1
|
Danopoulou M, Zorba LP, Karantoni AP, Tzeli D, Vougioukalakis GC. Copper-Catalyzed α-Alkylation of Aryl Acetonitriles with Benzyl Alcohols. J Org Chem 2024; 89:14242-14254. [PMID: 39292689 PMCID: PMC11459520 DOI: 10.1021/acs.joc.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
A highly efficient, in situ formed CuCl2/TMEDA catalytic system (TMEDA = N,N,N',N'-tetramethylethylene-diamine) for the cross-coupling reaction of aryl acetonitriles with benzyl alcohols is reported. This user-friendly protocol, employing a low catalyst loading and a catalytic amount of base, leads to the synthesis of α-alkylated nitriles in up to 99% yield. Experimental mechanistic investigations reveal that the key step of this transformation is the C(sp3)-H functionalization of the alcohol, taking place via a hydrogen atom abstraction, with the simultaneous formation of copper-hydride species. Detailed density functional theory studies shed light on all reaction steps, confirming the catalytic pathway proposed on the basis of the experimental findings.
Collapse
Affiliation(s)
- Marianna Danopoulou
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Leandros P. Zorba
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Athanasia P. Karantoni
- Laboratory
of Physical Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Demeter Tzeli
- Laboratory
of Physical Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, Vas. Constantinou, 48, 11635 Athens, Greece
| | - Georgios C. Vougioukalakis
- Laboratory
of Organic Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece
| |
Collapse
|
2
|
Liu X, Huang L, Ma Y, She G, Zhou P, Zhu L, Zhang Z. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation. Nat Commun 2024; 15:7012. [PMID: 39147765 PMCID: PMC11327299 DOI: 10.1038/s41467-024-51307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
A single-atom catalyst with generally regarded inert Zn-N4 motifs derived from ZIF-8 is unexpectedly efficient for the activation of alcohols, enabling alcohol-mediated alkylation and transfer hydrogenation. C-alkylation of nitriles, ketones, alcohols, N-heterocycles, amides, keto acids, and esters, and N-alkylation of amines and amides all go smoothly with the developed method. Taking the α-alkylation of nitriles with alcohols as an example, the α-alkylation starts from the (1) nitrogen-doped carbon support catalyzed dehydrogenation of alcohols into aldehydes, which further condensed with nitriles to give vinyl nitriles, followed by (2) transfer hydrogenation of C=C bonds in vinyl nitriles on Zn-N4 sites. The experimental results and DFT calculations reveal that the Lewis acidic Zn-N4 sites promote step (2) by activating the alcohols. This is the first example of highly efficient single-atom catalysts for various organic transformations with biomass-derived alcohols as the alkylating reagents and hydrogen donors.
Collapse
Affiliation(s)
- Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Yuandie Ma
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Guoqiang She
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
3
|
Saha R, Hembram BC, Panda S, Jana NC, Bagh B. Iron- and base-catalyzed C(α)-alkylation and one-pot sequential alkylation-hydroxylation of oxindoles with secondary alcohols. Org Biomol Chem 2024; 22:6321-6330. [PMID: 39039931 DOI: 10.1039/d4ob00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The utilization of economical and environmentally benign transition metals in crucial catalytic processes is pivotal for sustainable advancement in synthetic organic chemistry. Iron, as the most abundant transition metal in the Earth's crust, has gained significant attention for this purpose. A combination of FeCl2 (5 mol%) in the presence of phenanthroline (10 mol%) and NaOtBu (1.5 equivalent) proved effective for the C(α)-alkylation of oxindole, employing challenging secondary alcohol as a non-hazardous alkylating agent. The C(α)-alkylation of oxindole was optimized in green solvent or under neat conditions. The substrate scope encompasses a broad array of substituted oxindoles with various secondary alcohols. Further post-functionalization of the C(α)-alkylated oxindole products demonstrated the practical utility of this catalytic alkylation. One-pot C-H hydroxylation of alkylated oxindoles yielded 3-alkyl-3-hydroxy-2-oxindoles using air as the most sustainable oxidant. Low E-factors (3.61 to 4.19) and good Eco-scale scores (74 to 76) of these sustainable catalytic protocols for the alkylation and one-pot sequential alkylation-hydroxylation of oxindoles demonstrated minimum waste generation. Plausible catalytic paths are proposed on the basis of past reports and control experiments, which suggested that a borrowing hydrogen pathway is involved in this alkylation.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bhairab Chand Hembram
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, PIN 752050, India.
| |
Collapse
|
4
|
Ansari MF, Maurya AK, Kumar A, Elangovan S. Manganese-catalyzed C-C and C-N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer. Beilstein J Org Chem 2024; 20:1111-1166. [PMID: 38887586 PMCID: PMC11181258 DOI: 10.3762/bjoc.20.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024] Open
Abstract
Transition-metal-mediated "borrowing hydrogen" also known as hydrogen auto-transfer reactions allow the sustainable construction of C-C and C-N bonds using alcohols as hydrogen donors. In recent years, manganese complexes have been explored as efficient catalysts in these reactions. This review highlights the significant progress made in manganese-catalyzed C-C and C-N bond-formation reactions via hydrogen auto-transfer, emphasizing the importance of this methodology and manganese catalysts in sustainable synthesis strategies.
Collapse
Affiliation(s)
- Mohd Farhan Ansari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Atul Kumar Maurya
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishek Kumar
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Saravanakumar Elangovan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
5
|
Saha R, Panda S, Nanda A, Bagh B. Nickel-Catalyzed α-Alkylation of Arylacetonitriles with Challenging Secondary Alcohols. J Org Chem 2024; 89:6664-6676. [PMID: 36595479 DOI: 10.1021/acs.joc.2c02026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nickel(II) complex 1 was utilized as a sustainable catalyst for α-alkylation of arylacetonitriles with challenging secondary alcohols. Arylacetonitriles with a wide range of functional groups were tolerated, and various cyclic and acyclic secondary alcohols were utilized to yield a large number of α-alkylated products. The plausible mechanism involves the base-promoted activation of precatalyst 1 to an active catalyst 2 (dehydrochlorinated product) which activates the O-H and C-H bonds of the secondary alcohol in a dehydrogenative pathway.
Collapse
Affiliation(s)
- Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Amareshwar Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
6
|
Tang Q, Song D, Zhang K, Mao W, Zhao X, Du D, Ling F, Zhong W. Development of an imidazole-based N, N-bidentate ligand for the manganese catalyzed direct coupling of nitriles with alcohols. RSC Adv 2024; 14:12978-12982. [PMID: 38655477 PMCID: PMC11033977 DOI: 10.1039/d4ra00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
3d-Metal catalyzed borrowing hydrogen (BH) reactions represent powerful and environmentally friendly approaches for the direct coupling of alcohols with nitriles to assemble various important branched nitriles. The development of simple and efficient ligands is a crucial issue in this field. In this study, we designed a series of readily available N,N-bidentate ligands that demonstrated good efficiency in the Mn-catalyzed BH reaction of alcohols and nitrile derivatives, yielding the targeted nitriles in moderate to good yields. Remarkably, the mildness and practicality of this protocol were further demonstrated by the successful synthesis of anipamil via a two-cascade borrowing hydrogen procedure.
Collapse
Affiliation(s)
- Qian Tang
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nan Jing 210009 P. R. China
- Zhejiang Center for Drug &Cosmetic Evaluation Hangzhou 310012 P. R. China
| | - Dingguo Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Kali Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Wenhao Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xianghua Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ding Du
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University Nan Jing 210009 P. R. China
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Weihui Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
7
|
Mullick S, Ghosh A, Banerjee D. Recent advances in cross-coupling of alcohols via borrowing hydrogen catalysis. Chem Commun (Camb) 2024; 60:4002-4014. [PMID: 38451211 DOI: 10.1039/d4cc00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Application of the borrowing hydrogen strategy facilitates utilization of abundantly available alcohols for linear or branched long-chain alcohols. Selective synthesis of such alcohols is highly challenging and involves the utilization of transition metal catalysts towards the desired cross-coupled product. Herein, we have highlighted recent advances (from 2015 to 2023) towards the synthesis of higher alcohols. Major focus has been given to the development of ligands, including transition metal catalysts. Judicious catalyst design plays a key role in the alkylation process and is summarised in this review.
Collapse
Affiliation(s)
- Suteerna Mullick
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Adrija Ghosh
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
8
|
Karjee P, Debnath B, Mandal S, Saha S, Punniyamurthy T. One-pot C-N/C-C bond formation and oxidation of donor-acceptor cyclopropanes with tetrahydroisoquinolines: access to benzo-fused indolizines. Chem Commun (Camb) 2024; 60:4068-4071. [PMID: 38506143 DOI: 10.1039/d4cc00810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
One-pot C-N/C-C bond formation of donor-acceptor cyclopropanes (DACs) with tetrahydroisoquinolines (THIQs) has been achieved to furnish benzo-fused indolizines. These reactions involve a MgI2-catalyzed ring opening of DACs and oxidative annulation using Mn(OAc)3·2H2O. The substrate scope and functional group diversity are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
9
|
Boity B, Sidiqque M, Rit A. Amine-functionalized bifunctional Co III-NHC complexes: highly effective phosphine-free catalysts for the α-alkylation of nitriles. Chem Commun (Camb) 2024; 60:3142-3145. [PMID: 38328819 DOI: 10.1039/d3cc05454c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Newly developed amine functionalized NHC-supported CoIII-complexes have been identified as highly effective bifunctional catalysts for the α-alkylation of nitriles using a plethora of alcohols, ranging from aliphatic to aromatic and intriguingly, also secondary ones. Comparison of their activities with the non-bifunctional analogues uncovered their extremely high activities although possessing the high-valent CoIII-center due to metal-ligand cooperativity, which has been established by an array of control experiments.
Collapse
Affiliation(s)
- Biswaranjan Boity
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Misba Sidiqque
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
10
|
Donthireddy SNR, Rit A. Heteroditopic NHC Ligand Supported Manganese(I) Complexes: Synthesis, Characterization, and Activity as Non-bifunctional Phosphine-Free Catalyst for the α-Alkylation of Nitriles. Chemistry 2024; 30:e202302504. [PMID: 37807667 DOI: 10.1002/chem.202302504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
In the present work, several manganese(I) complexes of chelating heteroditopic ligands Mn1-3, featuring ImNHC (imidazol-2-ylidene) connected to a 1,2,3-triazole-N or tzNHC (1,2,3-triazol-5-ylidene) donors via a methylene spacer, with possible modifications at the triazole backbone have been synthesized and completely characterized. Notably, the CO stretching frequencies, electrochemical analysis, and frontier orbital analysis certainly suggest that the chelating ImNHC-tzNHC ligands have stronger donation capabilities than the related ImNHC-Ntz ligand in the synthesized complexes. Moreover, these well-defined phosphine-free Mn(I)-NHC complexes have been found to be effective non-bifunctional catalysts for the α-alkylation of nitriles using alcohols and importantly, the catalyst Mn1 containing ImNHC connected to a weaker triazole-N donor displayed higher activity compared to Mn2/Mn3 containing an unsymmetrical bis-carbene donors (ImNHC and tzNHC). A wide range of aryl nitriles were coupled with diverse (hetero)aromatic as well as aliphatic alcohols to get the corresponding products in good to excellent yields (32 examples, up to 95 % yield). The detailed mechanistic studies including deuterium labelling experiments reveal that the reaction follows a Borrowing Hydrogen pathway.
Collapse
Affiliation(s)
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
11
|
Yu L, Nakamura H. Short, Scalable Access to Pyrrovobasine. JACS AU 2023; 3:3000-3004. [PMID: 38034961 PMCID: PMC10685420 DOI: 10.1021/jacsau.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
A concise gram-scale synthesis of pyrrovobasine (1) is reported. Key transformations include a three-step decagram-scale synthesis of the tetracyclic compound, Mn-mediated direct radical cyclization, and the introduction of a naturally rare pyrraline structure. The synthesis is designed to be applicable to gram-scale synthesis using inexpensive and readily available reagents.
Collapse
Affiliation(s)
- Longhui Yu
- Department of Chemistry, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hugh Nakamura
- Department of Chemistry, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
12
|
Oliemuller LK, Moore CE, Thomas CM. Synthesis, Characterization, and Reactivity of a (PPP) Pincer-Ligated Manganese Carbonyl Complex: Polarity Reversal Imparted by the Electrophilic Nature of a Planar Mn-P(NR 2) 2 Fragment. Inorg Chem 2023; 62:13997-14009. [PMID: 37585359 DOI: 10.1021/acs.inorgchem.3c01988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The bonding interactions of a synthesized pincer-ligated manganese dicarbonyl complex featuring an N-heterocyclic phosphenium (NHP+) central moiety are explored. The pincer ligand [PPP]Cl was coordinated to a manganese center using Mn(CO)5Br and 254 nm light to afford the chlorophosphine complex (PPClP)Mn(CO)2Br (2) as a mixture of halide exchange products and stereoisomers. The target dicarbonyl species (PPP)Mn(CO)2 (3) was prepared by treatment of 2 with 2 equiv of the reductant KC8. Computational investigations and analysis of structural parameters were used to elucidate multiple bonding interactions between the Mn center and the PNHP atom in 3. The generation of a product of formal H2 addition, (PPHP)Mn(CO)2H (4), was achieved through the dehydrogenation of NH3BH3, affording a 2:1 mixture of 4syn:4anti stereoisomers. The nucleophilic nature of the Mn center and the electrophilic nature of the PNHP moiety were demonstrated through hydride addition and protonation of 3 to produce K(THF)2[(PPHP)Mn(CO)2] (6) and (PPClP)Mn(CO)2H (5), respectively. The observed reactivity suggests that 3 is best described as a Mn-I/NHP+ complex, in contrast to pincer-ligated dicarbonyl manganese analogues typically assigned as MnI species.
Collapse
Affiliation(s)
- Leah K Oliemuller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Ghosh A, Hegde RV, Limaye AS, R. T, Patil SA, Dateer RB. Biogenic synthesis of δ‐MnO 2 nanoparticles: A sustainable approach for C‐alkylation and quinoline synthesis via acceptorless dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 01/06/2025]
Abstract
The sustainable and environmentally benign biogenic synthesis of manganese‐oxide nanoparticles (MnO2 NPs) in a single crystalline δ‐phase and its subsequent synthetic utility have been described. The synthesized δ‐MnO2 NPs were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray (EDX), and X‐ray diffraction (XRD) analysis techniques. The detailed analysis envisages the reduction of Mn(VII) to Mn(IV) was facilitated by various phytochemicals present in the aq. mango leaves extract, avoiding the use of external ligand source. The synthesized δ‐MnO2 NPs were perceived in a single delta (δ) monoclinic crystalline phase, wherein a spherical agglomerated morphology was displayed with a particle size of <5 nm. Further, the utility of newly developed δ‐MnO2 NPs was showcased for alpha‐keto‐alkylation and quinoline synthesis via hydrogen autotransfer and the acceptorless dehydrogenative coupling strategy. Moreover, a series of control experiments, mechanistic elucidation, catalyst recyclability, and a dye removal study were demonstrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Education Chungbuk National University Cheongju 28644 Republic of Korea
| | - Rajeev V. Hegde
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Akshay S. Limaye
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Thrilokraj R.
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| |
Collapse
|
14
|
Bera K, Mukherjee A. Chemoselective α-Alkylation of Nitriles with Primary Alcohols by Manganese(I)-Catalysis. Chem Asian J 2023:e202300157. [PMID: 37156742 DOI: 10.1002/asia.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Indexed: 05/10/2023]
Abstract
A sustainable and easy-to-use protocol for the alkylation of aryl nitriles with the earth-abundant manganese(I) catalyst is presented. The alkylation reaction employs readily available nitriles and naturally abundant alcohols as the coupling partners. The reaction proceeds chemoselectively and encompasses a broad substrate scope with good to excellent yields. The catalytic reaction yields selectively α-branched nitriles and water as the sole byproduct. Experimental studies were executed to understand the mechanism of the catalytic reaction.
Collapse
Affiliation(s)
- Krishanu Bera
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh, India
| |
Collapse
|
15
|
Putta RR, Chun S, Lee SB, Hong J, Choi SH, Oh DC, Hong S. Chemoselective α-Alkylation and α-Olefination of Arylacetonitriles with Alcohols via Iron-Catalyzed Borrowing Hydrogen and Dehydrogenative Coupling. J Org Chem 2022; 87:16378-16389. [PMID: 36417466 DOI: 10.1021/acs.joc.2c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
α-Alkyl and α-olefin nitriles are very important for organic synthesis and medicinal chemistry. However, different types of catalysts are employed to achieve either α-alkylation of nitriles by borrowing hydrogen or α-olefination by dehydrogenative coupling methods. Designing and developing high-performance earth-abundant catalysts that can procure different products from the same starting materials remain a great challenge. Herein, we report an iron(0) catalyst system that achieves chemoselectivity between borrowing hydrogen and dehydrogenative coupling protocols by simply changing the base. A broad range of nitriles and alcohols, including benzylic, linear aliphatic, cycloaliphatic, heterocyclic, and allylic alcohols, were selectively and efficiently converted to the corresponding products. Mechanistic studies reveal that the reaction mechanism proceeds through a dehydrogenative pathway. This iron catalytic protocol is environmentally benign and atom-efficient with the liberation of H2 and H2O as green byproducts.
Collapse
Affiliation(s)
- Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhwa Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Genç S, Arslan B, Gülcemal D, Gülcemal S, Günnaz S. Nickel-catalyzed alkylation of ketones and nitriles with primary alcohols. Org Biomol Chem 2022; 20:9753-9762. [PMID: 36448637 DOI: 10.1039/d2ob01787c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nickel(II)-salen or nickel(II)-salphen catalyzed α-alkylation of ketones and nitriles with primary alcohols is reported. Various α-alkylated ketones and nitriles were obtained in high yields through a borrowing hydrogen strategy by using 1-3 mol% of nickel catalyst and a catalytic amount of NaOH (5-10 mol%) under aerobic conditions.
Collapse
Affiliation(s)
- Sertaç Genç
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Burcu Arslan
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Derya Gülcemal
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Süleyman Gülcemal
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| | - Salih Günnaz
- Ege University, Department of Chemistry, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
17
|
Jafarzadeh M, Sobhani SH, Gajewski K, Kianmehr E. Recent advances in C/ N-alkylation with alcohols through hydride transfer strategies. Org Biomol Chem 2022; 20:7713-7745. [PMID: 36169049 DOI: 10.1039/d2ob00706a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the most recent reports in three powerful and ever-growing fields of borrowing hydrogen, acceptorless dehydrogenative coupling, and base-mediated hydride transfer strategies; which pave the way for generating reactive intermediates via shuttling hydrogen (or hydride) between starting materials without any need for an external hydrogen source to easily construct more complex structures. There is a thorough focus on diversifying the utility of alcohols for C/N-alkylation leading to the synthesis of branched ketones, alcohols, amines, indols, and 6-membered nitrogen-containing heterocycles such as pyridines and pyrimidines, various transformations with the focus on C-C and C-N bond-forming reactions via metal-based catalysis or metal-free approaches in this context to give a global overview in this area.
Collapse
Affiliation(s)
- Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | - Seyed Hasan Sobhani
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | | | - Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| |
Collapse
|
18
|
Liu X, Sotiropoulos J, Taillefer M. A New Route to
E
‐Stilbenes through the Transition‐Metal‐Free KO
t
Bu/DMF‐Promoted Direct Coupling of Alcohols with Phenyl Acetonitriles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoping Liu
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| | | | - Marc Taillefer
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| |
Collapse
|
19
|
Davies AM, Li ZY, Stephenson CRJ, Szymczak NK. Valorization of Ethanol: Ruthenium-Catalyzed Guerbet and Sequential Functionalization Processes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alex M. Davies
- University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Zhong-Yuan Li
- University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
20
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
21
|
Charvet S, Médebielle M, Vantourout JC. Mn-Mediated α-Radical Addition of Carbonyls to Olefins: Systematic Study, Scope, and Electrocatalysis. J Org Chem 2022; 87:5690-5702. [DOI: 10.1021/acs.joc.2c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sylvain Charvet
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Maurice Médebielle
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| | - Julien C. Vantourout
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 1 rue Victor Grignard, 69622 Villeurbanne, France
| |
Collapse
|
22
|
Cicolella A, C. D'Alterio M, Duran J, Simon S, Talarico G, Poater A. Combining Both Acceptorless Dehydrogenation and Borrowing Hydrogen Mechanisms in One System as Described by DFT Calculations. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandra Cicolella
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia Napoli I‐80126 Italy
| | - Massimo C. D'Alterio
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
- Dipartimento di Chimica e Biologia "A. Zambelli" Università di Salerno Via Giovanni Paolo II 132 Fisciano Salerno 84084 Italy
| | - Josep Duran
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
| | - Sílvia Simon
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
| | - Giovanni Talarico
- Dipartimento di Scienze Chimiche Università di Napoli Federico II Via Cintia Napoli I‐80126 Italy
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/ Maria Aurèlia Capmany, 69, Girona Catalonia 17003 Spain
| |
Collapse
|
23
|
Zubar V, Brzozowska A, Sklyaruk J, Rueping M. Dehydrogenative and Redox-Neutral N-Heterocyclization of Aminoalcohols Catalyzed by Manganese Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viktoriia Zubar
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aleksandra Brzozowska
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Affiliation(s)
- Arpita Singh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Chemistry & Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Michael Findlater
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Chemistry & Biochemistry, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
25
|
Thiyagarajan S, Sankar RV, Anjalikrishna PK, Suresh CH, Gunanathan C. Catalytic Formal Conjugate Addition: Direct Synthesis of δ-Hydroxynitriles from Nitriles and Allylic Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Subramanian Thiyagarajan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| | - Raman Vijaya Sankar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| | - Puthannur K. Anjalikrishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, India
| |
Collapse
|
26
|
Wen X, He J, Xi H, Zheng Q, Liu W. Hydration of nitriles enabled by PNP‐manganese pincer catalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoting Wen
- Donghua University - Songjiang Campus: Donghua University college of chemistry, chemical engineering and biotechnology CHINA
| | - Jingxi He
- Donghua University - Songjiang Campus: Donghua University college of chemistry, chemical engineering and biotechnology CHINA
| | - Hui Xi
- Zhengzhou Tobacco Research Institute Key laboratory of tobacco flavor basic research CHINA
| | - Qi Zheng
- Donghua University - Songjiang Campus: Donghua University State key laboratory for modification of chemical fibers and polymer materials, College of materials science and engineering CHINA
| | - Weiping Liu
- college of chemistry, chemical engineering and biotechnology Chemistry North Renmin Road NO.2999 201620 Shanghai CHINA
| |
Collapse
|
27
|
Gausas L, Donslund BS, Kristensen SK, Skrydstrup T. Evaluation of Manganese Catalysts for the Hydrogenative Deconstruction of Commercial and End-of-Life Polyurethane Samples. CHEMSUSCHEM 2022; 15:e202101705. [PMID: 34510781 DOI: 10.1002/cssc.202101705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Polyurethane (PU) is a thermoset plastic that is found in everyday objects, such as mattresses and shoes, but also in more sophisticated materials, including windmills and airplanes, and as insulation materials in refrigerators and buildings. Because of extensive inter-cross linkages in PU, current recycling methods are somewhat lacking. In this work, the effective catalytic hydrogenation of PU materials is carried out by applying a catalyst based on the earth-abundant metal manganese, to give amine and polyol fractions, which represent the original monomeric composition. In particular, Mn-Ph MACHO is found to catalytically deconstruct flexible foam, molded foams, insulation, and end-of-life materials at 1 wt.% catalyst loading by applying a reaction temperature of 180 °C, 50 bar of H2 , and 0.9 wt.% of KOH in isopropyl alcohol. The protocol is showcased in the catalytic deconstruction of 2 g of mattress foam using only 0.13 wt.% catalyst, resulting in 90 % weight recovery and a turnover number of 905.
Collapse
Affiliation(s)
- Laurynas Gausas
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Bjarke S Donslund
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Steffan K Kristensen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
28
|
Switching between borrowing hydrogen and acceptorless dehydrogenative coupling by base transition-metal catalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Subaramanian M, Sivakumar G, Balaraman E. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. CHEM REC 2021; 21:3839-3871. [PMID: 34415674 DOI: 10.1002/tcr.202100165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The development of sustainable catalytic protocols that circumvent the use of expensive and precious metal catalysts and avoid toxic reagents plays a crucial role in organic synthesis. Indeed, the direct employment of simple and abundantly available feedstock chemicals as the starting materials broadens their synthetic application in contemporary research. In particular, the transition metal-catalyzed diversification of alcohols with various nucleophilic partners to construct a wide range of building blocks is a powerful and highly desirable methodology. Moreover, the replacement of precious metal catalysts by non-precious and less toxic metals for selective transformations is one of the main goals and has been paid significant attention to in modern chemistry. In view of this, the first-row transition metal catalysts find extensive applications in various synthetic transformations such as catalytic hydrogenation, dehydrogenation, and related reactions. Herein, we have disclosed our recent developments on the base-metal catalysis such as Mn, Fe, Co, and Ni for the acceptorless dehydrogenation reactions and its application in the C-C and C-N bond formation via hydrogen auto-transfer (HA) and acceptorless dehydrogenation coupling (ADC) reactions. These HA/ADC protocols employ alcohol as alkylating agents and eliminate water and/or hydrogen gas as by-products, representing highly atom-efficient and environmentally benign reactions. Furthermore, diverse simple to complex organic molecules synthesis by C-C and C-N bond formation using feedstock alcohols are also overviewed. Overall, this account deals with the contribution and development of efficient and novel homogeneous as well as heterogeneous base-metal catalysts for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| |
Collapse
|
30
|
Das K, Barman MK, Maji B. Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chem Commun (Camb) 2021; 57:8534-8549. [PMID: 34369488 DOI: 10.1039/d1cc02512k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Catalytic hydrogen transfer reactions have enormous academic and industrial applications for the production of diverse molecular scaffolds. Over the past few decades, precious late transition-metal catalysts were employed for these reactions. The early transition metals have recently gained much attention due to their lower cost, less toxicity, and overall sustainability. In this regard, manganese, which is the third most abundant transition metal in the Earth's crust, has emerged as a viable alternative. However, the key to the success of such manganese-based complexes lies in the multifunctional ligand design and choice of appropriate ancillary ligands, which helps them mimic and, even in some cases, supersede noble metals' activities. The metal-ligand bifunctionality, achieved via deprotonation of the acidic C-H or N-H bonds, is one of the powerful strategies employed for this purpose. Alongside, the ligand hemilability in which a weakly chelating group tunes in between the coordinated and uncoordinated stages could effectively stabilize the reactive intermediates, thereby facilitating substrate activation and catalysis. Redox non-innocent ligands acting as an electron sink, thereby helping the metal center in steps gaining or losing electrons, and non-classical metal-ligand cooperativity has also played a significant role in the ligand design for manganese catalysis. The strategies were not only employed for the chemoselective hydrogenation of different reducible functionalities but also for the C-X (X = C/N) coupling reactions via HT and downstream cascade processes. This article features multifunctional ligand-based manganese complexes, highlighting the importance of ligand design and choice of ancillary ligands for achieving the desired catalytic activity and selectivity for HT reactions. We have also discussed the detailed reaction pathways for metal complexes involving bifunctionality, hemilability, redox activity, and indirect metal-ligand cooperativity. The synthetic utilization of those complexes in different organic transformations has also been detailed.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
31
|
Paudel K, Xu S, Ding K. Switchable Cobalt-Catalyzed α-Olefination and α-Alkylation of Nitriles with Primary Alcohols. Org Lett 2021; 23:5028-5032. [PMID: 34143638 DOI: 10.1021/acs.orglett.1c01553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first switchable α-olefination and α-alkylation of nitriles with primary alcohols catalyzed by a well-defined base transition-metal Co complex was presented. A broad variety of nitriles and primary alcohols are selectively and efficiently converted to the corresponding products by this method. It is noteworthy that the transformation is environmentally benign and atom efficient with H2 and H2O being the sole byproducts.
Collapse
Affiliation(s)
- Keshav Paudel
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States.,Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Shi Xu
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Keying Ding
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States.,Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
32
|
Nad P, Mukherjee A. Acceptorless Dehydrogenative Coupling Reactions by Manganese Pincer Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinaki Nad
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| | - Arup Mukherjee
- Department of Chemistry Indian Institute of Technology Bhilai GEC Campus Sejbahar Raipur, Chhattisgarh 492015 India
| |
Collapse
|
33
|
Midya SP, Subaramanian M, Babu R, Yadav V, Balaraman E. Tandem Acceptorless Dehydrogenative Coupling-Decyanation under Nickel Catalysis. J Org Chem 2021; 86:7552-7562. [PMID: 34032425 DOI: 10.1021/acs.joc.1c00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of new catalytic processes based on abundantly available starting materials by cheap metals is always a fascinating task and marks an important transition in the chemical industry. Herein, a nickel-catalyzed acceptorless dehydrogenative coupling of alcohols with nitriles followed by decyanation of nitriles to access diversely substituted olefins is reported. This unprecedented C═C bond-forming methodology takes place in a tandem manner with the formation of formamide as a sole byproduct. The significant advantages of this strategy are the low-cost nickel catalyst, good functional group compatibility (ether, thioether, halo, cyano, ester, amino, N/O/S heterocycles; 43 examples), synthetic convenience, and high reaction selectivity and efficiency.
Collapse
Affiliation(s)
- Siba P Midya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Vinita Yadav
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| |
Collapse
|
34
|
Shee S, Kundu S. Rhenium(I)-Catalyzed C-Methylation of Ketones, Indoles, and Arylacetonitriles Using Methanol. J Org Chem 2021; 86:6943-6951. [PMID: 33876639 DOI: 10.1021/acs.joc.1c00376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A ReCl(CO)5/MeC(CH2PPh2)3 (L2) system was developed for the C-methylation reactions utilizing methanol and base, following the borrowing hydrogen strategy. Diverse ketones, indoles, and arylacetonitriles underwent mono- and dimethylation selectively up to 99% yield. Remarkably, tandem multiple methylations were also achieved by employing this catalytic system.
Collapse
Affiliation(s)
- Sujan Shee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
35
|
|
36
|
Zubar V, Dewanji A, Rueping M. Chemoselective Hydrogenation of Nitroarenes Using an Air-Stable Base-Metal Catalyst. Org Lett 2021; 23:2742-2747. [PMID: 33754743 PMCID: PMC8041384 DOI: 10.1021/acs.orglett.1c00659] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The reduction of nitroarenes to anilines
as well as azobenzenes
to hydrazobenzenes using a single base-metal catalyst is reported.
The hydrogenation reactions are performed with an air-and moisture-stable
manganese catalyst and proceed under relatively mild reaction conditions.
The transformation tolerates a broad range of functional groups, affording
aniline derivatives and hydrazobenzenes in high yields. Mechanistic
studies suggest that the reaction proceeds via a bifunctional activation
involving metal–ligand cooperative catalysis.
Collapse
Affiliation(s)
- Viktoriia Zubar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Abhishek Dewanji
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
37
|
Li WZ, Wang ZX. Nickel-catalyzed coupling of R 2P(O)Me (R = aryl or alkoxy) with (hetero)arylmethyl alcohols. Org Biomol Chem 2021; 19:2233-2242. [PMID: 33616130 DOI: 10.1039/d1ob00086a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
α-Alkylation of methyldiarylphosphine oxides with (hetero)arylmethyl alcohols was performed under nickel catalysis. Various arylmethyl and heteroarylmethyl alcohols can be used in this transformation. A series of methyldiarylphosphine oxides were alkylated with 30-90% yields. Functional groups on the aromatic rings of methyldiarylphosphine oxides or arylmethyl alcohols including OMe, NMe2, SMe, CF3, Cl, and F groups can be tolerated. The conditions are also suitable for the α-alkylation reaction of dialkyl methylphosphonates.
Collapse
Affiliation(s)
- Wei-Ze Li
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
38
|
Zorba LP, Vougioukalakis GC. The Ketone-Amine-Alkyne (KA2) coupling reaction: Transition metal-catalyzed synthesis of quaternary propargylamines. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Arslan B, Gülcemal S. α-Alkylation of arylacetonitriles with primary alcohols catalyzed by backbone modified N-heterocyclic carbene iridium(i) complexes. Dalton Trans 2021; 50:1788-1796. [DOI: 10.1039/d0dt04082g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
α-Alkylation of arylacetonitriles with primary alcohols was achieved by using backbone-modified NHC–IrI complexes as catalysts with turnover numbers of up to 960.
Collapse
Affiliation(s)
- Burcu Arslan
- Department of Chemistry
- Ege University
- 35100 Bornova
- Turkey
| | | |
Collapse
|
40
|
Li C, Bai L, Ge MT, Xia AB, Wang Y, Qiu YR, Xu DQ. Base-controlled chemoselectivity: direct coupling of alcohols and acetonitriles to synthesise α-alkylated arylacetonitriles or acetamides. NEW J CHEM 2021. [DOI: 10.1039/d1nj02243a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Cp*IrCl2]2 with a phosphine-free ligand α,α,α-terpyridine shows high catalytic performance in chemodivergent synthesis of α-alkylated arylacetonitriles in the presence of K2CO3 and α-alkylated acetamides in the presence of tBuOK, respectively.
Collapse
Affiliation(s)
- Chen Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Bai
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Min-Tong Ge
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ai-Bao Xia
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan-Rui Qiu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
41
|
Paudel K, Xu S, Ding K. α-Alkylation of Nitriles with Primary Alcohols by a Well-Defined Molecular Cobalt Catalyst. J Org Chem 2020; 85:14980-14988. [PMID: 33136400 DOI: 10.1021/acs.joc.0c01822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The α-alkylation of nitriles with primary alcohols to selectively synthesize nitriles by a well-defined molecular homogeneous cobalt catalyst is presented. Thirty-two examples with up to 95% yield are reported. Remarkably, this transformation is environmentally friendly and atom economical with water as the only byproduct.
Collapse
Affiliation(s)
- Keshav Paudel
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States.,Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Shi Xu
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Keying Ding
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States.,Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
42
|
Panda S, Saha R, Sethi S, Ghosh R, Bagh B. Efficient α-Alkylation of Arylacetonitriles with Secondary Alcohols Catalyzed by a Phosphine-Free Air-Stable Iridium(III) Complex. J Org Chem 2020; 85:15610-15621. [PMID: 33197191 DOI: 10.1021/acs.joc.0c02400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A well-defined and readily available air-stable dimeric iridium(III) complex catalyzed α-alkylation of arylacetonitriles using secondary alcohols with the liberation of water as the only byproduct is reported. The α-alkylations were efficiently performed at 120 °C under solvent-free conditions with very low (0.1-0.01 mol %) catalyst loading. Various secondary alcohols including cyclic and acyclic alcohols and a wide variety of arylacetonitriles bearing different functional groups were converted into the corresponding α-alkylated products in good yields. Mechanistic study revealed that the reaction proceeds via alcohol activation by metal-ligand cooperation with the formation of reactive iridium-hydride species.
Collapse
Affiliation(s)
- Surajit Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Rahul Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
43
|
Sklyaruk J, Zubar V, Borghs JC, Rueping M. Methanol as the Hydrogen Source in the Selective Transfer Hydrogenation of Alkynes Enabled by a Manganese Pincer Complex. Org Lett 2020; 22:6067-6071. [DOI: 10.1021/acs.orglett.0c02151] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Viktoriia Zubar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jannik C. Borghs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
44
|
Chen XJ, Gui QW, Yi R, Yu X, Wu ZL, Huang Y, Cao Z, He WM. Copper(i)-catalyzed intermolecular cyanoarylation of alkenes: convenient access to α-alkylated arylacetonitriles. Org Biomol Chem 2020; 18:5234-5237. [PMID: 32602499 DOI: 10.1039/d0ob01055c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Cu(i)-catalyzed intermolecular cyanoarylation of alkenes with diaryliodonium salts as a radical arylating reagent and tetra-butylammonium cyanide as an electrophilic cyanating reagent was established. A broad range of α-alkylated arylacetonitriles were efficiently constructed in good to excellent yields under base- and oxidant-free and mild conditions.
Collapse
Affiliation(s)
- Xin-Jie Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Qing-Wen Gui
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Rongnan Yi
- Department of Chemistry, Hunan University, Changsha 410082, China
| | - Xianyong Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhi-Lin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ying Huang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Wei-Min He
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, China.
| |
Collapse
|
45
|
Zubar V, Sklyaruk J, Brzozowska A, Rueping M. Chemoselective Hydrogenation of Alkynes to ( Z) -Alkenes Using an Air-Stable Base Metal Catalyst. Org Lett 2020; 22:5423-5428. [PMID: 32639161 DOI: 10.1021/acs.orglett.0c01783] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly selective hydrogenation of alkynes using an air-stable and readily available manganese catalyst has been achieved. The reaction proceeds under mild reaction conditions and tolerates various functional groups, resulting in (Z)-alkenes and allylic alcohols in high yields. Mechanistic experiments suggest that the reaction proceeds via a bifunctional activation involving metal-ligand cooperativity.
Collapse
Affiliation(s)
- Viktoriia Zubar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.,KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aleksandra Brzozowska
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
46
|
Kong Y, Wang Z. Iridium‐Catalyzed α‐Alkylation of Arylacetonitriles Using Secondary and Primary Alcohols. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ying‐Ying Kong
- CAS Key Laboratory of Soft Matter Chemistry and Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zhong‐Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of ChemistryUniversity of Science and Technology of China Hefei Anhui 230026 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin Tianjin 300072 P. R. China
| |
Collapse
|
47
|
Chakraborty P, Garg N, Manoury E, Poli R, Sundararaju B. C-Alkylation of Various Carbonucleophiles with Secondary Alcohols under CoIII-Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01728] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| | - Nidhi Garg
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| | - Eric Manoury
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077 Toulouse Cedex 4, France
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, 208016 Kanpur, Uttar Pradesh, India
| |
Collapse
|
48
|
Lan XB, Ye Z, Liu J, Huang M, Shao Y, Cai X, Liu Y, Ke Z. Sustainable and Selective Alkylation of Deactivated Secondary Alcohols to Ketones by Non-bifunctional Pincer N-heterocyclic Carbene Manganese. CHEMSUSCHEM 2020; 13:2557-2563. [PMID: 32233008 DOI: 10.1002/cssc.202000576] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 06/10/2023]
Abstract
A sustainable and green route to access diverse functionalized ketones via dehydrogenative-dehydrative cross-coupling of primary and secondary alcohols is demonstrated. This borrowing hydrogen approach employing a pincer N-heterocyclic carbene Mn complex displays high activity and selectivity. A variety of primary and secondary alcohols are well tolerant and result in satisfactory isolated yields. Mechanistic studies suggest that this reaction proceeds via a direct outer-sphere mechanism and the dehydrogenation of the secondary alcohol substrates plays a vital role in the rate-limiting step.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zongren Ye
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jiahao Liu
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ming Huang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Youxiang Shao
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic, Foshan, 528041, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
49
|
Borghs JC, Zubar V, Azofra LM, Sklyaruk J, Rueping M. Manganese-Catalyzed Regioselective Dehydrogenative C- versus N-Alkylation Enabled by a Solvent Switch: Experiment and Computation. Org Lett 2020; 22:4222-4227. [DOI: 10.1021/acs.orglett.0c01270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jannik C. Borghs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Viktoriia Zubar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Luis Miguel Azofra
- CIDIA-FEAM (Unidad Asociada al Consejo Superior de Investigaciones Científicas, CSIC, avalada por el Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla), Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
50
|
Zubar V, Borghs JC, Rueping M. Hydrogenation or Dehydrogenation of N-Containing Heterocycles Catalyzed by a Single Manganese Complex. Org Lett 2020; 22:3974-3978. [DOI: 10.1021/acs.orglett.0c01273] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Viktoriia Zubar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Jannik C. Borghs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|