1
|
Truong HB, Dao DQ, Do HH, Van Tran V, Nguyen CV, Rabani I, Hur J. Efficient photocatalytic degradation of ciprofloxacin using floating α-NiMoO 4/mpg-C 3N 4/EP under visible light. CHEMOSPHERE 2024; 366:143413. [PMID: 39332581 DOI: 10.1016/j.chemosphere.2024.143413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Conventional water treatment processes often fail to effectively remove antibacterial drugs, necessitating advanced strategies. This study presents the synthesis of novel floating, visible light-active α-NiMoO4/mpg-C3N4/EP composites for the removal of ciprofloxacin (CFX), a widely used quinolone antibiotic, from water. These composites are easily recoverable, highly stable, and demonstrate excellent reusability. The optimal photocatalyst, NC-101/EP (α-NiMoO4/mpg-C3N4 = 10:1), achieved 96.2 ± 1.1% degradation of CFX at 1.6 g L-1 within 80 min under visible light, significantly outperforming previous benchmarks. This high efficiency is attributed to the formation of interfacial junctions and a built-in electric field, which enhanced charge transfer and hydroxyl radical generation through an S-scheme mechanism. Fluorescence spectroscopy provided precise monitoring of CFX degradation without interference from coexisting intermediates. Density functional theory (DFT) calculations revealed that hydroxyl radicals initiated highly favorable and spontaneous oxidation of CFX, with a reaction rate constant of 6.04 × 109 M-1 s-1. The preferred oxidation pathway followed the sequence: HO-addition > H-abstraction > single electron transfer. Four degradation pathways were identified, with key intermediates confirmed by high-resolution mass spectrometry. The process also significantly reduced CFX toxicity, ensuring minimal environmental impact. These findings position NC-101/EP as a promising photocatalyst for large-scale water treatment applications targeting antibiotic contamination.
Collapse
Affiliation(s)
- Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Ha Huu Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Vinh Van Tran
- Department of Mechanical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Chi Van Nguyen
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
2
|
Orr-Ewing AJ, Osborn DL. Collection on the Spectroscopy, Structure, and Reactivity of Stabilized Criegee Intermediates. J Phys Chem A 2024; 128:2909-2911. [PMID: 38632956 DOI: 10.1021/acs.jpca.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - David L Osborn
- Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
3
|
Truong DH, Nguyen TLA, Alharzali N, Al Rawas HK, Taamalli S, Ribaucour M, Nguyen HL, El Bakali A, Ngo TC, Černušák I, Louis F, Dao DQ. Theoretical insights into the HO ●-induced oxidation of chlorpyrifos pesticide: Mechanism, kinetics, ecotoxicity, and cholinesterase inhibition of degradants. CHEMOSPHERE 2024; 350:141085. [PMID: 38163466 DOI: 10.1016/j.chemosphere.2023.141085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The oxidation of the common pesticide chlorpyrifos (CPF) initiated by HO● radical and the risks of its degradation products were studied in the gaseous and aqueous phases via computational approaches. Oxidation mechanisms were investigated, including H-, Cl-, CH3- abstraction, HO●-addition, and single electron transfer. In both phases, HO●-addition at the C of the pyridyl ring is the most energetically favorable and spontaneous reaction, followed by H-abstraction reactions at methylene groups (i.e., at H19/H21 in the gas phase and H22/H28 in water). In contrast, other abstractions and electron transfer reactions are unfavorable. However, regarding the kinetics, the significant contribution to the oxidation of CPF is made from H-abstraction channels, mostly at the hydrogens of the methylene groups. CPF can be decomposed in a short time (5-8 h) in the gas phase, and it is more persistent in natural water with a lifetime between 24 days and 66 years, depending on the temperature and HO● concentration. Subsequent oxidation of the essential radical products with other oxidizing reagents, i.e., HO●, NO2●, NO●, and 3O2, gave primary neutral products P1-P15. Acute and chronic toxicity calculations estimate very toxic levels for CPF and two degradation products, P7w and P12w, in aquatic systems. The neurotoxicity of these products was investigated by docking and molecular dynamics. P7w and P12w show the most significant binding scores with acetylcholinesterases, while P8w and P13w are with butyrylcholinesterase enzyme. Finally, molecular dynamics illustrate stable interactions between CPF degradants and cholinesterase enzyme over a 100 ns time frame and determine P7w as the riskiest degradant to the neural developmental system.
Collapse
Affiliation(s)
- Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Nissrin Alharzali
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Hisham K Al Rawas
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France
| | - Sonia Taamalli
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France.
| | - Marc Ribaucour
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France
| | - Hoang Linh Nguyen
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam; Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam
| | - Abderrahman El Bakali
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Florent Louis
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
4
|
Huo Y, An Z, Li M, Jiang J, Zhou Y, Xie J, Zhang J, He M. Atmospheric fate of typical liquid crystal monomers in the tropospheric gas, liquid, and granular phases. J Environ Sci (China) 2024; 136:348-360. [PMID: 37923444 DOI: 10.1016/j.jes.2022.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/25/2022] [Accepted: 12/25/2022] [Indexed: 11/07/2023]
Abstract
Mineral aerosol particles significantly impact environmental risk prediction of liquid crystal monomers (LCMs). In this work, we investigated the reaction mechanisms and kinetics of three typical LCMs (4-cyano-3,5-difluorophenyl 4-ethylbenzoate (CEB-2F), 4-cyano-3-fluorophenyl 4-ethylbenzoate (CEB-F), and 4-cyanophenyl 4-ethylbenzoate (CEB)) with ozone (O3) in the atmospheric gas, liquid, and particle phases employing density functional theory (DFT). Here, O3 is prone to add to the benzene ring without F atom(s) in the selected LCMs. The ozonolysis products are aldehydes, carboxylic acids, epoxides, and unsaturated hydrocarbons containing aromatic rings. Those products undergo secondary ozonolysis to generate small molecular compounds such as glyoxal, which is beneficial for generating secondary organic aerosol (SOA). Titanium dioxide (TiO2), an essential component of mineral aerosol particles, has good adsorption properties for LCMs; however, it slightly reduces the reactivity with O3. At 298 K, the reaction rate constant of the selected LCMs reacting with O3 in the gas and atmospheric liquid phases is (2.74‒5.53) × 10-24 cm3/(mol·sec) and 5.58 × 10-3‒39.1 L/(mol·sec), while CEB-2F reacting with O3 on (TiO2)6 cluster is 1.84 × 10-24 cm3/(mol·sec). The existence of TiO2 clusters increases the persistence and long-distance transportability of LCMs, which enlarges the contaminated area of LCMs.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jianguo Zhang
- Jinan Environmental Research Academy, Jinan 250000, China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
K Al Rawas H, Al Mawla R, Pham TYN, Truong DH, Nguyen TLA, Taamalli S, Ribaucour M, El Bakali A, Černušák I, Dao DQ, Louis F. New insight into environmental oxidation of phosmet insecticide initiated by HO˙ radicals in gas and water - a theoretical study. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2042-2056. [PMID: 37850503 DOI: 10.1039/d3em00325f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Phosmet is an organophosphorus insecticide widely used in agriculture to control a range of insects; recently, it was banned by the European Union in 2022 due to its harmful effects. However, its environmental degradation and fate have not yet been evident. Thus, phosmet oxidation by HO˙ radicals was theoretically studied in this work using the DFT approach at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three different mechanisms were considered, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET). The mechanisms, kinetics, and lifetime were studied in the gas and aqueous phases, in addition to its ecotoxicity evaluation. The results show that FHT reactions were dominant in the gas phase, while RAF was more favourable in the aqueous phase at 298 K, while SET was negligible. The branching ratio indicated that H-abstractions at the methyl and the methylene groups were the most predominant, while the most favourable HO˙-addition was observed at the phosphorus atom of the dithiophosphate group. The overall rate constant values varied from 1.2 × 109 (at 283 K) to 1.40 × 109 M-1 s-1 (at 323 K) in the aqueous phase and from 6.29 × 1010 (at 253 K) to 1.32 × 1010 M-1 s-1 (at 323 K) in the gas phase. The atmospheric lifetime of phosmet is about 6 hours at 287 K, while it can persist from a few seconds to several years depending on the temperature and [HO˙] concentration in the aqueous environment. The QSAR-based ecotoxicity evaluation indicates that phosmet and its degradation products are all dangerous to aquatic organisms, although the products are less toxic than phosmet. However, they are generally developmental toxicants and mutagenicity-negative compounds.
Collapse
Affiliation(s)
- Hisham K Al Rawas
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Reem Al Mawla
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Thi Yen Nhi Pham
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Sonia Taamalli
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Marc Ribaucour
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Abderrahman El Bakali
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| | - Ivan Černušák
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Florent Louis
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France
| |
Collapse
|
6
|
Huo Y, Li M, Jiang J, Zhou Y, Ma Y, Xie J, He M. The aomogeneous and heterogeneous oxidation of organophosphate esters (OPEs) in the atmosphere: Take diphenyl phosphate (DPhP) as an example. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121395. [PMID: 36871750 DOI: 10.1016/j.envpol.2023.121395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Organophosphate esters (OPEs) are widely detected in the atmosphere. However, the atmospheric oxidative degradation mechanism of OPEs has not been closely examined. This work took density functional theory (DFT) to investigate the tropospheric ozonolysis of organophosphates, represented by diphenyl phosphate (DPhP), including adsorption mechanisms on the surface of titanium dioxide (TiO2) mineral aerosols and oxidation reaction of hydroxyl groups (·OH) after photolysis. Besides, the reaction mechanism, reaction kinetics, adsorption mechanism, and ecotoxicity evaluation of the transformation products were also studied. At 298 K, the total reaction rate constants kO3, kOH, kTiO2-O3, and kTiO2-OH are 5.72 × 10-15 cm3 molecule-1 s-1, 1.68 × 10-13 cm3 molecule-1 s-1, 1.91 × 10-23 cm3 molecule-1 s-1, and 2.30 × 10-10 cm3 molecule-1 s-1. The atmospheric lifetime of DPhP ozonolysis in the near-surface troposphere is 4 min, much lower than that of hydroxyl radicals (·OH). Besides, the lower the altitude is, the stronger the oxidation is. The TiO2 clusters carry DPhP promoting ·OH oxidation but inhibiting ozonolysis of DPhP. Finally, the main transformation products of this process are glyoxal, malealdehyde, aromatic aldehydes, etc., which are still ecotoxic. The findings shed new light on the atmospheric governance of OPEs.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Dao DQ, Taamalli S, Louis F, Kdouh D, Srour Z, Ngo TC, Truong DH, Fèvre-Nollet V, Ribaucour M, El Bakali A, Černuśák I. Hydroxyl radical-initiated decomposition of metazachlor herbicide in the gaseous and aqueous phases: Mechanism, kinetics, and toxicity evaluation. CHEMOSPHERE 2023; 312:137234. [PMID: 36375615 DOI: 10.1016/j.chemosphere.2022.137234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The oxidation of widely-used herbicide metazachlor (MTZ) by hydroxyl radical (HO•) in the gas and the aqueous phases was investigated in terms of mechanistic and kinetic behaviors using the M06-2X/6-311++G (3df, 3pd)//M06-2X/6-31 + G (d,p) level of theory over the temperature range 250-400 K. The formal hydrogen transfer, HO•-addition, and single electron transfer mechanisms were considered. The overall rate constants in the gas phase range from 8.40 × 1010 to 8.31 × 109 M-1 s-1 at the temperature from 250 to 400 K, respectively, while the ones in the aqueous phase are close to diffusion-controlled rates, with diffusion-corrected rate constants being 1.31 × 109 to 1.27 × 109 M-1 s-1. The formal hydrogen transfer mechanism is the most dominant in the gas phase, whereas the HO•-addition is the most favorable in the aqueous phase. The H-abstraction at two methyl groups and the HO•-addition to C11 and C12 atoms (pyrazole ring), C16 and C18 atoms (benzyl ring) are significant. The short lifetime in the environment, equal to only 4.16 h, requires more attention to this herbicide compound, whereas its lifetime in the aqueous condition varies sharply from half second to several thousand days depending on the HO• concentration. The ecotoxicity estimation of MTZ and its principal transformation products to aquatic organisms suggests that they are harmful or toxic substances. Moreover, the MTZ is a developmental toxicant and mutagenicity-positive, while its decomposed products are developmental toxicants with no mutagenic toxicity. Their bioaccumulation in aquatic organisms is negligible.
Collapse
Affiliation(s)
- Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Sonia Taamalli
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France.
| | - Florent Louis
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Doha Kdouh
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Zainab Srour
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Valerie Fèvre-Nollet
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Marc Ribaucour
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Abderrahman El Bakali
- Université de Lille, CNRS, UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de L'Atmosphère, 590000 Lille, France
| | - Ivan Černuśák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
8
|
Huo Y, An Z, Li M, Sun J, Jiang J, Zhou Y, He M. The reaction laws and toxicity effects of phthalate acid esters (PAEs) ozonation degradation on the troposphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118692. [PMID: 34921942 DOI: 10.1016/j.envpol.2021.118692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Low-molecular-weight (LMW) phthalate acid esters (PAEs) tend to enter the atmosphere, flying for several kilometers, so it is easy to endanger human health. This work is the first to use quantum chemistry calculations (Gaussian 16 program) and computational toxicology (ECOSAR, TEST, and Toxtree software) to comprehensively study the ozonolysis mechanism of six LMW PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), diisopropyl phthalate (DIP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP)) in the atmosphere and the toxicity of DMP (take DMP as an example) in the conversion process. The results show that the electron-donating effect of the ortho position of the LMW PAEs has the most obvious influence on the ozonolysis. We summarized the ozonation reaction law of LMW PAEs at the optimal reaction site. At 298 K, the law of initial ozonolysis total rate constant of the LMW PAEs is kDIP > kDPP > kDIBP > kDMP > kDEP > kDBP, and the range is 9.56 × 10-25 cm3 molecule-1 s-1 - 1.47 × 10-22 cm3 molecule-1 s-1. According to the results of toxicity assessment, the toxicity of products is lower than DMP for aquatic organisms after ozonolysis. But those products have mutagenicity, developmental toxicity, non-genotoxicity, carcinogenicity, and corrosiveness to the skin. The proposed ozonolysis mechanism promotes our understanding of the environmental risks of PAEs and provides new ideas for studying the degradation of PAEs in the tropospheric gas phase.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jianfei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|