1
|
Ying X, Li X, Deng S, Zhang B, Xiao G, Xu Y, Brennan C, Benjakul S, Ma L. How lipids, as important endogenous nutrient components, affect the quality of aquatic products: An overview of lipid peroxidation and the interaction with proteins. Compr Rev Food Sci Food Saf 2025; 24:e70096. [PMID: 39812142 DOI: 10.1111/1541-4337.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical. At the same time, some lipid oxidation products have been found to interact with aquatic product proteins in various ways, posing a safety risk. This paper provides an in-depth exploration of the pathways, specific effects, and hazards of lipid oxidation in aquatic products, with a particular focus on the interaction of lipid oxidation products with proteins. Additionally, it discusses the impact of non-thermal treatment techniques on lipids in aquatic products and examines the application of natural antioxidants in aquatic products. Future research endeavors should delve into the interactions between lipids and proteins in these products and their specific effects to mitigate the impact of non-thermal treatment techniques on lipids, thereby enhancing the safety of aquatic products and ensuring food safety for future generations.
Collapse
Affiliation(s)
- Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyang Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shanggui Deng
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yujuan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
2
|
Mommer S, Warner N, Lienert C. γ-Functional Iminiumthiolactones for the Single and Double Modification of Peptides. Bioconjug Chem 2023; 34:2302-2310. [PMID: 37994876 PMCID: PMC10739594 DOI: 10.1021/acs.bioconjchem.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/24/2023]
Abstract
Thiolactones (TL) can be readily incorporated into polymeric materials and have been extensively used as a ligation strategy despite their limited reactivity toward amine-containing substrates. Comparatively, iminiumthiolactones (ITL) are much more reactive, yet to this day, only the nonsubstituted ITL known as Traut's reagent is commercially available and used. In this work, we advance current TL/ITL chemistry by introducing reactive side groups to the ITL heterocycle in the γ-position, which can be orthogonally modified without affecting the ITL heterocycle itself. To study the reactivity of γ-functional ITLs, we subject one of our derivatives (γ-allyl-functional ITL 3b) to model reactions with several peptides and a chosen protein (lysozyme C). Using mild reaction conditions, we successfully demonstrate that the γ-functional ITL exhibits orthogonal and enhanced reactivity in a single or double modification while introducing a new functional handle to the biological substrate. We believe that γ-functional ITLs will advance the original Traut chemistry and open promising opportunities for the bioconjugation of biological building blocks to existing functional molecules, polymers, and materials.
Collapse
Affiliation(s)
| | - Nina Warner
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Caroline Lienert
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University
of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| |
Collapse
|
3
|
Chen X, Jiang Z, Zhang L, Liu W, Ren X, Nie L, Wu D, Guo Z, Liu W, Yang X, Wu Y, Liang Z, Spencer P, Liu J. Protein pyrrole adducts are associated with elevated glucose indices and clinical features of diabetic diffuse neuropathies. J Diabetes 2022; 14:646-657. [PMID: 36195541 PMCID: PMC9574754 DOI: 10.1111/1753-0407.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Diabetic neuropathy is the most prevalent complication of diabetes mellitus. Although the precise etiology of this neurological disorder has yet to be defined, elevated blood glucose promotes anerobic glycolysis; this produces excess advanced glycation end-products, many of which have a pyrrole structure. Here, we test the hypothesis that protein pyrrole adducts are associated with elevated glucose indices and some clinical features of diabetic diffuse neuropathies. METHOD We investigated the levels of plasma pyrrole adducts and adjusted urinary pyrrole adducts in a group of elderly persons (n = 516, age 60-79) residing in the District of Luohu, Shenzhen, China between 2017 and 2018. Symptoms of distal symmetric polyneuropathy (DSPN) and resting heart rate, a measure of autonomic nervous system function, were collected from participants (n = 258) with elevated glucose indices. RESULT Protein pyrrole adducts showed a strong correlation with glucose indices before and after adjustment for age and estimated glomerular filtration rates. Stratified analysis showed that the medians and interquartile values of pyrrole adducts grew as glucose indices of the subgroups increased. Participants with symptoms of DSPN and sinus tachycardia presented elevated levels of plasma pyrrole adducts. CONCLUSION This study provides a novel link between glucose indices and the etiology of diabetic diffuse neuropathies.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Zhuyi Jiang
- Department of Endocrinology, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Lianjing Zhang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
- School of Public HealthGuangdong Medical UniversityDongguanPeople's Republic of China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Xiaohu Ren
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Luling Nie
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Zhiwei Guo
- Shenzhen Luohu Hospital for Traditional Chinese MedicineShenzhen Luohu Hospital GroupShenzhenChina
| | - Weimin Liu
- Shenzhen Luohu Center for Disease Control and PreventionShenzhenChina
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Yan Wu
- Department of Endocrinology, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Zhen Liang
- Department of Endocrinology, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan University, The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenChina
| | - Peter Spencer
- Department of Neurology, School of Medicine, and Oregon Institute for Occupational Health SciencesOregon Health & Science UniversityPortlandOregonUSA
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
- School of Public HealthGuangdong Medical UniversityDongguanPeople's Republic of China
| |
Collapse
|
4
|
Olasz B, Fiser B, Szőri M, Viskolcz B, Owen MC. Computational Elucidation of the Solvent-Dependent Addition of 4-Hydroxy-2-nonenal (HNE) to Cysteine and Cysteinate Residues. J Org Chem 2022; 87:12909-12920. [PMID: 36148484 DOI: 10.1021/acs.joc.2c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lipid peroxidation end product, 4-hydroxy-2-nonenal (HNE), is a secondary mediator of oxidative stress due to its strong ability to form adducts to the side chains of lysine, histidine, and cysteine residues (Cys) at increasing reactivities. This reaction can take place in various cellular environments and may be dependent on solvent. Moreover, approximately 10% of cysteine residues within the cells exist as the negatively charged cysteinate, which may also have a distinct reactivity toward HNE. In this study, quantum chemical calculations are used to investigate the reactivity of HNE toward Cys and cysteinate in three distinct solvent environments to mimic the aqueous, polar, and hydrophobic regions within the cell. Water enhances the reactivity of HNE to cysteine compared to that of the polar and hydrophobic solvents, and the reactivity of HNE is further augmented when Cys is first ionized to cysteinate. This is also confirmed by the transition state rate constant calculations. This study reveals the role of solvent polarity in these reactions and how cysteinate can account for the seemingly high reactivity of HNE toward Cys compared to other amino acid residues and demonstrates how a strong nucleophile can enhance the reactivity of an antioxidant analogue of the Cys residue.
Collapse
Affiliation(s)
- Balázs Olasz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Ferenc Rákóczi II Transcarpathian Hungarian College of Higher Education, UA-90200 Beregszász, Transcarpathia, Ukraine
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| | - Michael C Owen
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary.,Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, H-3515 Miskolc, Hungary
| |
Collapse
|
5
|
Grigoryan H, Imani P, Dudoit S, Rappaport SM. Extending the HSA-Cys34-Adductomics Pipeline to Modifications at Lys525. Chem Res Toxicol 2021; 34:2549-2557. [PMID: 34788011 DOI: 10.1021/acs.chemrestox.1c00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously developed an adductomics pipeline that employed nanoflow liquid chromatography and high-resolution tandem mass spectrometry (nLC-HR-MS/MS) plus informatics to perform an untargeted detection of modifications to Cys34 in the tryptic T3 peptide of human serum albumin (HSA) (21ALVLIAFAQYLQQC34PFEDHVK41). In order to detect these peptide modifications without targeting specific masses, the pipeline interrogates MS2 ions that are signatures of the T3 peptide. The pipeline had been pilot-tested with archived plasma from healthy human subjects, and several of the 43 Cys34 adducts were highly associated with the smoking status. In the current investigation, we adapted the pipeline to include modifications to the ε-amino group of Lys525─a major glycation site in HSA─and thereby extend the coverage to products of Schiff bases that cannot be produced at Cys34. Because trypsin is generally unable to digest proteins at modified lysines, our pipeline detects miscleaved tryptic peptides with the sequence 525KQTALVELVK534. Adducts of both Lys525 and Cys34 are measured in a single nLC-HR-MS/MS run by increasing the mass range of precursor ions in MS1 scans and including both triply and doubly charged precursor ions for collision-induced dissociation fragmentation. For proof of principle, we applied the Cys34/Lys525 pipeline to archived plasma specimens from a subset of the same volunteer subjects used in the original investigation. Twelve modified Lys525 peptides were detected, including products of glycation (fructosyl-lysine plus advanced-glycated-end products), acetylation, and elimination of ammonia and water. Surprisingly, the carbamylated and glycated adducts were present at significantly lower levels in smoking subjects. By including a larger class of in vivo nucleophilic substitution reactions, the Cys34/Lys525 adductomics pipeline expands exposomic investigations of unknown human exposure to reactive electrophiles derived from both exogenous and endogenous sources.
Collapse
Affiliation(s)
- Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, United States
| | - Partow Imani
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California 94720, United States
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California 94720, United States.,Department of Statistics, University of California, Berkeley, California 94720, United States
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Long MJC, Huang KT, Aye Y. The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chem Soc Rev 2021; 50:12269-12291. [PMID: 34779447 DOI: 10.1039/d1cs00467k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this tutorial review, we compare and contrast the chemical mechanisms of electrophile/oxidant sensing, and the molecular mechanisms of signal propagation. We critically analyze biological systems in which these different pathways are believed to be manifest and what the data really mean. Finally, we discuss applications of this knowledge to disease treatment and drug development.
Collapse
Affiliation(s)
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Li Z, Zhang L, Pu M, Lei M. Mechanistic Understanding of Base‐Catalyzed Aldimine/Ketoamine Condensations: An Old Story and A New Model. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhe‐wei Li
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
8
|
Kamgang Nzekoue F, Henle T, Caprioli G, Sagratini G, Hellwig M. Food Protein Sterylation: Chemical Reactions between Reactive Amino Acids and Sterol Oxidation Products under Food Processing Conditions. Foods 2020; 9:foods9121882. [PMID: 33348769 PMCID: PMC7766307 DOI: 10.3390/foods9121882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Sterols, especially cholesterol and phytosterols, are important components of food lipids. During food processing, such as heating, sterols, like unsaturated fatty acids, can be oxidized. Protein modification by secondary products of lipid peroxidation has recently been demonstrated in food through a process called lipation. Similarly, this study was performed to assess, for the first time, the possibility of reactions between food proteins and sterol oxidation products in conditions relevant for food processing. Therefore, reaction models consisting of oxysterol (cholesterol 5α,6α-epoxide) and reactive amino acids (arginine, lysine, and methionine) were incubated in various conditions of concentration (0–8 mM), time (0–120 min), and temperature (30–180 °C). The identification of lysine adducts through thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) with a diode array detector (DAD), and electrospray ionization (ESI) mass spectrometry (MS) evidenced a reaction with lysine. Moreover, the HPLC-ESI with tandem mass spectrometry (MS/MS) analyses allowed observation of the compound, whose mass to charge ratio m/z 710.5 and fragmentation patterns corresponded to the reaction product [M + H]+ between cholesterol-5α,6α-epoxide and the ε-amino-group of Nα-benzoylglycyl-l-lysine. Moreover, kinetic studies between Nα-benzoylglycyl-l-lysine as a model for protein-bound lysine and cholesterol 5α,6α-epoxide were performed, showing that the formation of lysine adducts strongly increases with time, temperature, and oxysterol level. This preliminary study suggests that in conditions commonly reached during food processing, sterol oxidation products could react covalently with protein-bound lysine, causing protein modifications.
Collapse
Affiliation(s)
- Franks Kamgang Nzekoue
- School of Pharmacy, University of Camerino, Via Sant Agostino 1, 62032 Camerino, Italy; (F.K.N.); (G.C.)
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (T.H.); (M.H.)
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant Agostino 1, 62032 Camerino, Italy; (F.K.N.); (G.C.)
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant Agostino 1, 62032 Camerino, Italy; (F.K.N.); (G.C.)
- Correspondence: ; Tel.: +39-0737-402238
| | - Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany; (T.H.); (M.H.)
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem 2020; 64:19-31. [PMID: 31867621 DOI: 10.1042/ebc20190058] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Lipid oxidation results in the formation of many reactive products, such as small aldehydes, substituted alkenals, and cyclopentenone prostaglandins, which are all able to form covalent adducts with nucleophilic residues of proteins. This process is called lipoxidation, and the resulting adducts are called advanced lipoxidation end products (ALEs), by analogy with the formation of advanced glycoxidation end products from oxidized sugars. Modification of proteins by reactive oxidized lipids leads to structural changes such as increased β-sheet conformation, which tends to result in amyloid-like structures and oligomerization, or unfolding and aggregation. Reaction with catalytic cysteines is often responsible for the loss of enzymatic activity in lipoxidized proteins, although inhibition may also occur through conformational changes at more distant sites affecting substrate binding or regulation. On the other hand, a few proteins are activated by lipoxidation-induced oligomerization or interactions, leading to increased downstream signalling. At the cellular level, it is clear that some proteins are much more susceptible to lipoxidation than others. ALEs affect cell metabolism, protein-protein interactions, protein turnover via the proteasome, and cell viability. Evidence is building that they play roles in both physiological and pathological situations, and inhibiting ALE formation can have beneficial effects.
Collapse
|
10
|
Jovanović O, Škulj S, Pohl EE, Vazdar M. Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radic Biol Med 2019; 143:433-440. [PMID: 31461663 PMCID: PMC7115857 DOI: 10.1016/j.freeradbiomed.2019.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 12/25/2022]
Abstract
Reactive aldehydes (RAs), such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), produced by cells under conditions of oxidative stress, were shown to react with phosphatidylethanolamine (PE) in biological and artificial membranes. They form RA-PE adducts, which affect the function of membrane proteins by modifying various biophysical properties of the membrane. The ratio of protein to lipid in biological membranes is different, but can reach 0.25 in the membranes of oligodendrocytes. However, the impact of RA-PE adducts on permeability (P) of the neat lipid phase and molecular mechanism of their action are poorly understood. In this study, we showed that HNE increased the membrane P for ions, and in particular for sodium. This effect depended on the presence of DOPE, and was not recorded for the more toxic compound, ONE. Molecular dynamics simulations suggested that HNE-PE and ONE-PE adducts anchored different positions in the lipid bilayer, and thus changed the membrane lipid area and bilayer thickness in different ways. Sodium permeability, calculated in the presence of double HNE-PE adducts, was increased by three to four orders of magnitude when compared to PNa in adduct - free membranes. A novel mechanism by which HNE alters permeability of the lipid membrane may explain the multiple toxic or regulative effects of HNE on the function of excitable cells, such as neurons, cardiomyocytes and neurosensory cells under conditions of oxidative stress.
Collapse
Affiliation(s)
- Olga Jovanović
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sanja Škulj
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, Zagreb, Croatia
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria.
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
11
|
Vibrational spectroscopy combined with molecular dynamics simulations as a tool for studying behavior of reactive aldehydes inserted in phospholipid bilayers. Chem Phys Lipids 2019; 225:104793. [PMID: 31369738 DOI: 10.1016/j.chemphyslip.2019.104793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 01/05/2023]
Abstract
Vibrational Fourier-transform infrared (FTIR) spectroscopy aided with molecular dynamics (MD) simulations is used for studying the interaction of several reactive aldehydes (RAs), nonanal (NA), 2-nonenal (NE), 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. The results obtained by the combination of these two techniques, supported also by electron paramagnetic resonance (EPR) spectroscopy, show that NA has the strongest stabilization in the bilayer, followed by less stabilized NE, HNE and ONE. We also revealed that HNE readily makes hydrogen bonds to carbonyl groups of POPC (but not to phosphate groups), in contrast to other RAs which are hydrogen bond acceptors and do not make hydrogen bonds with lipids. A combination of FTIR spectroscopy and MD simulations is sensitive to small chemical changes in the structures of RAs, thus making it a valuable tool for studying the weak interactions between compounds inserted to phospholipid bilayers.
Collapse
|