1
|
Rieger T, Nieberl M, Palchyk V, Shah P, Fehn T, Hofmann A, Franke M. Chemical Recycling of Mixed Polyolefin Post-Consumer Plastic Waste Sorting Residues (MPO323)-Auto-Catalytic Reforming and Decontamination with Pyrolysis Char as an Active Material. Polymers (Basel) 2024; 16:2567. [PMID: 39339031 PMCID: PMC11435146 DOI: 10.3390/polym16182567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Mixed plastic packaging waste sorting residue (MPO323) was treated by thermal pyrolysis to utilize pyrolysis oil and char. The pyrolysis oil was found to contain aromatic and aliphatic hydrocarbons. The chlorine and bromine contents were as high as 40,000 mg/kg and 200 mg/kg, respectively. Additionally, other elements like sulfur, phosphorous, iron, aluminum, and lead were detected, which can be interpreted as impurities relating to the utilization of oils for chemical recycling. The pyrolysis char showed high contents of potentially active species like silicon, calcium, aluminum, iron, and others. To enhance the content of aromatic hydrocarbons and to reduce the level of contaminants, pyrolysis oil was reformed with the corresponding pyrolysis char to act as an active material in a fixed bed. The temperature of the reactor and the flow rate of the pyrolysis oil feed were varied to gain insights on the cracking and reforming reactions, as well as on performance with regard to decontamination.
Collapse
Affiliation(s)
- Tobias Rieger
- Fraunhofer Institute for Environmental, Safety and Energy Technology Umsicht, Institute Branch Sulzbach-Rosenberg, An der Maxhütte 1, 92237 Sulzbach-Rosenberg, Germany; (M.N.); (V.P.); (T.F.); (M.F.)
| | | | | | | | | | - Alexander Hofmann
- Fraunhofer Institute for Environmental, Safety and Energy Technology Umsicht, Institute Branch Sulzbach-Rosenberg, An der Maxhütte 1, 92237 Sulzbach-Rosenberg, Germany; (M.N.); (V.P.); (T.F.); (M.F.)
| | | |
Collapse
|
2
|
Kuttiyathil MS, Ali L, Hajamohideen AR, Altarawneh M. Debromination of novel brominated flame retardants using Zn-based additives: A viable thermochemical approach in the mitigation of toxic effects during e-waste recycling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123645. [PMID: 38402939 DOI: 10.1016/j.envpol.2024.123645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Brominated flame retardants (BFRs) are bromine-bearing additives added to the polymeric fraction in various applications to impede fire ignition. The Stockholm Convention and various other legislations abolished legacy BFRs usage and hence, the so-called novel BFRs (NBFRs) were introduced into the market. Recent studies spotlighted their existence in household dust, aquifers and aquatic/aerial species. Co-pyrolysis of BFRs with metal oxides has emerged as a potent chemical recycling approach that produces a bromine-free stream of hydrocarbon. Herein, we investigate the debromination of two prominent two NBFRs; namely tetrabromobisphenol A 2,3-dibromopropyl ether (TD) and tetrabromobisphenol A diallyl ether (TAE) through their co-pyrolysis with zinc oxide (ZnO) and franklinite (ZnFe2O4). Most of the zinc content in electrical arc furnace dust (EAFD) exists in the form of these two metal oxides. Conversion of these metal oxides into their respective bromides could also assist in the selective extraction of the valuable zinc content in EAFD. The debromination potential of both oxides was unveiled via a multitude of characterization studies to analyze products (char, gas and condensates). The thermogravimetric analysis suggested a pyrolytic run up to 500 °C and the TAE treatment with ZnO produced only a trivial amount of brominated compounds (relative area, 0.83%). Phenol was the sole common compound in condensable products; potentially formed by the β-scission debromination reaction from the parental molecular skeleton. Inorganic compounds and methane were the major constituents in the gaseous products. The pyrochar analyses confirmed the presence of metal bromides retained in the residue, averting the bromine release into the atmosphere. The ion chromatography analysis portrayed <8% of HBr gas release into the atmosphere upon pyrolysis with ZnO. The ZnO dominance herein envisaged further probes into other spinel ferrites in combating brominated polymers.
Collapse
Affiliation(s)
- Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Abdul Razack Hajamohideen
- United Arab Emirates University, Department of Physics, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
3
|
Ma C, Kumagai S, Saito Y, Yoshioka T, Huang X, Shao Y, Ran J, Sun L. Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1423-1440. [PMID: 38197317 DOI: 10.1021/acs.est.3c09451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Plastic waste has emerged as a serious issue due to its impact on environmental degradation and resource scarcity. Plastic recycling, especially of halogen-containing plastics, presents challenges due to potential secondary pollution and lower-value implementations. Chemical recycling via pyrolysis is the most versatile and robust approach for combating plastic waste. In this Review, we present recent advancements in halogen-plastic pyrolysis for resource utilization and the potential pathways from "reducing to recycling to upcycling" halogens. We emphasize the advanced management of halogen-plastics through copyrolysis with solid wastes (waste polymers, biomass, coal, etc.), which is an efficient method for dealing with mixed wastes to obtain high-value products while reducing undesirable substances. Innovations in catalyst design and reaction configurations for catalytic pyrolysis are comprehensively evaluated. In particular, a tandem catalysis system is a promising route for halogen removal and selective conversion of targeted products. Furthermore, we propose novel insights regarding the utilization and upcycling of halogens from halogen-plastics. This includes the preparation of halogen-based sorbents for elemental mercury removal, the halogenation-vaporization process for metal recovery, and the development of halogen-doped functional materials for new materials and energy applications. The reutilization of halogens facilitates the upcycling of halogen-plastics, but many efforts are needed for mutually beneficial outcomes. Overall, future investigations in the development of copyrolysis and catalyst-driven technologies for upcycling halogen-plastics are highlighted.
Collapse
Affiliation(s)
- Chuan Ma
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Shogo Kumagai
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuko Saito
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Toshiaki Yoshioka
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xin Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yunlin Shao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jingyu Ran
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Zhang Y, Zhou C, Liu Y, Qu J, Ali Siyal A, Yao B, Dai J, Liu C, Chao L, Chen L, Wang L. The fate of bromine during microwave-assisted pyrolysis of waste printed circuit boards. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:160-171. [PMID: 37992535 DOI: 10.1016/j.wasman.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Bromine control is imperative for efficient treatment and products utilization during pyrolysis of waste printed circuit boards (WPCBs). This study investigated Br-species in products from microwave-assisted auger pyrolysis of WPCBs, and discussed synergetic evolution mechanisms, release kinetics and thermodynamics of Br-containing pollutants with different kinds of mineral species (alkaline earth, alkali, and transition metals). Results indicated that heavy Br-containing volatiles release (e.g., brominated phenols) was dominated at 320-520 °C. Brominated phenols released Br* to react with small-molecule groups to form light Br-containing products (e.g., HBr, CH3Br, and CH3CH2Br) at >520 °C. K2CO3 efficiently suppressed Br-containing pollutants emissions (∼50% reduction) and promoted bromine fixation in char (∼33.49% increase). With K2CO3 addition, bromine evolution mechanism is largely dehydrobromination and neutralization reactions when bromine bonds with aliphatic carbon with an adjacent aliphatic hydrogen. Negatively charged oxygen of K2CO3 attacks bromine and causes C-Br scission when bromine bonds with CH3* or aromatic carbon. The chemical reaction models (CRM3-CRM5) are best fitted with bromine evolution and the activation energy of WPCBs-KC reached the lowest (149.83-192.19 kJ/mol). Furthermore, bromine control strategy in WPCBs pyrolysis products toward environmental and economic sustainability were suggested, which created less environmental impact and maximum resource recovery.
Collapse
Affiliation(s)
- Yingwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunbao Zhou
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yang Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junshen Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Asif Ali Siyal
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bang Yao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianjun Dai
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chenglong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Chao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Chen
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Wang
- Systematic Engineering Center, JIHUA Group Co., Ltd., Beijing 100070, China
| |
Collapse
|
5
|
Yang J, Zhang BT, Tian L, Die Q, Wang F, Fu H, Yang Y, Huang Q. Free radical formation via BDE-209 thermolysis in the precalciner of a cement kiln: Simulation and DFT study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167145. [PMID: 37730046 DOI: 10.1016/j.scitotenv.2023.167145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
To deeply understand the formation mechanism of polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in the thermal disposal process of polybrominated diphenyl ether (PBDE)-containing waste, this paper studied the formation pathways of key intermediates (free radicals, FRs) in the formation process of PBDD/Fs. BDE-209, the most common PBDE in the environment, was selected as the object of study to analyze FR formation by simulating the key conditions such as temperature (850 °C) and Fe-based materials when PBDE-containing waste entering cement kiln precalciner. Electron paramagnetic resonance (EPR) spectroscopy and density functional theory (DFT) calculations were used to study the reaction. The result of simulation experiments revealed carbon-centered radicals, and DMPO-OH analysis further confirmed the generation of FRs. The findings confirmed previous calculations predicting the existence of radical intermediates during the formation of PBDD/Fs from BDE-209. DFT calculations revealed the existence of an inner ortho-position CBr bond in BDE-209. The priority order of the bond breaking of BDE-209 was ether bond, inner ortho-position CBr bond, and outside ortho-position CBr bond. BDE-209 can further form three kinds of FRs, namely, oxygen-centered radicals of single benzene rings, carbon-centered radicals of single benzene rings, and carbon-centered radicals of double benzene rings. The specific processes of FR formation were inferred: high-temperature homogeneous cleavage of chemical bonds, electron transfer, and chemisorption, where electron transfer and chemisorption may be more important pathways. The proposed inner ortho-position cleavage within BDE-209 provides new insights into the degradation of PBDEs and the formation of PBDD/Fs; the results regarding BDE-209 generation radicals further elucidate the synthesis mechanism of dioxins, which is important for controlling dioxin generation and emission during the treatment and disposal of waste containing PBDEs.
Collapse
Affiliation(s)
- Jinzhong Yang
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lu Tian
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingqi Die
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Wang
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haihui Fu
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yufei Yang
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Qifei Huang
- State Key Laboratory of Environmental Benchmarks and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Liu J, Zhan L, Xu Z. Debromination with Bromine Recovery from Pyrolysis of Waste Printed Circuit Boards Offers Economic and Environmental Benefits. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3496-3504. [PMID: 36794988 DOI: 10.1021/acs.est.2c06448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bromine is an important resource that is widely used in medical, automotive, and electronic industries. Waste electronic products containing brominated flame retardants can cause serious secondary pollution, which is why catalytic cracking, adsorption, fixation, separation, and purification have gained significant attention. However, the bromine resources have not been effectively reutilized. The application of advanced pyrolysis technology could help solve this problem via converting bromine pollution into bromine resources. Coupled debromination and bromide reutilization during pyrolysis is an important field of research in the future. This prospective paper presents new insights in terms of the reorganization of different elements and adjustment of bromine phase transition. Furthermore, we proposed some research directions for efficient and environmentally friendly debromination and reutilization of bromine: 1) precise synergistic pyrolysis should be further explored for efficient debromination, such as using persistent free radicals in biomass, polymer hydrogen supply, and metal catalysis, 2) rematching of Br elements and nonmetal elements (C/H/O) will be a promising direction for synthesizing functionalized adsorption materials, 3) oriented control of the bromide migration path should be further studied to obtain different forms of bromine resources, and 4) advanced pyrolysis equipment should be well developed.
Collapse
Affiliation(s)
- Jiangshan Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Ali L, Sivaramakrishnan K, Kuttiyathil MS, Chandrasekaran V, Ahmed OH, Al-Harahsheh M, Altarawneh M. Degradation of tetrabromobisphenol A (TBBA) with calcium hydroxide: a thermo-kinetic analysis. RSC Adv 2023; 13:6966-6982. [PMID: 36865571 PMCID: PMC9973547 DOI: 10.1039/d2ra08223c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Thermal treatment of bromine-contaminated polymers (i.e., as in e-waste) with metal oxides is currently deployed as a mainstream strategy in recycling and resources recovery from these objects. The underlying aim is to capture the bromine content and to produce pure bromine-free hydrocarbons. Bromine originates from the added brominated flame retardants (BFRs) to the polymeric fractions in printed circuits boards, where tetrabromobisphenol A (TBBA) is the most utilized BFR. Among notable deployed metal oxides is calcium hydroxide, i.e., Ca(OH)2 that often displays high debromination capacity. Comprehending thermo-kinetic parameters that account for the BFRs:Ca(OH)2 interaction is instrumental to optimize the operation at an industrial scale. Herein, we report comprehensive kinetics and thermodynamics studies into the pyrolytic and oxidative decomposition of a TBBA:Ca(OH)2 mixture at four different heating rates, 5, 10, 15, and 20 °C min-1, carried out using a thermogravimetric analyser. Fourier Transform Infrared Spectroscopy (FTIR) and a carbon, hydrogen, nitrogen, and sulphur (CHNS) elemental analyser established the vibrations of the molecules and carbon content of the sample. From the thermogravimetric analyser (TGA) data, the kinetic and thermodynamic parameters were evaluated using iso-conversional methods (KAS, FWO, and Starink), which were further validated by the Coats-Redfern method. The computed activation energies for the pyrolytic decomposition of pure TBBA and its mixture with Ca(OH)2 reside in the narrow ranges of 111.7-112.1 kJ mol-1 and 62.8-63.4 kJ mol-1, respectively (considering the various models). Obtained negative ΔS values suggest the formation of stable products. The synergic effects of the blend exhibited positive values in the low-temperature ranges (200-300 °C) due to the emission of HBr from TBBA and the solid-liquid bromination process occurring between TBBA and Ca(OH)2. From a practical point of view, data provided herein are useful in efforts that aim to fine-tune operational conditions encountered in real recycling scenarios, i.e., in co-pyrolysis of e-waste with Ca(OH)2 in rotary kilns.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum EngineeringSheikh Khalifa bin Zayed StreetAl-Ain 15551United Arab Emirates
| | - Kaushik Sivaramakrishnan
- United Arab Emirates University, Department of Chemical and Petroleum EngineeringSheikh Khalifa bin Zayed StreetAl-Ain 15551United Arab Emirates
| | - Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum EngineeringSheikh Khalifa bin Zayed StreetAl-Ain 15551United Arab Emirates
| | | | - Oday H. Ahmed
- Department of Physics, College of Education, Al-Iraqia UniversityBaghdadIraq
| | - Mohammad Al-Harahsheh
- Chemical Engineering Department, Jordan University of Science and TechnologyIrbid 22110Jordan
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum EngineeringSheikh Khalifa bin Zayed StreetAl-Ain 15551United Arab Emirates
| |
Collapse
|
8
|
Separation of bromine and hydrocarbons from polymeric constituents in e-waste through thermal treatment with calcium hydroxide. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Kinetic Parameters Underlying Hematite-assisted Decomposition of Tribromophenol. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
10
|
Ali L, Shafi Kuttiyathil M, Altarawneh M. Oxidative and pyrolytic decomposition of an evaporated stream of 2,4,6-tribromophenol over hematite: A prevailing scenario during thermal recycling of e-waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 154:283-292. [PMID: 36308795 DOI: 10.1016/j.wasman.2022.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Brominated flame retardants (BFRs) constitute a major load in the polymeric fraction of e-waste. Degradation of BFRs-laden plastics over transition metal oxides is currently deployed as a mainstream strategy in the disposal and treatment of the non-metallic segment of e-waste. However, interaction of pyrolysis's products of BFRs with transition metal oxides is well-known to facilitate the formation of notorious pollutants. Despite recent progress to comprehend the germane chemistry of this interaction, several important pertinent aspects remain to be addressed. To fill in this gap, an integrated experimental and simulation account of the pyrolytic and oxidative decomposition of a gaseous stream of 2,4,6-tribromophenol (TBP) over hematite (Fe2O3) has been reported herein. TBP is utilized as a model compounds of BFRs as their most common formulations include brominated phenolic rings. Overall, hematite entails a rather low cracking capacity under pyrolytic conditions. Analysis of condensate products indicates that oxidative degradation of a gaseous stream of TBP results mainly in the formation of brominated alkanes such as bromoethane and bromo-pentane. Likewise, Ion chromatography (IC) measurements disclosed a noticeable reduction in the concentrations of escaped HBr. Transformation of iron oxides into iron bromides (possibly in the form of FeBr2) during pyrolysis and combustion operations is evident through XRD measurements. Density functional theory (DFT) calculations map out important reactions pathways that operate in the initial degradation of the TBP molecule. From a broader perspective, outlined results shall be instrumental to precisely assess the effectiveness of using iron oxides in thermal catalytic recycling of e-waste and the likely emission of brominated toxicants.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Mohamed Shafi Kuttiyathil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
11
|
Exploring the Potential of Hematite as a Debromination Agent for 2,4,6-Tribromophenol. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
|
13
|
Ali L, A Mousa H, Al-Harahsheh M, Al-Zuhair S, Abu-Jdayil B, Al-Marzouqi M, Altarawneh M. Removal of Bromine from the non-metallic fraction in printed circuit board via its Co-pyrolysis with alumina. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 137:283-293. [PMID: 34823135 DOI: 10.1016/j.wasman.2021.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness of a recycling approach of the printed circuit board (PCBs), and, thus, the quality of polymeric constituents, primarily rests on the capacity to eliminate the bromine content (mainly as HBr). HBr is emitted in appreciable quantities during thermal decomposition of PCB-contained brominated flame retardants (BFRs). The highly corrosive, yet relatively reactive HBr, renders recovery of bromine-free hydrocarbons streams from brominated polymers in PCBs very challenging. Via combined experimental and theoretical frameworks, this study explores the potential of deploying alumina (Al2O3) as a debromination agent of Br-containing hydrocarbon fractions in PCBs. A consensus from a wide array of characterization techniques utilized herein (ICP-OES, IC, XRD, FTIR, SEM-EDX, and TGA) clearly demonstrates the transformation of alumina upon its co-pyrolysis with the non-metallic fractions of PCBs, into aluminum bromides and oxy-bromides. ICP-OES measurements disclose the presence of high concentration of Cu in the non-metallic fraction of PCB, along with minor levels of selected valuable metals. Likewise, elemental ionic analysis by IC demonstrates an elevated concentration of bromine in washed alumina-PCBs pyrolysates, especially at 500 °C. The Coats-Redfern model facilitates the derivation of thermo-kinetic parameters underpinning the thermal degradation of alumina-PCB mixtures. Density functional theory calculations (DFT) establish an accessible reaction pathway for the HBr uptake by the alumina surface, thus elucidating chemical reactions governing the observed alumina debromination activity. Findings from this study illustrate the capacity of alumina as a HBr fixation agent during the thermal treatment of e-waste.
Collapse
Affiliation(s)
- Labeeb Ali
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Hussein A Mousa
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Mohammad Al-Harahsheh
- Department of Chemical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Sulaiman Al-Zuhair
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Basim Abu-Jdayil
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Mohamed Al-Marzouqi
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
14
|
Das P, Gabriel JCP, Tay CY, Lee JM. Value-added products from thermochemical treatments of contaminated e-waste plastics. CHEMOSPHERE 2021; 269:129409. [PMID: 33388566 DOI: 10.1016/j.chemosphere.2020.129409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The rise of electronic waste (e-waste) generation around the globe has become a major concern in recent times and its recycling is mostly focused on the recovery of valuable metals, such as gold, silver, and copper, etc. However, e-waste consists of a significant weight fraction of plastics (25-30%) which are either discarded or incinerated. There is a growing need for recycling of these e-waste plastics. The majority of them are made from high-quality polymers (composites), such as acrylonitrile butadiene styrene (ABS), high impact polystyrene (HIPS), polycarbonate (PC), polyamide (PA), polypropylene (PP) and epoxies. These plastics are often contaminated with hazardous materials, such as brominated flame retardants (BFRs) and heavy metals (such as Pb and Hg). Under any thermal stress (thermal degradation), the Br present in the e-waste plastics produces environmentally hazardous pollutants, such as hydrogen bromide or polybrominated diphenyl ethers/furans (PBDE/Fs). The discarded plastics can lead to the leaching of toxins into the environment. It is important to remove the toxins from the e-waste plastics before recycling. This review article gives a detailed account of e-waste plastics recycling and recovery using thermochemical processes, such as extraction (at elevated temperature), incineration (combustion), hydrolysis, and pyrolysis (catalytic/non catalytic). A basic framework of the existing processes has been established by reviewing the most interesting findings in recent times and the prospects that they open in the field recycling of e-waste plastics.
Collapse
Affiliation(s)
- Pallab Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | | | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
15
|
Gao R, Liu B, Zhan L, Guo J, Zhang J, Xu Z. Catalytic effect and mechanism of coexisting copper on conversion of organics during pyrolysis of waste printed circuit boards. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123465. [PMID: 32846256 DOI: 10.1016/j.jhazmat.2020.123465] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Pyrolysis is a promising technology for recycling organic materials from waste printed circuit boards (WPCBs). Nevertheless, the generated organic bromides are toxic and urgently needed to be removed. The coexisting copper (Cu) of WPCBs has potential performance on debromination. However, the catalytic effect and mechanism of Cu on pyrolysis process and products were still unclear. To clarify the in-situ catalysis of Cu, the analysis on kinetics and pyrolysis products was performed. The results showed that Cu can change the mechanism function of pyrolysis, which reduced the apparent activation energy (Ea). The mechanism function of Cu-coated WPCBs was obtained by Šesták-Berggren model and expressed as: dαdt=1.65×107×1-α-1.30α6.09-ln1-α-6.03exp-202.45KJ/molRT. Product analysis suggested that Cu promoted the conversion of organic bromides to Br2 and HBr. During the process of pyrolysis, bromide atoms interacted with Cu to form coordination compound, which can weaken the strength of C-Br bond and generate bromide free radical (Br*). Besides, Cu can promote the conversion of aromatic-Br to Br2 as the catalyst for Ullmann cross-coupling reaction. Therefore, the presence of Cu was beneficial to pyrolysis. This work provided the theoretical basis for the improvement and application of pyrolysis technology.
Collapse
Affiliation(s)
- Ruitong Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Binyang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jie Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
16
|
Gao R, Liu B, Zhan L, Guo J, Zhang J, Xu Z. In-situ debromination mechanism based on self-activation and catalysis of Ca(OH) 2 during pyrolysis of waste printed circuit boards. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122447. [PMID: 32193111 DOI: 10.1016/j.jhazmat.2020.122447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Completely and deeply removed bromide from waste printed circuit boards (WPCBs) is necessary due to their toxicity and carcinogenicity. To achieve this purpose, calcium hydroxide (Ca(OH)2) as a debromination agent was added during pyrolysis process of WPCBs. The results showed that hydrogen bromide (HBr), 4-bromophenol, 2-bromophenol and 2,4-dibromophenol were the main bromide species in pyrolysis products. The Ca(OH)2 plays a significant role for removing HBr and organic bromide, but not affects products yield. Optimal removal efficiency for 4-bromophenol, 2-bromophenol and 2,4-dibromophenol reached 87.5 %, 74.6 % and 54.5 %, respectively. And debromination efficiency was related to the steric hindrance caused by bromide atoms. The Ca(OH)2 can be activated by captured HBr and its thermal decomposition. And the newly-generated calcium bromide and calcium oxide significantly facilitate debromination due to their high surface energy and reactivity. The debromination mechanism was clarified by experiments coupled with computational chemistry: the coordination of bromide and calcium to form [Ph-Br···Ca2+] or [Ph-Br···Caatom]. Then, electrons were delivered form bromide atom to Ca2+ or Caatom, which resulted in the stretch and weaken the C-Br bond. Hence, the C-Br bond was more easily to break. This work can provide support for designing novel and efficient debromination agents applied for high-temperature system.
Collapse
Affiliation(s)
- Ruitong Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Binyang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Lu Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jie Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
17
|
Chen T, Yu J, Ma C, Bikane K, Sun L. Catalytic performance and debromination of Fe-Ni bimetallic MCM-41 catalyst for the two-stage pyrolysis of waste computer casing plastic. CHEMOSPHERE 2020; 248:125964. [PMID: 32004884 DOI: 10.1016/j.chemosphere.2020.125964] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 05/25/2023]
Abstract
A computer casing plastic waste containing brominated flame retardants (BFRs) was pyrolyzed in a two-stage vertical quartz tube reactor using iron and nickel metals modified MCM-41 catalysts. Various catalysts with different ratios of Fe and Ni were prepared and utilized to study their catalytic performance. At the presence of 20%Ni/MCM-41 catalyst, the pyrolytic yield of oil and gas reached maximum values of 49.9 wt% and 13.8 wt% respectively. The co-existence of Fe and Ni showed synergistic effect on oil composition by promoting the formation of valuable single ring hydrocarbons. With regard to the 15%Fe-5%Ni/MCM-41, 10%Fe-10%Ni/MCM-41 and 5%Fe-15%Ni/MCM-41 catalysts, the production of single ring hydrocarbons were 64.58%, 65.93% and 64.74% respectively. The bimetallic catalysts also exhibited remarkable effect on eliminating bromine from pyrolytic oil. At the presence of Fe-Ni/MCM-41, the bromine in pyrolytic oil was reduced to below 4 wt% compared with 10 wt% without catalyst. Higher amounts of Fe in the catalyst is beneficial for the debromination efficiency. The debromination process by the Fe-Ni/MCM-41 may be realized by these different mechanisms: catalytic cracking of organobromines, reaction of loaded metal oxides with HBr/SbBr3, and deposition of organobromines on the surface of catalyst.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jie Yu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Chuan Ma
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Kagiso Bikane
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
18
|
Advanced Recovery Techniques for Waste Materials from IT and Telecommunication Equipment Printed Circuit Boards. SUSTAINABILITY 2019. [DOI: 10.3390/su12010074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Waste from information technology (IT) and telecommunication equipment (WITTE) constitutes a significant fraction of waste from electrical and electronic equipment (WEEE). The presence of rare metals and hazardous materials (e.g., heavy metals or flame retardants) makes the necessary recycling procedures difficult and expensive. Important efforts are being made for Waste Printed Circuit Board (WPCB) recycling because, even if they only amount to 5–10% of the WITTE weight, they constitute up to 80% of the recovered value. This paper summarizes the recycling techniques applicable to WPCBs. In the first part, dismantling and mechanical recycling techniques are presented. Within the frame of electro-mechanical separation technology, the chain process of shredding, washing, and sieving, followed by one or a combination of magnetic, eddy current, corona electrostatic, triboelectrostatic, or gravity separation techniques, is presented. The chemical and electrochemical processes are of utmost importance for the fine separation of metals coming from complex equipment such as WPCBs. Thermal recycling techniques such as pyrolysis and thermal treatment are presented as complementary solutions for achieving both an extra separation stage and thermal energy. As the recycling processes of WPCBs require adequate, efficient, and ecological recycling techniques, the aim of this survey is to identify and highlight the most important ones. Due to the high economic value of the resulting raw materials relative to the WPCBs’ weight and composition, their recycling represents both a necessary environmental protection action, as well as an economic opportunity.
Collapse
|
19
|
Wang Y, Peng A, Chen Z, Jin X, Gu C. Transformation of gaseous 2-bromophenol on clay mineral dust and the potential health effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:686-694. [PMID: 31035151 DOI: 10.1016/j.envpol.2019.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Iron-bearing clays are ubiquitously distributed as mineral dusts in the atmosphere. Bromophenols were reported as the major products from thermal decomposition of the widely used brominated flame retardants (BFRs). However, little information is available for the reactivity of iron associated with mineral dusts to interact with the atmospheric bromophenols and the subsequent toxic effects. Herein, three common clay minerals (montmorillonite, illite and kaolinite) were used to simulate mineral dusts, and the reactions with gaseous 2-bromophenol were systematically investigated under environmentally relevant atmospheric conditions. Our results demonstrate that structural Fe(III) in montmorillonite and Fe(III) from iron oxide in illite mediated the dimerization of 2-bromophenol to form hydroxylated polybrominated biphenyl and hydroxylated polybrominated diphenyl ether. The surface reaction is favored to occur at moisture environment, since water molecules formed complex with 2-bromophenol and the reaction intermediates via hydrogen bond to significantly lower the reaction energy and promote the dimerization reaction. More importantly, the formed dioxin-like products on clay mineral dust increased the toxicity of the particles to A549 lung cell by decreasing cell survival and damaging cellular membrane and proteins. The results of this study indicate that not only mineral dust itself but also the associated surface reaction should be fully considered to accurately evaluate the toxic effect of mineral dust on human health.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Anping Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Zeyou Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China.
| |
Collapse
|
20
|
Wu M, Zhao Y, Li Q, Su G, Liu W, Wang Q, Li C. Thermal catalytic degradation of α-HBCD, β-HBCD and γ-HBCD over Fe 3O 4 micro/nanomaterial: Kinetic behavior, product analysis and mechanism hypothesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1200-1212. [PMID: 31018460 DOI: 10.1016/j.scitotenv.2019.03.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The new persistent organic pollutant (POP), 1,2,5,6,9,10-hexabromocyclododecane (HBCD), has been widely detected in various environmental media and proved to be biotoxic. However, the research on catalytic degradation of HBCD is in its infancy. Herein, we examined the degradation of α-HBCD, β-HBCD and γ-HBCD, over Fe3O4 micro/nanomaterial at 200 °C. The pseudo-first-order kinetic rate constants were in the range of 0.04-0.15 min-1, with half-life values of 5-19 min. γ-HBCD is slightly less stable than β-HBCD, but both of them readily convert into α-HBCD, as consistent with the Gibbs free energies of isomers themselves. The four products containing pentabromocyclododecene, two isomers of tetrabromocyclododecene and 1,5,9-cyclododecatriene were detected by conventional GC-MS. Interestingly, a high-throughput non-target product detection were performed by ESI-FT-ICR-MS, where up to 59 types of intermediate products were determined. It is tentatively proposed that different types of bromine-removed products (C12H17Br5, C12H18Br4, C12H18, C12H19Br5, C12H24 and C12H19Br5O) and cyclododecane ring-opened products (C12H19Br7, C12H20Br6O and C12H20Br6) form via elimination reaction, nucleophilic substitution, hydrodebromination and addition reaction. Besides, most of the products that were detected contained oxygen. The average carbon oxidation state (OSc¯) of the products indicate that the oxidation reaction is the dominant reaction type. Deep oxidation products, such as small molecular organic acids (formic, acetic, propionic, and butyric acids) and gas-phase oxidation products (CO2 and CO) were further detected by ion chromatography and GC-FID, respectively. This study might provide an alternative technique for the low-cost treatment of HBCD waste.
Collapse
Affiliation(s)
- Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhui Zhao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenbin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Zhu K, Wang Y, Tang D, Wang Q, Li H, Huang Y, Huang Z, Wu K. Flame-Retardant Mechanism of Layered Double Hydroxides in Asphalt Binder. MATERIALS 2019; 12:ma12050801. [PMID: 30857152 PMCID: PMC6427306 DOI: 10.3390/ma12050801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
Abstract
The flame retardancy of asphalt binders with layered double hydroxides (LDHs) was investigated using limiting oxygen index (LOI) and cone calorimeter tests. The flame-retardant mechanism of the LDHs was also studied with thermogravimetry and differential scanning calorimetry (TG–DSC), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The cone calorimeter testing results indicated that 2 wt.% of the LDHs can decease the peak heat and smoke release rate of asphalt binders. Because a low dose of LDHs can be well dispersed in asphalt binder and favor the formation of polyaromatic structures during combustion, the thermal oxidation resistance and compactness of the char layer can be improved. The LOI of asphalt binder can be increased and the heat and smoke release during combustion can be decreased with 25 wt.% LDHs. The decomposition of LDHs can absorb the heat release of the initial two stages of asphalt combustion and reduce the burning rate of asphalt. Due to the loss of loosely bound water in the LDHs during the blending process and the decrease of dispersibility at a high LDH dose, the improvement of thermal stability is limited.
Collapse
Affiliation(s)
- Kai Zhu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - Yunhe Wang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Daquan Tang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Qiang Wang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Haihang Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China.
| | - Yadong Huang
- Fire Bureau of Zhejiang Province, Hangzhou 310014, China.
| | - Zhiyi Huang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - Ke Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Offshore Geotechnics and Material of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Chen Y, Zhang Y, Yang J, Liang S, Liu K, Xiao K, Deng H, Hu J, Xiao B. Improving bromine fixation in co-pyrolysis of non-metallic fractions of waste printed circuit boards with Bayer red mud. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1553-1559. [PMID: 29929318 DOI: 10.1016/j.scitotenv.2018.05.269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
A method to improve bromine fixation by co-pyrolysis of non-metallic fractions (NMFs) of waste printed circuit boards (WPCBs) with Bayer red mud (RM) has been developed. More than 78.59 wt% of bromine was fixed into the solid residues with an addition of 15 wt% RM after co-pyrolysis at 500 °C, comparing with 36.42 wt% without the RM addition. Metal oxides (Fe2O3, Al2O3, TiO2, and Na2O, etc.) in the RM contributed significantly to the bromine fixation. The bromine fixation percentages were 62.94, 65.05, 47.24, and 49.05 wt% with an individual addition of 15 wt% Fe2O3, Na2O, Al2O3, and TiO2, respectively. Metal oxides in the RM showed synergistic effects on the bromine fixation, and this can be attributed to the secondary reaction of Na2O and bromine decomposed from FeBr3. The mechanisms of bromine fixation by RM are formation of Br-M (M: Fe, Al, Ti, and Na) and OH bonds generated from the direct elimination and a two-step of dissociative adsorption and β-H elimination reactions between metal oxides and bromide.
Collapse
Affiliation(s)
- Ye Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yi Zhang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Kang Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Huali Deng
- Dongjiang Environment, Co., Ltd., Shenzhen, Guangdong 518057, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Bo Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Disposal and Recycling Technology of Solid Waste, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
23
|
Ahmed OH, Altarawneh M, Al-Harahsheh M, Jiang ZT, Dlugogorski BZ. Recycling of zincite (ZnO) via uptake of hydrogen halides. Phys Chem Chem Phys 2018; 20:1221-1230. [DOI: 10.1039/c7cp06159e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate chemical interplay between HCl/HBr and zincite surfaces as a representative model for structures of zinc oxides in EAFD.
Collapse
Affiliation(s)
- Oday H. Ahmed
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
- Department of Physics
| | | | - Mohammad Al-Harahsheh
- Chemical Engineering Department
- Jordan University of Science and Technology
- Irbid 22110
- Jordan
| | - Zhong-Tao Jiang
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| | | |
Collapse
|
24
|
Miran HA, Altarawneh M, Jiang ZT, Oskierski H, Almatarneh M, Dlugogorski BZ. Decomposition of selected chlorinated volatile organic compounds by ceria (CeO2). Catal Sci Technol 2017. [DOI: 10.1039/c7cy01096f] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB).
Collapse
Affiliation(s)
- Hussein A. Miran
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
- Department of Physics
| | | | - Zhong-Tao Jiang
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| | - Hans Oskierski
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| | | | | |
Collapse
|