1
|
Pavalamuthu M, Navamani K. Entropy-ruled nonequilibrium charge transport in thiazolothiazole-based molecular crystals: a quantum chemical study. Phys Chem Chem Phys 2024; 26:16488-16504. [PMID: 38751327 DOI: 10.1039/d3cp05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The charge and energy fluctuations in molecular solids are crucial factors for a better understanding of charge transport (CT) in organic semiconductors. The energetic disorder-coupled molecular charge transport is still not well-established. Moreover, the conventional Einstein's diffusion (D)-mobility (μ) relation fails to explain the quantum features of organic semiconductors, including nonequilibrium and degenerate transport systems, where kB is the Boltzmann constant, T is the temperature and q is the electric charge. To overcome this issue, a unified version of the entropy-ruled D/μ relation was proposed by Navamani (J. Phys. Chem. Lett., 2024, 15, 2519-2528) for hopping and band transport systems as where d, η and heff are the dimension (d = 1, 2, 3), chemical potential and effective entropy, respectively. Within this context, we investigate the CT properties of 2,5-bis(4-methoxyphenyl)thiazolo[5,4-d]thiazole (MOP-TZTZ) and 2,5-bis(2,4,5 trifluorophenyl)-thiazolo[5,4-d]thiazole (TFP-TZTZ) molecular solids using electronic structure calculations and the entropy-ruled method. The CT key parameters such as charge transfer integral and site energy are computed by matrix elements of the Kohn-Sham Hamiltonian. Using Marcus theory, the charge transfer rate is numerically calculated for MOP-TZTZ and TFP-TZTZ molecular crystals under different site energy disorder (ΔEij(E⃑)) situations. Using our entropy-ruled method, the exact diffusion-mobility (D/μ) and other transport quantities such as thermodynamic density of states, conductivity, and current density are calculated for these derivatives at different applied electric field values via the site energy disorder. The theoretical results show that the molecule TFP-TZTZ has good hole mobility (∼0.012 cm2 V-1 s-1) at a site energy disorder value of 90 meV. The obtained ideality factor from the Navamani-Shockley diode current density equation categorizes the typical transport as either the Langevin-type or Shockley-Read-Hall mechanism in the studied molecular solids. Our analysis clearly shows that both the electron and hole transport in these MOP-TZTZ and TFP-TZTZ molecules follow the trap-free Langevin mechanism, which is indeed ideal for designing charge-transporting molecular devices.
Collapse
Affiliation(s)
- M Pavalamuthu
- Department of Physics, Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore-641407, India.
| | - K Navamani
- Department of Physics, Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Coimbatore-641407, India.
| |
Collapse
|
2
|
Wang Y, Zhao R, Ackermann L. Electrochemical Syntheses of Polycyclic Aromatic Hydrocarbons (PAHs). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300760. [PMID: 36965124 DOI: 10.1002/adma.202300760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have surfaced as increasingly viable components in optoelectronics and material sciences. The development of highly efficient and atom-economic tools to prepare PAHs under exceedingly mild conditions constitutes a long-term goal. Traditional syntheses of PAHs have largely relied on multistep approaches or the conventional Scholl reaction. However, Scholl reactions are largely inefficient with electron-deficient substrates, require stoichiometric chemical oxidants, and typically occur in the presence of strong acid. In sharp contrast, electrochemistry has gained considerable momentum during the past decade as an alternative for the facile and straightforward PAHs assembly, generally via electro-oxidative dehydrogenative annulation, releasing molecular hydrogen as the sole stoichiometric byproduct by the hydrogen evolution reaction. This review provides an overview on the recent and significant advances in the field of electrochemical syntheses of various PAHs until January 2023.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Rong Zhao
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Kishida S, Takano M, Sekiya T, Ukaji Y, Endo K. Cyclopropenes for the Stepwise Synthesis of 1,2,4,5-Tetraarylbenzenes via 1,4-Cyclohexadienes. J Org Chem 2022; 87:14833-14839. [PMID: 36201259 DOI: 10.1021/acs.joc.2c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes a synthetic approach to the synthesis of 1,2,4,5-tetraarylbenzene derivatives from cyclopropenes. The Lewis acid-mediated dimerization of cyclopropenes gives tricyclo[3.1.0.02,4]hexane derivatives. The subsequent thermal ring-opening reaction under solvent-free conditions gives 1,4-cyclohexadienes bearing quaternary carbons. The novel Br2-mediated oxidative rearrangement of 1,4-cyclohexadienes takes place to give 1,2,4,5-tetraarylbenzene derivatives in high to excellent yields.
Collapse
Affiliation(s)
- Satoshi Kishida
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Misaki Takano
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Takuya Sekiya
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Kohei Endo
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Okuda Y, Fujimoto M, Akashi H, Orita A. Dephosphinylative [4 + 2] Benzannulation of Phosphinyl Ynamines: Application to the Modular Synthesis of Polycyclic Aromatic Amines. J Org Chem 2021; 86:17651-17666. [PMID: 34860520 DOI: 10.1021/acs.joc.1c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 9-amino-10-halophenanthrenes were synthesized through a one-pot process, including dephosphinylative Sonogashira-Hagihara coupling of 2-bromobiphenyls with air-stable phosphinyl ynamines, followed by halonium-promoted [4 + 2] benzannulation of the resulting 2-(aminoethynyl)biphenyls. Nonsubstituted and methyl-substituted 2-bromobiphenyls rapidly underwent the Sonogashira-Hagihara aminoethynylation and the halogenative Friedel-Crafts benzannulation to provide the corresponding amino(halo)phenanthrenes in high yields, while electron-sufficient and -deficient substrates did slowly undergo the former and the latter to result in low yields, respectively. This protocol worked well for the syntheses of highly π-extended aminophenanthrenes and aminobenzonaphthothiophenes with different optical properties. Further application of this approach between 2,2″- and 2',5'-dibromo-p-terphenyls with phosphinyl ynamines led to the regioselective formation of 6,13-diamino-5,12-dihalo- and 5,12-diamino-6,13-dihalo-dibenz[a,h]anthracenes via dual aminoethynylation and [4 + 2] benzannulation. The obtained analogues showed different ultraviolet-visible absorption and photoluminescence spectra with different emission quantum yields in CH2Cl2 solution and the powder state.
Collapse
Affiliation(s)
- Yasuhiro Okuda
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Mayo Fujimoto
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Haruo Akashi
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Akihiro Orita
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
5
|
Venkateswarlu S, Kumar S, Tao Y. One‐step Annulation/Chlorination towards Chlorinated Diphenanthro, Dibenzophenanthro, and Dichrysenothiophens. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Samala Venkateswarlu
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Taiwan International Graduate Program Sustainable Chemical Science and Technology Academia Sinica Taipei 115 Taiwan
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Sushil Kumar
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Yu‐Tai Tao
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
6
|
Kancherla S, Jørgensen KB. Synthesis of Phenacene-Helicene Hybrids by Directed Remote Metalation. J Org Chem 2020; 85:11140-11153. [PMID: 32786610 PMCID: PMC7498163 DOI: 10.1021/acs.joc.0c01097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with six and seven rings were synthesized via directed metalation and cross-coupling of chrysenyl N,N-diethyl carboxamides with o-tolyl and methylnaphthalenyl derivatives. In the presence of competing ortho sites, the site selectivity in iodination of chrysenyl amides by directed ortho metalation (DoM) was influenced by the lithium base. The catalyst ligand bite angle was presumably important in the cross-coupling of sterically hindered bulky PAHs. Subsequent directed remote metalation of biaryls under standard conditions and at elevated temperatures afforded various fused six- and seven-ring PAHs, all in good yields and with fluorescent properties.
Collapse
Affiliation(s)
- Sindhu Kancherla
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Kåre B Jørgensen
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| |
Collapse
|
7
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew Chem Int Ed Engl 2020; 59:2998-3027. [PMID: 31342599 PMCID: PMC7027897 DOI: 10.1002/anie.201904934] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Oxidative aromatic coupling occupies a fundamental place in the modern chemistry of aromatic compounds. It is a method of choice for the assembly of large and bewildering architectures. Considerable effort was also devoted to applications of the Scholl reaction for the synthesis of chiral biphenols and natural products. The ability to form biaryl linkages without any prefunctionalization provides an efficient pathway to many complex structures. Although the chemistry of this process is only now becoming fully understood, this reaction continues to both fascinate and challenge researchers. This is especially true for heterocoupling, that is, oxidative aromatic coupling with the chemoselective formation of a C-C bond between two different arenes. Analysis of the progress achieved in this field since 2013 reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted (cyclo)dehydrogenation, and developing new reagents.
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Holger Butenschön
- Institut für Organische ChemieLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| |
Collapse
|
8
|
Venkateswarlu S, Prakoso SP, Kumar S, Tao Y. Accessing π‐expanded heterocyclics beyond dibenzothiophene: Syntheses and properties of phenanthrothiophenes. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samala Venkateswarlu
- Institute of ChemistryAcademia Sinica Taipei Taiwan
- Taiwan International Graduate Program, Sustainable Chemical Science and TechnologyAcademia Sinica Taipei Taiwan
- Department of Applied ChemistryNational Chiao Tung University Hsinchu Taiwan
| | - Suhendro Purbo Prakoso
- Taiwan International Graduate Program, Sustainable Chemical Science and TechnologyAcademia Sinica Taipei Taiwan
- Department of Applied ChemistryNational Chiao Tung University Hsinchu Taiwan
| | - Sushil Kumar
- Institute of ChemistryAcademia Sinica Taipei Taiwan
| | - Yu‐Tai Tao
- Institute of ChemistryAcademia Sinica Taipei Taiwan
| |
Collapse
|
9
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Syntheseanwendungen der oxidativen aromatischen Kupplung – von Biphenolen zu Nanographenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904934] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marek Grzybowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Bartłomiej Sadowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| |
Collapse
|
10
|
Venkateswarlu S, Prakoso SP, Kumar S, Kuo MY, Tao YT. Benzophenanthrothiophenes: Syntheses, Crystal Structures, and Properties. J Org Chem 2019; 84:10990-10998. [PMID: 31380638 DOI: 10.1021/acs.joc.9b01581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new class of polycyclic heteroarenes based on benzo[3,4]phenanthro[1,2-b]benzo[3,4]phenanthro[2,1-d]thiophene (BPBPT) was prepared from polyaryl thiophenes via regioselective Scholl reactions. The molecular frameworks of these compounds exhibited twisted bridges and near-cofacial packing motifs with oppositely or parallel π-stacked structures depending on the substituents on the periphery. Theoretical calculation of electronic coupling and charge mobility was carried out on the basis of the single-crystal structures. Single crystals of selected benzophenanthrothiophenes were used in p-channel field-effect transistor device fabrication, from which the highest mobility was measured as 2.03 cm2 V-1 s-1 from Flu-BPBPT.
Collapse
Affiliation(s)
- Samala Venkateswarlu
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan.,Taiwan International Graduate Program, Sustainable Chemical Science and Technology , Academia Sinica , Taipei 115 , Taiwan.,Department of Applied Chemistry , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Suhendro Purbo Prakoso
- Taiwan International Graduate Program, Sustainable Chemical Science and Technology , Academia Sinica , Taipei 115 , Taiwan.,Department of Applied Chemistry , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Sushil Kumar
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Ming-Yu Kuo
- Department of Applied Chemistry , National Chi Nan University , Nantou 545 , Taiwan
| | - Yu-Tai Tao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
11
|
Tsuchiya S, Saito H, Nogi K, Yorimitsu H. Aromatic Metamorphosis of Indoles into 1,2-Benzazaborins. Org Lett 2019; 21:3855-3860. [PMID: 31063386 DOI: 10.1021/acs.orglett.9b01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Among the plethora of aromatic compounds, indoles represent a privileged class of substructures that is ubiquitous in natural products and pharmaceuticals. While numerous exocyclic functionalizations of indoles have provided access to a variety of useful derivatives, endocyclic transformations involving the cleavage of the C2-N bond remain challenging due to the high aromaticity and strength of this bond in indoles. Herein, we report the "aromatic metamorphosis" of indoles into 1,2-benzazaborins via the insertion of boron into the C2-N bond. This endocyclic insertion consists of a reductive ring-opening using lithium metal and a subsequent trapping of the resulting dianionic species with organoboronic esters. Considering that 1,2-azaborins have attracted increasing academic and industrial attention as BN isosteres of benzene, the counterintuitive aromatic metamorphosis presented herein can feasibly be expected to substantially advance the promising chemistry of 1,2-azaborins.
Collapse
Affiliation(s)
- Shun Tsuchiya
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Hayate Saito
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo-ku, Kyoto 606-8502 , Japan
| |
Collapse
|
12
|
John A, Kirschner S, Fengel MK, Bolte M, Lerner HW, Wagner M. Simultaneous expansion of 9,10 boron-doped anthracene in longitudinal and lateral directions. Dalton Trans 2019; 48:1871-1877. [PMID: 30608493 DOI: 10.1039/c8dt04820g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Doubly boron-doped anthracenes and pentacenes have been longitudinally and laterally expanded through annulation of thiophene or benzene rings. The obtained series of closely related compounds allowed an assessment of key structure-property relationships with a focus on optoelectronic characteristics. Most of the products are benchtop-stable blue emitters and capable of accepting two electrons in a reversible manner. The syntheses involved late-stage modifications through photocyclization or stepwise oxidative C-C coupling (DDQ/BF3·Et2O) as well as cyclocondensation of ortho-disilylated or -diborylated aryl building blocks.
Collapse
Affiliation(s)
- Alexandra John
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Sven Kirschner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Melina K Fengel
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Michael Bolte
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Hans-Wolfram Lerner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue Strasse 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|