1
|
Singh S, Dadhe RB, Pabbaraja S, Mehta G. Benzannulation of Functionally Enhanced Indole-3-carbaldehydes with Ynones and Alkynoates: A Domino Approach to Bioactive Carbazoles─Synthesis of Clauolenzole A, Calothrixin A & B, Methyl Carbazole-3-carboxylate, and Quinocarbazole. J Org Chem 2025. [PMID: 39907578 DOI: 10.1021/acs.joc.4c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A flexible, regioselective, benzannulation strategy toward multifunctional carbazoles from 2-(2-oxo-2-arylethyl)indole-3-carbaldehydes, employing either ynones or alkynoates as reaction partners, has been envisaged and implemented. This enabling access to variegated carbazoles in one-flask operation leads to strategic substituent diversification via reaction partner variation. The efficacy and applications of this methodology are demonstrated through 23 examples and concise syntheses of bioactive clauolenzole A, calothrixin A & B, methyl carbazole-3-carboxylate, and pharmacophoric quinocarbazole.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Rahul Balu Dadhe
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
2
|
Balasubramani A, Ganaie BA, Mehta G. Direct Two Carbon Ring Expansion of 1-Indanones with Ynones: An Eco-Friendly, One-Flask Approach to Functionally Enriched 5H-Benzo[7]annulenes. J Org Chem 2023; 88:15452-15460. [PMID: 37880254 DOI: 10.1021/acs.joc.3c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Direct 2C-ring expansion of 1-indanones with ynones to 5H-benzo[7]annulenes has been observed, and its generality has been gauged (19 examples). Overall, this simple and convenient cascade process to 5H-benzo[7]annulenes involves engagement of 1-indanone with two ynone moieties with formation of three new C-C σ-bonds, cleavage of C-C σ-bond, and concurrent functionality amplification. The resulting seven-membered ring, laced with an opportunistic disposition of four proximal functional groups, offers avenues for their further productive interplay. Our new approach embraces many green and eco-friendly features.
Collapse
Affiliation(s)
| | | | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
3
|
Sarma MJ, Sudarshana KA, Pabbaraja S, Mehta G. Diversified Stitching of Ynones with Oxindole-3-oxy acrylates: One-Flask Spiro-annulation Protocol toward Assorted 3 H/5 H-Spiro[furan-2,3'-indolin]-2'-ones. J Org Chem 2023; 88:12131-12140. [PMID: 37503726 DOI: 10.1021/acs.joc.3c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Spiroannulation of oxindole-3-oxy acrylates with ynones involving two overlapping, base differentiated cascades has been observed. Initial exposure of ynones and oxindole 3-oxy acrylates to K2CO3 triggered a tandem Michael-Michael cascade to deliver a pair of spiroannulated diastereomers. Further exposure to LiHMDS led to deep restructuring through a second multistep cascade involving stereoselective recreation of the C3 quaternary center to furnish 3H-spiro[furan-2,3'-indolin]-2'-ones with functional amplification and scrambling. This new scaffold can be directly accessed in a one-flask operation from ynones and oxindole-3-oxy acrylates.
Collapse
Affiliation(s)
- Manas Jyoti Sarma
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - K A Sudarshana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
4
|
Sengupta S, Pabbaraja S, Mehta G. Domino Reactions through Recursive Anionic Cascades: The Advantageous Use of Nitronates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Goverdhan Mehta
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
5
|
Dhayalan V, Dandela R, Devi KB, Dhanusuraman R. Synthesis and Applications of Asymmetric Catalysis Using Chiral Ligands Containing Quinoline Motifs. SYNOPEN 2022. [DOI: 10.1055/a-1743-4534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In the past decade, asymmetric synthesis of chiral ligands containing quinoline motifs, a family of natural products displaying a broad range of structural diversity and their metal complexes have become the most significant methodology for the generation of enantiomerically pure compounds of biological and pharmaceutical interest. This review provides comprehensive insight on the plethora of nitrogen-based chiral ligands containing quinoline motifs and organocatalysts used in asymmetric synthesis. However, it is circumscribed to the synthesis of quinoline-based chiral ligands and metal complexes, and their applications in asymmetric synthesis as a homogeneous and heterogeneous catalyst.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal, India
| | - Rambabu Dandela
- Dept. of Industrial and Engineering Chemistry, Institute of Chemical Technology- IOC Bhubaneswar, Bhubaneswar, India
| | - K. Bavya Devi
- Department of Chemistry, Thassim Beevi Adbul Kader College for Women, Kilakarai, India
| | | |
Collapse
|
6
|
Rashid S, Bhat BA, Mehta G. Micelle‐Mediated Trimerization of Ynals to Orthogonally Substituted 4
H
‐Pyrans in Water: Downstream Rearrangement to Bioactive 2,8‐dioxabicyclo[3.3.1]nona‐3,6‐diene Frameworks. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Showkat Rashid
- Natural Products and Medicinal Chemistry CSIR-Indian Institute of Integrative Medicine Sanatnagar Srinagar 190005 India
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| | - Bilal A. Bhat
- Natural Products and Medicinal Chemistry CSIR-Indian Institute of Integrative Medicine Sanatnagar Srinagar 190005 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Goverdhan Mehta
- School of Chemistry University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
7
|
Singh S, Nerella S, Pabbaraja S, Mehta G. Stitching Ynones with Nitromethanes: Domino Synthesis of Functionally Enriched Benzofurans and Benzothiophenes. J Org Chem 2021; 86:12093-12106. [PMID: 34414759 DOI: 10.1021/acs.joc.1c01104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A convenient one-pot benzannulation of regioisomeric 2- or 3-substituted furan and thiophene ynones with a range of nitromethanes has been discovered to directly access densely and diversely functionalized benzofurans and benzothiophenes. In this protocol, the nitro group in nitromethanes functions as recursive carbanion activator to setup tandem Michael addition-6π-electrocyclization, and its eventual sacrificial elimination facilitates aromatization and overall benzannulation. This benzannulation was also explored with furan/thiophene based o-halo ynones wherein a Michael addition-SNAr process operates and nitromethanes leave their imprint to deliver nitro substituted benzo-furans and -thiophenes.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.,School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sharanya Nerella
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
8
|
Beesu M, Mehta G. “Back‐to‐Front” Type Synthesis of Polyfunctionalized Indazoles: Nitromethane Mediated, Domino Benzannulation of o‐Chloropyrazolyl Ynones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mallesh Beesu
- School of Chemistry University of Hyderabad Hyderabad 500 046 India
| | - Goverdhan Mehta
- School of Chemistry University of Hyderabad Hyderabad 500 046 India
| |
Collapse
|
9
|
Kaur R, Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur J Med Chem 2021; 215:113220. [PMID: 33609889 PMCID: PMC7995244 DOI: 10.1016/j.ejmech.2021.113220] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
In current scenario, various heterocycles have come up exhibiting crucial role in various medicinal agents which are valuable for mankind. Out of diverse range of heterocycle, quinoline scaffold have been proved to play an important role in broad range of biological activities. Several drug molecules bearing a quinoline molecule with useful anticancer, antibacterial activities etc have been marketed such as chloroquine, saquinavir etc. Owing to their broad spectrum biological role, various synthetic strategies such as Skraup reaction, Combes reaction etc. has been developed by the researchers all over the world. But still the synthetic methods are associated with various limitations as formation of side products, use of expensive metal catalysts. Thus, several efforts to develop an efficient and cost effective synthetic protocol are still carried out till date. Moreover, quinoline scaffold displays remarkable antiviral activity. Therefore, in this review we have made an attempt to describe recent synthetic protocols developed by various research groups along with giving a complete explanation about the role of quinoline derivatives as antiviral agent. Quinoline derivatives were found potent against various strains of viruses like zika virus, enterovirus, herpes virus, human immunodeficiency virus, ebola virus, hepatitis C virus, SARS virus and MERS virus etc.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab, 142001, India
| | - Kapil Kumar
- School of Pharmacy and Technology Management, SVKM's NMIMS, Hyderabad, Telangana, 509301, India.
| |
Collapse
|
10
|
Beesu M, Mehta G. Orthogonal Strapping of o-Haloaryl Ynones with Pyrazolones: A One-Pot, Domino Process toward Spiropyrazolones. J Org Chem 2020; 85:14229-14239. [PMID: 33040531 DOI: 10.1021/acs.joc.0c02087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new class of spiroannulated pyrazolone scaffolds have been assembled from diverse o-haloaryl ynones and β-bromoalkenyl ynones via base mediated, one-pot, metal free, orthogonal strapping (tethering) mediated by the recursive anion(s) derived from pyrazolones. These convenient, preparatively useful transformations proceed through either a tandem Michael addition-intramolecular SNAr reaction or a tandem Michael addition-intramolecular AdNE process to furnish a range of pharmacophoric, diverse, spiroannulated pyrazolones from readily accessible precursors.
Collapse
Affiliation(s)
- Mallesh Beesu
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
11
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
12
|
Pallavi B, Sharma P, Baig N, Kumar Madduluri V, Sah AK, Saumya U, Dubey US, Shukla P. Quinoline Glycoconjugates as Potentially Anticancer and Anti‐Inflammatory Agents: An Investigation Involving Synthesis, Biological Screening, and Docking. ChemistrySelect 2020. [DOI: 10.1002/slct.202002345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Badvel Pallavi
- Department of ChemistryBirla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Prachi Sharma
- Department of ChemistryBirla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Noorullah Baig
- Department of ChemistryBirla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Vimal Kumar Madduluri
- Department of ChemistryBirla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Ajay K. Sah
- Department of ChemistryBirla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Udit Saumya
- Department of Biological SciencesBirla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Uma S. Dubey
- Department of Biological SciencesBirla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| | - Paritosh Shukla
- Department of ChemistryBirla Institute of Technology and Science Pilani, Pilani Campus Rajasthan 333031 India
| |
Collapse
|
13
|
Singh S, Nerella S, Pabbaraja S, Mehta G. Access to 2-Alkyl/Aryl-4-(1 H)-Quinolones via Orthogonal "NH 3" Insertion into o-Haloaryl Ynones: Total Synthesis of Bioactive Pseudanes, Graveoline, Graveolinine, and Waltherione F. Org Lett 2020; 22:1575-1579. [PMID: 32013447 DOI: 10.1021/acs.orglett.0c00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient one-pot synthesis of 4-(1H)-quinolones through an orthogonal engagement of diverse o-haloaryl ynones with ammonia in the presence of Cu(I), involving tandem Michael addition and ArCsp2-N coupling, is presented. The substrate scope of this convenient protocol, wherein ammonium carbonate acts as both an in situ ammonia source and a base toward diverse 2-substituted 4-(1H)-quinolones, has been mapped and its efficacy validated through concise total synthesis of bioactive natural products pseudanes (IV, VII, VIII, and XII), graveoline, graveolinine, and waltherione F.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India.,School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Sharanya Nerella
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Goverdhan Mehta
- School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| |
Collapse
|
14
|
Harry NA, Ujwaldev SM, Anilkumar G. Recent advances and prospects in the metal-free synthesis of quinolines. Org Biomol Chem 2020; 18:9775-9790. [DOI: 10.1039/d0ob02000a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-free synthesis of quinolines has recently gained attention, and this review focuses on the recent advances in the metal-free synthesis of quinolines.
Collapse
Affiliation(s)
- Nissy Ann Harry
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India 686560
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
15
|
Shally, Althagafi I, Singhal D, Panwar R, Shaw R, Elagamy A, Pratap R. Base-promoted regioselective synthesis of 1,2,3,4-terahydroquinolines and quinolines from N-boc-3-piperidone. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|