis of spectroscopic data and X-ray diffraction. All the isolates were evaluated for their inhibitory effect on RSL3-induced ferroptosis. Two new compounds 2-3 showed significant inhibitory effect with EC50 of 0.48 ± 0.14 μM and 0.94 ± 0.14 μM, respectively. DPPH free radical scavenging abilities of all compounds were assessed to evaluate their antioxidant effect. This work first reports the anti-ferroptosis activity of phloroglucinols.
Collapse
Affiliation(s)
- Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qingyun Tan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
20
|
Song JG, Tang W, Wang X, Su JC, Huang XJ, Shi L, Ye WC, Wang Y. Phloroglucinol-derived lipids from the leaves of Syzygium cumini and their neuroprotective activities. Fitoterapia 2021; 153:104968. [PMID: 34147547 DOI: 10.1016/j.fitote.2021.104968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023]
Abstract
Based on the typical HPLC-UV-MS profiles and characteristic 1H NMR signals, twelve new phloroglucinol-derived lipids (1-12), featuring a long linear aliphatic side chain, together with three known ones (13-15) were isolated from the ethanol extract of the leaves of Syzygium cumini. Their structures were elucidated on the basis of extensive NMR spectroscopic analyses and mass spectrometric data. Compounds 1-5 characterize an enolizable β,β'-tricarbonyl motif with a cyclohexa-3,5-dien-1-one core that is hitherto undescribed in phloroglucinol-derived lipids. Compounds 4 and 10-12 are novel phloroglucinol-derived lipids containing an uncommon methylene interrupted trans double bond in their polyunsaturated aliphatic side chains. A polyketide biogenetic pathway for those phloroglucinol-derived lipids was also proposed. In addition, the isolates were evaluated for their neuroprotective activities against oxygen-glucose deprivation and re‑oxygenation (OGD/R)-induced Neuro-2a cell injury. Notably, compounds 1, 5, and 10-12 significantly improved viability of Neuro-2a cells after OGD/R damage.
Collapse
Affiliation(s)
- Jian-Guo Song
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaojun Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun-Cheng Su
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lei Shi
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
21
|
Deng LM, Hu LJ, Bai YTZ, Wang J, Qin GQ, Song QY, Su JC, Huang XJ, Jiang RW, Tang W, Li YL, Li CC, Ye WC, Wang Y. Rhodomentosones A and B: Two Pairs of Enantiomeric Phloroglucinol Trimers from Rhodomyrtus tomentosa and Their Asymmetric Biomimetic Synthesis. Org Lett 2021; 23:4499-4504. [PMID: 34032453 DOI: 10.1021/acs.orglett.1c01616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhodomentosones A and B (1 and 2), two pairs of novel enantiomeric phloroglucinol trimers featuring a unique 6/5/5/6/5/5/6-fused ring system were isolated from Rhodomyrtus tomentosa. Their structures with absolute configurations were elucidated by NMR spectroscopy, X-ray crystallography, and ECD calculation. The bioinspired syntheses of 1 and 2 were achieved in six steps featuring an organocatalytic asymmetric dehydroxylation/Michael addition/Kornblum-DeLaMare rearrangement/ketalization cascade reaction. Compounds 1 and 2 exhibited promising antiviral activities against respiratory syncytial virus (RSV).
Collapse
Affiliation(s)
- Lu-Ming Deng
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Li-Jun Hu
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yang-Ting-Zhi Bai
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jie Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guan-Qiu Qin
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qiao-Yun Song
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun-Cheng Su
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yao-Lan Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chuang-Chuang Li
- Department of Chemistry, Southern University of Science & Technology, Shenzhen 518055, People's Republic of China
| | - Wen-Cai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
22
|
Cheng Y, Chen N, Li J, Su J, Yang J, Zhang C, Lin H, Zhou Y. Antimicrobial Chlorinated Carbazole Alkaloids from the
Sponge‐Associated
Actinomycete
Streptomyces diacarni
LHW51701. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yijia Cheng
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Nannan Chen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Jing Li
- College of Food Science and Technology, Shanghai Ocean University Shanghai 201306 China
| | - Jun‐Cheng Su
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Jingya Yang
- College of Food Science and Technology, Shanghai Ocean University Shanghai 201306 China
| | - Cui‐Xian Zhang
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou Guangdong 510006 China
| | - Hou‐Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Yongjun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
23
|
Li XD, Su JC, Jiang BZ, Li YL, Guo YQ, Zhang P. Janthinoid A, an unprecedented tri- nor-meroterpenoid with highly modified bridged 4a,1-(epoxymethano)phenanthrene scaffold, produced by the endophyte of Penicillium janthinellum TE-43. Org Chem Front 2021. [DOI: 10.1039/d1qo01066b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Janthinoid A (1), an unprecedented C22 meroterpenoid featuring a highly modified bridged 4a,1-(epoxymethano)phenanthrene scaffold, was produced by Penicillium janthinellum.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Bao-Zhen Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Ye-Ling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, China
| | - Yuan-Qiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
24
|
Ethnopharmacology, Phytochemistry, and Pharmacology of Syzygium nervosum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8263670. [PMID: 33204293 PMCID: PMC7652606 DOI: 10.1155/2020/8263670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
Syzygium nervosum, which belongs to the Myrtaceae plant family, is widely distributed and cultivated in South East Asian countries. The decoction of S. nervosum leaves and flower buds has been consumed regularly as a beverage among the Vietnamese and Chinese communities. In addition, it has also been used in traditional medicine for a variety of purposes, notably for influenza, skin diseases, and digestive conditions. To date, there has been a considerable number of publications on chemical profiling and pharmacological activities of S. nervosum crude extract and pure isolated compounds. Our analysis indicated the characteristic chemical scaffolds and potential bioactivities on cancer, diabetes, and inflammatory diseases of this plant. The review aims to summarize up-to-date past study results and suggest future research direction on this species, in order to promote clinical applications of S. nervosum.
Collapse
|
25
|
Karthick M, Konikkara Abi E, Someshwar N, Anthony SP, Ramanathan CR. NaHSO 4/SiO 2 catalyzed generation of o-quinone/ o-thioquinone methides: synthesis of arylxanthenes/ arylthioxanthenes via oxa-6π-electrocyclization. Org Biomol Chem 2020; 18:8653-8667. [PMID: 33073833 DOI: 10.1039/d0ob01868f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ortho-Quinone methides, very reactive transient intermediates, are utilized successfully in synthesizing complex organic molecules of natural and biological significance. Among several synthetic protocols, the acid catalyzed generation of ortho-quinone methides from suitably substituted phenols is a promising method for further exploitation in organic synthesis. Such an interesting reactive species is conveniently employed in the synthesis of conformationally restricted triarylmethane derivatives such as 12/9-arylxanthenes/arylthioxanthenes starting from symmetrical/unsymmetrical 2-(hydroxydiarylmethyl)phenol/thiophenol, respectively, using SiO2-NaHSO4. Conformationally restricted 12/9-arylxanthenes/arylthioxanthenes were obtained in 52 to 96% yields using this protocol, which is believed to involve the formation of o-quinone methides followed by electrocyclic ring closure and isomerization at elevated temperature. Photophysical studies of selected examples in acidic media showed turn-on fluorescence by hydride ion transfer mediated π-conjugated xanthylium salt formation and suggested the application potential in bio-imaging and fluorescent sensors.
Collapse
Affiliation(s)
- Muthupandi Karthick
- Department of Chemistry, Pondicherry University, Puducherry - 605 014, India
| | - Edwin Konikkara Abi
- Department of Chemistry, Pondicherry University, Puducherry - 605 014, India
| | - Nagamalla Someshwar
- Department of Chemistry, Pondicherry University, Puducherry - 605 014, India
| | | | | |
Collapse
|
26
|
Luo SL, Hu LJ, Huang XJ, Su JC, Shao XH, Wang L, Xu HH, Li CC, Wang Y, Ye WC. Discovery and Biomimetic Synthesis of a Phloroglucinol-Terpene Adduct Collection from Baeckea frutescens and Its Biogenetic Origin Insight. Chemistry 2020; 26:11104-11108. [PMID: 32315480 DOI: 10.1002/chem.202001111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 01/20/2023]
Abstract
A phloroglucinol-terpene adduct (PTA) collection consisting of twenty-four molecules featuring three skeletons was discovered from Baeckea frutescens. Inspired by its biosynthetic hypothesis, we synthesized this PTA collection by reductive activation of stable phloroglucinol precursors into highly reactive ortho-quinone methide (o-QM) intermediates and subsequently Diels-Alder cycloaddition. We also demonstrated, for the first time, the generation process of the active o-QM by performing dynamic NMR and HPLC-MS monitoring experiments. Moreover, the PTA collection showed significant antifeedant effect toward the Plutella xylostella larvae.
Collapse
Affiliation(s)
- Shi-Lin Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Li-Jun Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Jun-Cheng Su
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Xue-Hua Shao
- Institute of Fruit Tree Research, Guangdong Academy of, Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Lei Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Han-Hong Xu
- State Key Laboratory for Conservation and Utilization of, Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Chuang-Chuang Li
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518055, P. R. China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of, TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
27
|
Wei X, Feng C, Wang SY, Zhang DM, Li XH, Zhang CX. New Indole Diketopiperazine Alkaloids from Soft Coral-Associated Epiphytic Fungus Aspergillus sp. EGF 15-0-3. Chem Biodivers 2020; 17:e2000106. [PMID: 32212241 DOI: 10.1002/cbdv.202000106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 11/09/2022]
Abstract
Three new indole diketopiperazine alkaloids, 11-methylneoechinulin E and variecolorin M, and (+)-variecolorin G, along with 12 known analogs, were isolated from a soft coral-associated epiphytic fungus Aspergillus sp. EGF 15-0-3. The structures of the new compounds were unambiguously established by extensive spectroscopic analyses including HR-ESI-MS, 1D and 2D NMR spectroscopy and optical rotation measurements. The absolute configurations of (+)- and (-)-variecolorin G were determined by experimental and quantum-chemical ECD investigations and single-crystal X-ray diffraction analysis. Variecolorin G is a pair of enantiomeric mixtures with a ratio of 1 : 2. Moreover, (+)-neoechinulin A is firstly reported as a natural product. The cytotoxic activities of all the isolated compounds against NCI-H1975 gefitinib resistance (NCI-H1975/GR) cell lines were preliminarily evaluated by MTT method.
Collapse
Affiliation(s)
- Xia Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Chan Feng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Si-Yu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Hui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
28
|
Zhang X, Wu G, Huo L, Guo X, Qiu S, Liu H, Tan H, Hu Y. The First Racemic Total Syntheses of the Antiplasmodials Watsonianones A and B and Corymbone B. JOURNAL OF NATURAL PRODUCTS 2020; 83:3-7. [PMID: 31721580 DOI: 10.1021/acs.jnatprod.8b01077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first biomimetic total syntheses of three biologically meaningful acylphloroglucinols, watsonianones A and B and corymbone B, with potent antiplasmodial activity, were performed. Their total syntheses were carried out through a diversity-oriented synthetic strategy from congener 2,2,4,4-tetramethyl-6-(3-methylbutylidene)cyclohexane-1,3,5-trione with high step efficiency. The spontaneous enolization/air oxidation of the precursor 2,2,4,4-tetramethyl-6-(3-methylbutylidene)cyclohexane-1,3,5-trione through a singlet O2-induced Diels-Alder reaction pathway to assemble the key biosynthetic peroxide intermediate is also discussed.
Collapse
Affiliation(s)
- Xiao Zhang
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Guiyun Wu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Luqiong Huo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Xueying Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , People's Republic of China
| | - Haibo Tan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences , Guangzhou 510650 , People's Republic of China
| | - Yingjie Hu
- Institute of Tropical Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510405 , People's Republic of China
| |
Collapse
|
29
|
Liu YF, Yu SS. Survey of natural products reported by Asian research groups in 2018. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:1129-1150. [PMID: 31736363 DOI: 10.1080/10286020.2019.1684474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The new natural products reported in 2018 in peer-reviewed articles in journals with good reputations were reviewed and analyzed. The advances made by Asian research groups in the field of natural products chemistry in 2018 were summarized. Compounds with unique structural features and/or promising bioactivities originating from Asian natural sources were discussed based on their structural classification.
Collapse
Affiliation(s)
- Yan Fei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
30
|
Song JG, Su JC, Song QY, Huang RL, Tang W, Hu LJ, Huang XJ, Jiang RW, Li YL, Ye WC, Wang Y. Cleistocaltones A and B, Antiviral Phloroglucinol-Terpenoid Adducts from Cleistocalyx operculatus. Org Lett 2019; 21:9579-9583. [PMID: 31755722 DOI: 10.1021/acs.orglett.9b03743] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two novel phloroglucinol-terpenoid adducts (1 and 2), featuring a rare 2,2,4-trimethyl-cinnamyl-β-triketone unit, were isolated from the buds of Cleistocalyx operculatus. Their structures with absolute configurations were established by spectroscopic analyses, single-crystal X-ray diffraction, and quantum chemical calculations. Structurally, compound 1 represents a new carbon skeleton possessing a densely functionalized tricyclo[11.3.1.03;8]heptadecane bridged ring system with an unusual bridgehead enol. Compounds 1 and 2 exhibited significant in vitro antiviral activities against respiratory syncytial virus (RSV).
Collapse
Affiliation(s)
- Jian-Guo Song
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Jun-Cheng Su
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Qiao-Yun Song
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Rui-Li Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Wei Tang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Li-Jun Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Ren-Wang Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy , Jinan University , Guangzhou 510632 , People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research , Jinan University , Guangzhou 510632 , People's Republic of China
| |
Collapse
|
31
|
Liu F, Tian HY, Huang XL, Wang WJ, Li NP, He J, Ye WC, Wang L. Xanthchrysones A-C: Rearranged Phenylpropanoyl-Phloroglucinol Dimers with Unusual Skeletons from Xanthostemon chrysanthus. J Org Chem 2019; 84:15355-15361. [PMID: 31697081 DOI: 10.1021/acs.joc.9b02373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Three pairs of dimeric phenylpropanoyl-phloroglucinol enantiomers, (+)- and (-)-xanthchrysones A-C [(+)- and (-)-1-3], as well as their postulated biosynthetic precursors, were isolated and identified from the leaves of Xanthostemon chrysanthus. Compound 1 featured an unprecedented bis-phenylpropanoyl-benzo[b]cyclopent[e] oxepine tricyclic backbone. Compounds 2 and 3 represent the first examples of 1-(cyclopentylmethyl)-3-(3-phenylpropanoyl)benzene scaffold. The structures and absolute configurations of 1-3 were determined by spectroscopic and X-ray diffraction analysis as well as electronic circular dichroism (ECD) calculation. Both (+)-2 and (-)-2 showed moderate antibacterial activities including several multidrug-resistant strains.
Collapse
|
32
|
Su JC, Cheng W, Song JG, Zhong YL, Huang XJ, Jiang RW, Li YL, Li MM, Ye WC, Wang Y. Macrocyclic Diterpenoids from Euphorbia helioscopia and Their Potential Anti-inflammatory Activity. JOURNAL OF NATURAL PRODUCTS 2019; 82:2818-2827. [PMID: 31550154 DOI: 10.1021/acs.jnatprod.9b00519] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Guided by 1H NMR spectroscopic experiments using the aromatic protons as probes, 11 macrocyclic diterpenes (1-11) were isolated from the aerial parts of Euphorbia helioscopia. Their full three-dimensional structures, including absolute configurations, were established unambiguously by spectroscopic analysis and single-crystal X-ray crystallographic experiments. Among the isolated compounds, compound 1 is the third member thus far of a rare class of Euphorbia diterpenes featuring an unusual 5/10 fused ring system, and 2-4 are new jatrophane diterpenes. Based on the NMR data of the jatrophane diterpenes obtained in this study as well as those with crystallographic structures reported in the literature, the correlations of the chemical shifts of the relevant carbons and the configurations of C-2, C-13, and C-14 of their flexible macrocyclic ring were considered. Moreover, the anti-inflammatory activities of 1-11 were investigated by monitoring their inhibitory effects on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. Compound 1 showed an IC50 of 7.4 ± 0.6 μM, which might be related to the regulation of the NF-κB signaling pathway by suppressing the translocation of the p65 subunit and the consequent reduction of IL-6 and TNF-α secretions.
Collapse
|
33
|
Wu JW, Li BL, Tang C, Ke CQ, Zhu NL, Qiu SX, Ye Y. Callistemonols A and B, Potent Antimicrobial Acylphloroglucinol Derivatives with Unusual Carbon Skeletons from Callistemon viminalis. JOURNAL OF NATURAL PRODUCTS 2019; 82:1917-1922. [PMID: 31276403 DOI: 10.1021/acs.jnatprod.9b00064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A phytochemical investigation on the leaves of Callistemon viminalis resulted in the isolation of two unusual compounds, callistemonols A (1) and B (2). Callistemonol A (1) possesses a novel skeleton of a furan ring fusing both an α,β-triketone and a phloroglucinol unit, while callistemonol B (2) is an acylphloroglucinol derivative featuring two methyl substituents on a five-membered ring and an isovaleryl side chain. Their structures were fully characterized on the basis of extensive spectroscopic analysis, including 1D and 2D NMR parameters, as well as the IR and HRESIMS data. Callistemonol A (1) represents an example of a natural dibenzofuran with two phenyl moieties, and a plausible biogenetic pathway to generate this novel dibenzofuran through a C-C bond-forming radical SAM enzyme is proposed. Moreover, antimicrobial assays, in conjunction with time-killing and biophysical studies, revealed that 1 and 2 exert potent bactericidal activities against a panel of methicillin-resistant pathogenic microbes.
Collapse
Affiliation(s)
- Jie-Wei Wu
- Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510006 , People's Republic of China
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| | - Bai-Lin Li
- Mathematical Engineering Academy of Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou 510006 , People's Republic of China
| | - Chunping Tang
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| | - Nan-Lin Zhu
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| | - Sheng-Xiang Qiu
- Program for Natural Product Chemical Biology, Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany , South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650 , People's Republic of China
| | - Yang Ye
- State Key Laboratory of Drug Research, & Natural Products Chemistry Department , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , People's Republic of China
| |
Collapse
|
34
|
Tuan HN, Minh BH, Tran PT, Lee JH, Oanh HV, Ngo QMT, Nguyen YN, Lien PTK, Tran MH. The Effects of 2',4'-Dihydroxy-6'-methoxy-3',5'- dimethylchalcone from Cleistocalyx operculatus Buds on Human Pancreatic Cancer Cell Lines. Molecules 2019; 24:molecules24142538. [PMID: 31336786 PMCID: PMC6680674 DOI: 10.3390/molecules24142538] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023] Open
Abstract
2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), a principal natural chalcone of Cleistocalyx operculatus buds, suppresses the growth of many types of cancer cells. However, the effects of this compound on pancreatic cancer cells have not been evaluated. In our experiments, we explored the effects of this chalcone on two human pancreatic cancer cell lines. A cell proliferation assay revealed that DMC exhibited concentration-dependent cytotoxicity against PANC-1 and MIA PACA2 cells, with IC50 values of 10.5 ± 0.8 and 12.2 ± 0.9 µM, respectively. Treatment of DMC led to the apoptosis of PANC-1 by caspase-3 activation as revealed by annexin-V/propidium iodide double-staining. Western blotting indicated that DMC induced proteolytic activation of caspase-3 and -9, degradation of caspase-3 substrate proteins (including poly[ADP-ribose] polymerase [PARP]), augmented bak protein level, while attenuating the expression of bcl-2 in PANC-1 cells. Taken together, our results provide experimental evidence to support that DMC may serve as a useful chemotherapeutic agent for control of human pancreatic cancer cells.
Collapse
Affiliation(s)
- Huynh Nhu Tuan
- Hanoi University of Pharmacy, 13 Le Thanh Tong Street, Hoan Kiem District, Hanoi 100100, Vietnam
| | - Bui Hoang Minh
- Faculty of Pharmacy, Nguyen Tat Thanh University, 300C Nguyen Tat Thanh Street, District 4, Hochiminh City 72820, Vietnam
| | - Phuong Thao Tran
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24414, Korea
| | - Jeong Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 24414, Korea
| | - Ha Van Oanh
- Hanoi University of Pharmacy, 13 Le Thanh Tong Street, Hoan Kiem District, Hanoi 100100, Vietnam
| | - Quynh Mai Thi Ngo
- College of Pharmacy, Hai Phong University of Medicine and Pharmacy, 72A Nguyen Binh Khiem, Hai Phong 180000, Vietnam
| | - Yen Nhi Nguyen
- Faculty of Biology and Biotechnology, University of Science, Vietnam National University Hochiminh City, 227 Nguyen Van Cu, District 5, Hochiminh City 748000, Vietnam
| | - Pham Thi Kim Lien
- Biomedical Sciences Department, Institute for Research & Executive Education (VNUK), The University of Danang, 158A Le Loi, Hai Chau District, Danang City 551000, Vietnam
| | - Manh Hung Tran
- Biomedical Sciences Department, Institute for Research & Executive Education (VNUK), The University of Danang, 158A Le Loi, Hai Chau District, Danang City 551000, Vietnam.
| |
Collapse
|
35
|
Structures and Bioactive Properties of Myrtucommulones and Related Acylphloroglucinols from Myrtaceae. Molecules 2018; 23:molecules23123370. [PMID: 30572614 PMCID: PMC6321051 DOI: 10.3390/molecules23123370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Myrtaceae are a group of plants that include a number of renowned species used in ethnomedicine in many areas worldwide. Their valuable therapeutic properties have stimulated a fruitful research activity addressed to the identification of the bioactive components of their extracts yielding a great diversity of terpenes; polyphenols; and other exclusive products. Among the latter, starting with the discovery of myrtucommulone A from myrtle (Myrtus communis), a series of structurally-related acylphloroglucinol compounds have been characterized from several species that represent the basic active principles to be considered in view of possible drug development. Aspects concerning chemical and biological properties of these products are reviewed in the present paper.
Collapse
|
36
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2018; 35:1024-1028. [PMID: 30209473 DOI: 10.1039/c8np90032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as huperphlegmine A from Huperzia phlegmaria.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|