1
|
Kumar SV, Olusegun J, Guiry PJ. Zn(II)-catalyzed asymmetric [3 + 2] cycloaddition of acyclic enones with azomethine ylides. Org Biomol Chem 2024; 22:7148-7153. [PMID: 38920098 DOI: 10.1039/d4ob00854e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The Zn(II)/UCD-Imphanol-catalyzed highly endo-selective [3 + 2] asymmetric cycloaddition of acyclic enones and azomethine ylides has been developed. Moderate to high yields (up to 94%) with excellent endo/exo selectivities (99 : 1) and enantioselectivities up to 96.5 : 3.5 er were obtained.
Collapse
Affiliation(s)
- Sundaravel Vivek Kumar
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jeremiah Olusegun
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Alvarado-Castillo MA, Cortés-Mendoza S, Barquera-Lozada JE, Delgado F, Toscano RA, Ortega-Alfaro MC, López-Cortés JG. Well-defined Cu(I) complexes based on [N,P]-pyrrole ligands catalyzed a highly endoselective 1,3-dipolar cycloaddition. Dalton Trans 2024; 53:2231-2241. [PMID: 38193761 DOI: 10.1039/d3dt03692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We herein report the synthesis and catalytic application of a new family of dinuclear Cu(I) complexes based on [N,P]-pyrrole ligands. The Cu(I) complexes (4a-d) were obtained in good yields and their catalytic properties were evaluated in the1,3-dipolar cycloaddition of azomethine ylides and electron-deficient alkenes. The air-stable complexes 4a-d exhibited high endo-diasteroselectivity to obtain substituted pyrrolidines, and the catalytic system showed excellent reactivity and wide substitution tolerance.
Collapse
Affiliation(s)
- Miguel A Alvarado-Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
- Departamento de Química Organica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico
| | - Salvador Cortés-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - José E Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - Francisco Delgado
- Departamento de Química Organica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico
| | - Ruben A Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - M Carmen Ortega-Alfaro
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510 CdMx, Mexico
| | - José G López-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| |
Collapse
|
3
|
Chiacchio MA, Legnani L. Density Functional Theory Calculations: A Useful Tool to Investigate Mechanisms of 1,3-Dipolar Cycloaddition Reactions. Int J Mol Sci 2024; 25:1298. [PMID: 38279298 PMCID: PMC10816517 DOI: 10.3390/ijms25021298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
The present review contains a representative sampling of mechanistic studies, which have appeared in the literature in the last 5 years, on 1,3-dipolar cycloaddition reactions, using DFT calculations. Attention is focused on the mechanistic insights into 1,3-dipoles of propargyl/allenyl type and allyl type such as aza-ylides, nitrile oxides and azomethyne ylides and nitrones, respectively. The important role played by various metal-chiral-ligand complexes and the use of chiral eductors in promoting the site-, regio-, diastereo- and enatioselectivity of the reaction are also outlined.
Collapse
Affiliation(s)
- Maria Assunta Chiacchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
4
|
Rodríguez-Flórez LV, González-Marcos M, García-Mingüens E, Retamosa MDG, Kawase M, Selva E, Sansano JM. Phosphine Catalyzed Michael-Type Additions: The Synthesis of Glutamic Acid Derivatives from Arylidene- α-amino Esters. Molecules 2024; 29:342. [PMID: 38257255 PMCID: PMC10820836 DOI: 10.3390/molecules29020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The reaction of arylidene-α-amino esters with electrophilic alkenes to yield Michael-type addition compounds is optimized using several phosphines as organocatalysts. The transformation is very complicated due to the generation of several final compounds, including those derived from the 1,3-dipolar cycloadditions. For this reason, the selection of the reaction conditions is a very complex task and the slow addition of the acrylic system is very important to complete the process. The study of the variation in the structural components of the starting imino ester is performed as well as the expansion of other electron-poor alkenes. The crude products have a purity higher than 90% in most cases without any purification. A plausible mechanism is detailed based on the bibliography and the experimental results. The synthesis of pyroglutamate entities, after the reduction of the imino group and cyclization, is performed in high yields. In addition, the hydrolysis of the imino group, under acidic media, represents a direct access to glutamate surrogates.
Collapse
Affiliation(s)
- Lesly V. Rodríguez-Flórez
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - María González-Marcos
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Eduardo García-Mingüens
- Medalchemy, S. L. Ancha de Castelar, 46-48, entlo. A. San Vicente del Raspeig, 03690 Alicante, Spain
| | - María de Gracia Retamosa
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Misa Kawase
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Elisabet Selva
- Medalchemy, S. L. Ancha de Castelar, 46-48, entlo. A. San Vicente del Raspeig, 03690 Alicante, Spain
| | - José M. Sansano
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| |
Collapse
|
5
|
Wang BR, Li YB, Zhang Q, Gao D, Tian P, Li Q, Yin L. Copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of 1,3-enynes and azomethine ylides. Nat Commun 2023; 14:4688. [PMID: 37542041 PMCID: PMC10403559 DOI: 10.1038/s41467-023-40409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Herein, we report a copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides and 1,3-enynes, which provides a series of chiral poly-substituted pyrrolidines in high regio-, diastereo-, and enantioselectivities. Both 4-aryl-1,3-enynes and 4-silyl-1,3-enynes serve as suitable dipolarophiles while 4-alkyl-1,3-enynes are inert. Moreover, the method is successfully applied in the construction of both tetrasubstituted stereogenic carbon centers and chiral spiro pyrrolidines. The DFT calculations are also conducted, which imply a concerted mechanism rather than a stepwise mechanism. Finally, various transformations started from the pyrrolidine bearing a triethylsilylethynyl group and centered on the alkyne group are achieved, which compensates for the inertness of 4-alkyl-1,3-enynes in the present reaction.
Collapse
Affiliation(s)
- Bo-Ran Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qinghua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Liang Yin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yavari I, Mohsenzadeh R, Ravaghi P, Safaei M. Synthesis of pyrrolidin-2-ylidenes and pyrrol-2-ylidenes via 1,3-dipolar cycloaddition of H-bond-assisted azomethine ylides to nitrostyrenes. Org Biomol Chem 2023. [PMID: 37309553 DOI: 10.1039/d3ob00725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen-bond-assisted azomethine ylides, generated from 2-(benzylamino)-2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)acetonitriles, undergo a formal Huisgen 1,3-dipolar cycloaddition with β-bromo-β-nitrostyrenes to afford a diastereoselective synthesis of highly substituted pyrrolidin-2-ylidene derivatives. When β-nitrostyrenes were used as the alkene component, 2-(4,5-diaryl-1,5-dihydro-2H-pyrrol-2-ylidene)-1H-indene-1,3(2H)-diones were obtained. Efficient conversion of pyrrolidene-2-ylidenes to the corresponding pyrrol-2-ylidenes takes place in refluxing 1-propanol in the presence of excess Et3N. Also, the structure of the pyrrolidene-2-ylidene derivative was determined by X-ray crystallography.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Ramin Mohsenzadeh
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Parisa Ravaghi
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Maryam Safaei
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| |
Collapse
|
7
|
Beksultanova N, Doğan Ö. Asymmetric synthesis of aryl-substituted pyrrolidines by using CFAM ligand-AgOAc chiral system via 1,3-dipolar cycloaddition reaction. Chirality 2023. [PMID: 36941783 DOI: 10.1002/chir.23557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have prepared a ligand library based on a ferrocenyl aziridinyl methanol core unit (simply called FAM) having a phenyl group, a cyclohexyl group, and a naphthyl group to be used in 1,3-dipolar cycloaddition (1,3-DC) reactions for the synthesis of chiral pyrrolidines. These chiral ligands were used with AgOAc in 1,3-DC reactions taking place between the aryl-substituted azomethine ylides and N-methylmaleimide as the dipolarophile. In each case, the expected aryl-substituted pyrrolidines were obtained in good to excellent yields with acceptable enantioselectivities favoring only the endo product. The chiral catalyst system CFAM4-AgOAc was also used in 1,3-DC reaction with different dipolarophiles such as dimethyl maleate, tert-butyl acrylate, methyl acrylate, trans-chalcone, and vinyl sulfone. In each case, the cycloadducts were obtained in acceptable yields albeit with low ee. Fortunately, it was possible to increase the ee up to >99% upon crystallization.
Collapse
Affiliation(s)
| | - Özdemir Doğan
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
8
|
Beutick SE, Vermeeren P, Hamlin TA. The 1,3-Dipolar Cycloaddition: From Conception to Quantum Chemical Design. Chem Asian J 2022; 17:e202200553. [PMID: 35822651 PMCID: PMC9539489 DOI: 10.1002/asia.202200553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Indexed: 11/12/2022]
Abstract
The 1,3-dipolar cycloaddition (1,3-DCA) reaction, conceptualized by Rolf Huisgen in 1960, has proven immensely useful in organic, material, and biological chemistry. The uncatalyzed, thermal transformation is generally sluggish and unselective, but the reactivity can be enhanced by means of metal catalysis or by the introduction of either predistortion or electronic tuning of the dipolarophile. These promoted reactions generally go with a much higher reactivity, selectivity, and yields, often at ambient temperatures. The rapid orthogonal reactivity and compatibility with aqueous and physiological conditions positions the 1,3-DCA as an excellent bioorthogonal reaction. Quantum chemical calculations have been critical for providing an understanding of the physical factors that control the reactivity and selectivity of 1,3-DCAs. In silico derived design principles have proven invaluable for the design of new dipolarophiles with tailored reactivity. This review discusses everything from the conception of the 1,3-DCA all the way to the state-of-the-art methods and models used for the quantum chemical design of novel (bioorthogonal) reagents.
Collapse
Affiliation(s)
- Steven E. Beutick
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| |
Collapse
|
9
|
Enantioselective 1,3-Dipolar Cycloaddition Using (Z)-α-Amidonitroalkenes as a Key Step to the Access to Chiral cis-3,4-Diaminopyrrolidines. Molecules 2022; 27:molecules27144579. [PMID: 35889453 PMCID: PMC9316397 DOI: 10.3390/molecules27144579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The enantioselective 1,3-dipolar cycloaddition between imino esters and (Z)-nitroalkenes bearing a masked amino group in the β-position was studied using several chiral ligands and silver salts. The optimized reaction conditions were directly applied to the study of the scope of the reaction. The determination of the absolute configuration was evaluated using NMR experiments and electronic circular dichroism (ECD). The reduction and hydrolysis of both groups was performed to generate in an excellent enantiomeric ratio the corresponding cis-2,3-diaminoprolinate.
Collapse
|
10
|
Xiao L, Li B, Xiao F, Fu C, Wei L, Dang Y, Dong XQ, Wang CJ. Stereodivergent synthesis of enantioenriched azepino[3,4,5- cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel-Crafts reaction. Chem Sci 2022; 13:4801-4812. [PMID: 35655885 PMCID: PMC9067570 DOI: 10.1039/d1sc07271d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 12/20/2022] Open
Abstract
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel-Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.
Collapse
Affiliation(s)
- Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
11
|
Chang X, Cheng X, Wang CJ. Catalytic asymmetric synthesis of enantioenriched α-deuterated pyrrolidine derivatives. Chem Sci 2022; 13:4041-4049. [PMID: 35440992 PMCID: PMC8985513 DOI: 10.1039/d2sc00826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
The recent promising applications of deuterium-labeled pharmaceutical compounds have led to an urgent need for the efficient synthetic methodologies that site-specifically incorporate a deuterium atom into bioactive molecules. Nevertheless, precisely building a deuterium-containing stereogenic center, which meets the requirement for optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of chiral drug candidates, remains a significant challenge in organic synthesis. Herein, a catalytic asymmetric strategy combining H/D exchange (H/D-Ex) and azomethine ylide-involved 1,3-dipolar cycloaddition (1,3-DC) was developed for the construction of biologically important enantioenriched α-deuterated pyrrolidine derivatives in good yields with excellent stereoselectivities and uniformly high levels of deuterium incorporation. Directly converting glycine-derived aldimine esters into the deuterated counterparts with D2O via Cu(i)-catalyzed H/D-Ex, and the subsequent thermodynamically/kinetically favored cleavage of the α-C-H bond rather than the α-C-D bond to generate the key N-metallated α-deuterated azomethine ylide species for the ensuing 1,3-DC are crucial to the success of α-deuterated chiral pyrrolidine synthesis. The current protocol exhibits remarkable features, such as readily available substrates, inexpensive and safe deuterium source, mild reaction conditions, and easy manipulation. Notably, the synthetic utility of a reversed 1,3-DC/[H/D-Ex] protocol has been demonstrated by catalytic asymmetric synthesis of deuterium-labelled MDM2 antagonist idasanutlin (RG7388) with high deuterium incorporation.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
12
|
Li B, Xu H, Dang Y, Houk KN. Dispersion and Steric Effects on Enantio-/Diastereoselectivities in Synergistic Dual Transition-Metal Catalysis. J Am Chem Soc 2022; 144:1971-1985. [DOI: 10.1021/jacs.1c12664] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Jyoti Kalita S, Zhao Z, Li Z, Cheng F, Zhao Y, Huang Y. Diastereodivergent 1,3‐Dipolar Cycloaddition of α‐Fluoro‐α,β‐Unsaturated Arylketones and Azomethine Ylides: Experimental and Theoretical DFT Studies. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Subarna Jyoti Kalita
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Zhen‐Ni Zhao
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Zi‐Han Li
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Feng Cheng
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Yan Zhao
- State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| | - Yi‐Yong Huang
- Department of Chemistry School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 122 Luoshi Road 430070 Wuhan China
| |
Collapse
|
15
|
Neal MJ, Hejnosz SL, Rohde JJ, Evanseck JD, Montgomery TD. Multi-Ion Bridged Pathway of N-Oxides to 1,3-Dipole Dilithium Oxide Complexes. J Org Chem 2021; 86:11502-11518. [PMID: 34379424 DOI: 10.1021/acs.joc.1c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Roussi's landmark work on the generation of 1,3-dipoles from tertiary amine N-oxides has not reached its full potential since its underlying mechanism is neither well explored nor understood. Two competing mechanisms were previously proposed to explain the transformation involving either an iminium ion or a diradical intermediate. Our investigation has revealed an alternative mechanistic pathway that explains experimental results and provides significant insights to guide the creation of new N-oxide reagents beyond tertiary alkylamines for direct synthetic transformations. Truhlar's M06-2x functional and Møller-Plesset second-order perturbation theory with Dunning's [jul,aug]-cc-pv[D,T]z basis sets and discrete-continuum solvation models were employed to determine activation enthalpies and structures. During these mechanistic explorations, we discovered a unique multi-ion bridged pathway resulting from the rate-determining step, which was energetically more favorable than other alternate mechanisms. This newly proposed mechanism contains no electrophilic intermediates, strengthening the reaction potential by broadening the reagent scope and limiting the possible side reactions. This thoroughly defined general mechanism supports a more direct route for improving the use of N-oxides in generating azomethine ylide-dilithium oxide complexes with expanded functional group tolerance and breadth of chemistry.
Collapse
Affiliation(s)
- Martin J Neal
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Sarah L Hejnosz
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Jeffrey J Rohde
- Department of Chemistry, Physics, and Engineering, Franciscan University of Steubenville, 1235 University Boulevard, Steubenville, Ohio 43952, United States
| | - Jeffrey D Evanseck
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Thomas D Montgomery
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
16
|
Yamazaki K, Gabriel P, Di Carmine G, Pedroni J, Farizyan M, Hamlin TA, Dixon DJ. General Pyrrolidine Synthesis via Iridium-Catalyzed Reductive Azomethine Ylide Generation from Tertiary Amides and Lactams. ACS Catal 2021; 11:7489-7497. [PMID: 34306810 PMCID: PMC8291578 DOI: 10.1021/acscatal.1c01589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Indexed: 02/06/2023]
Abstract
![]()
An
iridium-catalyzed reductive generation of both stabilized and
unstabilized azomethine ylides and their application to functionalized
pyrrolidine synthesis via [3 + 2] dipolar cycloaddition reactions
is described. Proceeding under mild reaction conditions from both
amide and lactam precursors possessing a suitably positioned electron-withdrawing
or a trimethylsilyl group, using 1 mol% Vaska’s complex [IrCl(CO)(PPh3)2] and tetramethyldisiloxane (TMDS) as a terminal
reductant, a broad range of (un)stabilized azomethine ylides were
accessible. Subsequent regio- and diastereoselective, inter- and intramolecular
dipolar cycloaddition reactions with variously substituted electron-deficient
alkenes enabled ready and efficient access to structurally complex
pyrrolidine architectures. Density functional theory (DFT) calculations
of the dipolar cycloaddition reactions uncovered an intimate balance
between asynchronicity and interaction energies of transition structures,
which ultimately control the unusual selectivities observed in certain
cases.
Collapse
Affiliation(s)
- Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Pablo Gabriel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Graziano Di Carmine
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Julia Pedroni
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Mirxan Farizyan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J. Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
17
|
Gracia‐Vitoria J, Osante I, Cativiela C. The Crucial Role of
S
‐oxidation State on the Selectivity and Reaction Rate of the 1,3‐Dipolar Cycloaddition of Azomethine Ylides and Homochiral Thiazolines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jaime Gracia‐Vitoria
- Departamento de Química Orgánica Instituto de Síntesis Química y Catálisis Homogénea ISQCH CSIC-Universidad de Zaragoza Calle de Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Iñaki Osante
- Departamento de Química Orgánica Instituto de Síntesis Química y Catálisis Homogénea ISQCH CSIC-Universidad de Zaragoza Calle de Pedro Cerbuna, 12 50009 Zaragoza Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica Instituto de Síntesis Química y Catálisis Homogénea ISQCH CSIC-Universidad de Zaragoza Calle de Pedro Cerbuna, 12 50009 Zaragoza Spain
| |
Collapse
|
18
|
Beksultanova N, Gözükara Z, Araz M, Bulut M, Polat-Çakır S, Aygün M, Dogan Ö. FAM-Ag-catalyzed asymmetric synthesis of heteroaryl-substituted pyrrolidines. Chirality 2021; 33:465-478. [PMID: 34038573 DOI: 10.1002/chir.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/08/2022]
Abstract
New derivatives of FAM (ferrocenyl aziridinyl methanol) ligands NFAM1-4 (naphthyl ferrocenyl aziridinyl methanol) and CFAM1-4 (cyclohexyl ferrocenyl aziridinyl methanol) were synthesized to form a small ligand library and used as chiral catalysts with AgOAc for the asymmetric synthesis of heteroaryl-substituted pyrrolidines by the 1,3-dipolar cycloaddition (1,3-DC) reaction of azomethine ylides. 2-Thienyl, 2-furyl, 2-, 3-, and 4-pyridyl aldimines were prepared and used with N-methylmaleimide, dimethyl maleate, tert-butyl acrylate, methyl acrylate, and acrylonitrile to form the corresponding heteroaryl-substituted pyrrolidines. 1,3-DC reactions yielded the expected cycloadducts in up to 89% yield and up to 76% ee that could be increased up to 95% ee upon crystallization. New chiral ligands NFAM1-4 and CFAM1-4 were fully characterized, and their absolute stereochemistry was determined by single-crystal X-ray analysis.
Collapse
Affiliation(s)
| | - Zeynep Gözükara
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Mihrimah Araz
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Merve Bulut
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sıdıka Polat-Çakır
- Department of Chemical Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Muhittin Aygün
- Department of Physics, Dokuz Eylül University, Izmir, Turkey
| | - Özdemir Dogan
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
19
|
Chang X, Yang Y, Shen C, Xue KS, Wang ZF, Cong H, Tao HY, Chung LW, Wang CJ. β-Substituted Alkenyl Heteroarenes as Dipolarophiles in the Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides Empowered by a Dual Activation Strategy: Stereoselectivity and Mechanistic Insight. J Am Chem Soc 2021; 143:3519-3535. [DOI: 10.1021/jacs.0c12911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuhong Yang
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Chong Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Kun-Shan Xue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- State Key Laboratory of of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
20
|
Furuya S, Kanemoto K, Fukuzawa SI. Copper-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Imino Esters to Unsaturated Sultones. J Org Chem 2020; 85:8142-8148. [DOI: 10.1021/acs.joc.0c01023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shohei Furuya
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Shin-ichi Fukuzawa
- Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
21
|
Molina A, Díaz-Tendero S, Adrio J, Carretero JC. Catalytic asymmetric synthesis of diazabicyclo[3.1.0]hexanes by 1,3-dipolar cycloaddition of azomethine ylides with azirines. Chem Commun (Camb) 2020; 56:5050-5053. [PMID: 32243487 DOI: 10.1039/d0cc01061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Substituted 1,3-diazabicyclo[3.1.0]hexanes with two contiguous quaternary stereocentres are readily prepared by catalytic asymmetric [3+2] cycloaddition of α-substituted iminoesters with azirines. High diastereoselectivities and enantioselectivities (up to 98% ee) are achieved using CuI/(R)-Fesulphos as the catalytic system.
Collapse
Affiliation(s)
- Alba Molina
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Yi Y, Hua YZ, Lu HJ, Liu LT, Wang MC. Brønsted Base and Lewis Acid Cooperatively Catalyzed Asymmetric exo'-Selective [3 + 2] Cycloaddition of Trifluoromethylated Azomethine Ylides and Methyleneindolinones. Org Lett 2020; 22:2527-2531. [PMID: 32202432 DOI: 10.1021/acs.orglett.0c00283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Brønsted base and Lewis acid cooperatively catalyzed 1,3-dipolar cycloaddition is reported through chiral dinuclear zinc catalysts. An asymmetric exo'-selective [3 + 2] cycloaddition of CF3-containing N-unprotected isatin-derived azomethine ylides is realized. In the presence of 10 mol % of catalyst, azomethine ylides react efficiently with methyleneindolinones, giving a series of trifluoromethyl-substituted 2,3-pyrrolidinyl dispirooxindoles with highly enantio- (up to 99% ee) and exo'-selectivity (>20:1 dr). Up to four contiguous stereogenic centers, including two adjacent spiro quaternary stereocenters, are constructed in one step.
Collapse
Affiliation(s)
- Yang Yi
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan Province 450000, P. R. China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan Province 450000, P. R. China
| | - Hui-Jie Lu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan Province 450000, P. R. China
| | - Lan-Tao Liu
- School of Chemistry & Chemical Engineering, Shangqiu Normal University, Shangqiu City, Henan Province 476000, P. R. China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan Province 450000, P. R. China
| |
Collapse
|