1
|
Zhu J, Huang H, Jia H, Dong M, Tang X, Sun W, Li L, Sun L. Superhydrophobic Porous Cylindrical Barrel Founded on Stainless-Steel Mesh for Interfacial Water Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39436675 DOI: 10.1021/acs.langmuir.4c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Superhydrophobic materials have been widely applied in oil-water separation, self-cleaning, antifouling, and drag reduction; however, their role in liquid evaporation and drying remains unexplored. Inspired by the microstructure of the nonwetting legs of water striders, we designed a low-adhesion superhydrophobic cylindrical barrel (CB) derived from stainless-steel mesh (SSM) to enhance liquid thermal evaporation and drying. The CB was created by hydrothermally depositing zinc oxide (ZnO) with multilevel morphologies onto metal wires, followed by modification with low-surface-energy stearic acid (SA). We investigated the impact of the SSMCB on water evaporation and analyzed the decline in the liquid levels under varying porosities and temperatures through numerical normalization. A functional relationship was established between decline height, porosity, and temperature, revealing that the drop height increased from 3.7 to 25 mm as porosity increased from 0 to 0.5263. Moreover, the superhydrophobic coating demonstrated excellent resistance to friction and peeling, indicating improved mechanical stability.
Collapse
Affiliation(s)
- Jingfang Zhu
- School of Microelectronics and Data Science, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Haizhou Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
| | - Haiyang Jia
- School of Physics and New Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Meng Dong
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Xubing Tang
- School of Microelectronics and Data Science, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wenbin Sun
- School of Microelectronics and Data Science, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Longyang Li
- School of Mechanical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Sahoo P, Ramachandran AA, Sow PK. A comprehensive review of fundamentals and future trajectories in oil-water separation system designs with superwetting materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122641. [PMID: 39362169 DOI: 10.1016/j.jenvman.2024.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
The rapid increase in the production of oily wastewater by industrial and daily activities, oil spill accidents, etc., has led to critical environmental issues. The solution to oil-induced pollution lies in developing efficient oil-water separation technologies. Recently, materials with extreme wettability, particularly those exhibiting superhydrophilic with superoleophobic or superhydrophobic with superoleophilic properties, have emerged as promising solutions for achieving highly efficient and selective oil-water separation. This review offers a comprehensive overview of system designs utilizing such materials for selective oil-water separation. Here, we discuss the rationale underlying the design strategy for the systems used for the separation process. Based on the broad scenarios utilizing oil-water separation, two primary groups of system designs are identified: those handling enclosed oil-water mixtures, such as treating oily wastewater before discharge, and those addressing open-to-air hypaethral oil-water mixtures, such as in the case of oil spills, oil on water bodies post oily wastewater discharge. The review traces the evolution of system designs from batch processing to continuous processing systems, identifies commonalities, and discusses the rationale and underlying design constraints. This analysis can guide the selection of appropriate systems for testing materials in oil-water separation and provides insights into future design development for further real-life deployment.
Collapse
Affiliation(s)
- Priyanka Sahoo
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| | - Ankitha Athreya Ramachandran
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| | - Pradeep Kumar Sow
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17B, Bypass, Road, Zuarinagar, Sancoale, Goa, 403726, India.
| |
Collapse
|
3
|
Asjadi F, Yaghoobi M. Facile and scalable preparation of superhydrophobic brass mesh for efficient and rapid separation of oil and water. Sci Rep 2024; 14:12806. [PMID: 38834785 DOI: 10.1038/s41598-024-63428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
A facile method for preparing superhydrophobic brass mesh is proposed based on electrochemical etching and surface modification. The impact of processing time and the electric potential of the electrochemical etching were studied on the contact angle (CA) of the mesh. The samples were examined using scanning electron microscopy, Energy-dispersive X-ray spectroscopy analysis, X-ray diffraction, and Fourier-transform infrared spectroscopy. The electrochemical etching process caused the decrement of wires' thickness and imposed roughness. Results showed more dissolution of zinc than copper under 3 V of the electric potential and the processing times of 3 and 6 min. The optimum condition of electrochemical etching was obtained under the electric voltage of 3 V for a processing time of 6 min, which led to a CA of 155.5 ± 3.2°. The thickness of the mesh wires decreased by 17.7% due to electrochemical etching in this sample. This sample also showed low adhesion for a water drop. The efficiency of oil/water separation was above 95 for the xylene and ethyl acetate in a batch system. The effect of the flow rate of the oil-water mixture on separation efficiency was also examined. The optimum flow rate was 0.8 ml s-1 with a high separation efficiency of 96.8% for xylene/oil separation.
Collapse
Affiliation(s)
- Fatemeh Asjadi
- Department of Materials Science and Engineering, Faculty of Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran.
| | - Maliheh Yaghoobi
- Department of Chemical Engineering, Faculty of Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran
| |
Collapse
|
4
|
Ramadan AEH, Elsayed MM, Elsayed A, Fouad MA, Mohamed MS, Lee S, Mahmoud RA, Sabry SA, Ghoneim MM, Hassan AH, Abd Elkarim RA, Belal A, El-Shenawy AA. Development and optimization of vildagliptin solid lipid nanoparticles loaded ocuserts for controlled ocular delivery: A promising approach towards treating diabetic retinopathy. Int J Pharm X 2024; 7:100232. [PMID: 38357578 PMCID: PMC10864762 DOI: 10.1016/j.ijpx.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Diabetes mellitus (DM) is the most prevalent cause of diabetic retinopathy (DRP). DRP has been recognized for a long time as a microvascular disease. Many drugs were used to treat DRP, including vildagliptin (VLD). In addition to its hypoglycemic effect, VLD minimizes ocular inflammation and improves retinal blood flow for individuals with type 2 diabetes mellitus. Nevertheless, VLD can cause upper respiratory tract infections, diarrhea, nausea, hypoglycemia, and poor tolerability when taken orally regularly due to its high water solubility and permeability. Effective ocular administration of VLD is achieved using solid lipid nanoparticles (SLNPs), which improve corneal absorption, prolonged retention, and extended drug release. Ocuserts (OCUs) are sterile, long-acting ocular dosage forms that diminish the need for frequent dosing while improving residence time and stability. Therefore, this study intends to develop VLD solid lipid nanoparticle OCUs (VLD-SLNPs-OCUs) to circumvent the issues commonly associated with VLD. SLNPs were prepared using the double-emulsion/melt dispersion technique. The optimal formula has been implemented in OCUs. Optimization and development of VLD-SLNPs-OCUs were performed using a Box-Behnken Design (BBD). VLD-SLNPs-OCUs loading efficiency was 95.28 ± 2.87%, and differential scanning calorimetry data (DSC) showed the full transformation of VLD to an amorphous state and the excellent distribution in the prepared OCUs matrices. The in vivo release of VLD from the optimized OCUs after 24 h was 35.12 ± 2.47%, consistent with in vitro drug release data of 36.89 ± 3.11. The optimized OCUs are safe to use in the eye, as shown by the ocular irritation test. VLD-SLNPs-OCUs provide extended VLD release, an advantageous alternative to conventional oral dose forms, resulting in fewer systemic adverse effects and less variation in plasma drug levels. VLD-SLNPs-OCUs might benefit retinal microvascular blood flow beyond blood glucose control and may be considered a promising approach to treating diabetic retinopathy.
Collapse
Affiliation(s)
- Abd El hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mahmoud M.A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Amani Elsayed
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy, Taif, University, Taif, Saudi Arabia
| | - Marwa A. Fouad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of pharmacy, Deraya University, Minia, Egypt
| | - Mohamed S. Mohamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Al-Azhar Centre of Nano Sciences and Applications, Al-Azhar University, Assiut, Egypt
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Reda A. Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Al-Azhar Centre of Nano Sciences and Applications, Al-Azhar University, Assiut, Egypt
| | - Shereen A. Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | | | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed A. El-Shenawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
- Al-Azhar Centre of Nano Sciences and Applications, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
5
|
Fomina P, Femenias A, Hlavatsch M, Scheuermann J, Schäfer N, Freitag S, Patel N, Kohler A, Krska R, Koeth J, Mizaikoff B. A Portable Infrared Attenuated Total Reflection Spectrometer for Food Analysis. APPLIED SPECTROSCOPY 2023; 77:1073-1086. [PMID: 37525897 PMCID: PMC10478342 DOI: 10.1177/00037028231190660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/11/2023] [Indexed: 08/02/2023]
Abstract
The analytical performance of a compact infrared attenuated total reflection spectrometer using a pyroelectric detector array has been evaluated and compared to a conventional laboratory Fourier transform infrared system for applications in food analysis. Analytical characteristics including sensitivity, repeatability, linearity of the calibration functions, signal-to-noise ratio, and spectral resolution have been derived for both approaches. Representative analytes of relevance in food industries (i.e., organic solvents, fatty acids, and mycotoxins) have been used for the assessment of the performance of the device and to discuss the potential of this technology in food and feed analysis.
Collapse
Affiliation(s)
- Polina Fomina
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Antoni Femenias
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Michael Hlavatsch
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Nicolas Schäfer
- Nanoplus Nanosystems and Technologies GmbH, Gerbrunn, Germany
| | - Stephan Freitag
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Nageshvar Patel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Rudolf Krska
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Johannes Koeth
- Nanoplus Nanosystems and Technologies GmbH, Gerbrunn, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
- Hahn-Schickard, Ulm, Germany
| |
Collapse
|
6
|
Almufarij RS, Fetouh El Sayed HA, Mohamed ME. Eco-Friendly Approach for the Construction of Superhydrophobic Coating on Stainless Steel Metal Based on Biological Metal-Organic Framework and Its Corrosion Resistance Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4728. [PMID: 37445045 DOI: 10.3390/ma16134728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
In this paper, we present a sustainable approach for the creation of superhydrophobic (SP) coating on a stainless-steel substrate based on a biological metal-organic framework (MOF). The MOF was synthesized using aspartic acid as a linker and copper ions as a core metal. Two SP coatings were well constructed on stainless steel utilizing electrodeposition of nickel (Ni) and nickel altered by MOF (Ni@Bio-MOF) coatings followed by soaking in a solution of stearic acid in ethanol. The results of Fourier transform infrared spectroscopy demonstrate that the stearic acid-grafted nickel coating (Ni@SA) and the stearic acid-grafted Ni@Bio-MOF composite (Ni@Bio-MOF@SA), were effectively deposited on the stainless steel. The wettability findings displayed that the water contact angle of Ni@SA and Ni@Cu-As MOF@SA are 160° ± 1.1°, and 168° ± 1.2°, respectively. The prepared SP coating was also found to be chemically and mechanically stable. The results show that the Ni@SA coating maintains SP characteristics in a pH range of 3-11 while the Ni@Cu-As MOF@SA coating retained SP characteristics in a pH range of 1-13. Additionally, the superhydrophobic Ni@SA coating demonstrated SP characteristics up to a length of abrasion equal to 1300 mm, while the Ni@Cu-As MOF@SA coating exhibited SP characteristics up to a length of abrasion equal to 2700 mm. Furthermore, the Ni@SA and Ni@Cu-As MOF@SA coatings exhibited significantly improved corrosion protection in a 0.5 M NaCl solution compared with bare stainless steel, with protection efficiencies of approximately 94% and 99%, respectively. The results of this study demonstrate that the proposed approach is a promising method for the fabrication of eco-friendly and corrosion-resistant SP coatings on stainless steel substrate.
Collapse
Affiliation(s)
- Rasmiah Saad Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Mohamed Elshahat Mohamed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21568, Alexandria Governorate, Egypt
- Faculty of Advanced Basic Sciences, Alamein International University, Alamein City 51718, Matrouh Governorate, Egypt
| |
Collapse
|
7
|
Zhu S, Deng W, Su Y. Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Dhal S, Alhamidi A, Al-Zahrani SM, Anis A, Pal K. The Influence of Emulsifiers on the Physiochemical Behavior of Soy Wax/Rice Bran Oil-Based Oleogels and Their Application in Nutraceutical Delivery. Gels 2023; 9:47. [PMID: 36661813 PMCID: PMC9858175 DOI: 10.3390/gels9010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
This research evaluated the influence of stearic acid, sunflower lecithin, and sorbitan monooleate on soy wax (SYW)/rice bran oil (RBO)-based oleogels. The physiochemical behavior of oleogel samples was evaluated using colorimetry, microscopy, FTIR, mechanical, crystallization kinetics, X-ray diffraction, and a drug release investigation. The prepared oleogels were light yellow, and adding emulsifiers did not change their appearance. All oleogels showed an oil binding capacity of >98%, independent of emulsifier treatment. The surface topography revealed that emulsifiers smoothed the surface of the oleogels. Bright-field and polarized micrographs showed the presence of wax grains and needles. FTIR spectra indicated that oleogel samples had the same functional group diversity as the raw materials. The oleogel samples lacked a hydrogen-bonding peak. Hence, we postulated that non-covalent interactions were involved in the oleogel preparation. According to stress relaxation studies, the firmness and elastic component of oleogels were unaffected by emulsifiers. However, EML3 (oleogel containing sorbitan monooleate) showed lower relaxing characteristics than the others. EML3 exhibited the slowest crystallization profile. Due to its low d-spacing, EML3 was found to have densely packed crystal molecules and the largest crystallite size. The in vitro drug release studies showed that emulsifier-containing oleogels dramatically affected curcumin release. These results may help customize oleogels properties to adjust bioactive component release in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Abdullah Alhamidi
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Saeed M. Al-Zahrani
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Arfat Anis
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
9
|
Ahmed S, Amin MM, El-Korany SM, Sayed S. Corneal targeted fenticonazole nitrate-loaded novasomes for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. Drug Deliv 2022; 29:2428-2441. [PMID: 35880688 PMCID: PMC9341384 DOI: 10.1080/10717544.2022.2103600] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of this manuscript was to develop and optimize Fenticonazole Nitrate (FTN)-loaded novasomes aiming to enhance drug corneal penetration and to improve its antifungal activity. Ethanol injection was used to formulate FTN-loaded novasomes adopting a central composite design. The researched factors were: stearic acid concentration (g%) (A), span 80: drug ratio (B) and cholesterol amount (mg) (C), and their effects on percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI), zeta potential (ZP), and in vitro drug release after 8 hours (Q8h) were studied. Numerical optimization by Design-Expert® software was employed to select the optimum formula in respect to highest EE%, ZP (as absolute value), and Q8h >80% and lowest PS and PDI. Additional evaluation of the optimum formula was accomplished by short term stability study, effect of gamma sterilization, determination of Minimal Inhibitory Concentration and ex vivo corneal permeation study. The in vivo evaluation of the optimum formula was done to ensure its safety via in vivo ocular irritancy and in vivo corneal tolerance studies. Also, the efficacy was confirmed through in vivo corneal uptake study and susceptibility test. The optimum formula with the highest desirability value (0.738) showed EE% (94.31%), PS (197.05 nm), ZP (-66.95 mV) and Q8h (85.33%). It revealed to be safe, with augmented corneal permeation (527.98 µg/cm2) that leads to higher antifungal activity. The above results confirmed the validity of novasomes to improve the corneal permeation and antifungal activity of Fenticonazole Nitrate.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sarah Mohamed El-Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Ragheb DM, Abdel-Gaber AM, Mahgoub FM, Mohamed ME. Eco-friendly method for construction of superhydrophobic graphene-based coating on copper substrate and its corrosion resistance performance. Sci Rep 2022; 12:17929. [PMID: 36289322 PMCID: PMC9605987 DOI: 10.1038/s41598-022-22915-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
In this work, Ni and Ni-graphene, Ni-G, films were electrodeposited on copper substrate by potentiostatic deposition. To achieve superhydrophobicity, myristic acid, MA, was used to modify the surface of the electrodeposited coatings. The manufactured Ni film modified with myristic acid, Ni-MA, and the Ni-G film modified with myristic acid, Ni-G-MA, show excellent superhydrophobic, SHP, properties with a water contact angle of 159° and 162°, respectively. The surface morphology of the prepared SHP films was investigated using a Scanning Electron Microscope, and the results revealed micro-nano structures in both Ni-MA and Ni-G-MA films. The Fourier Transform Infrared Spectrophotometer data showed that the Ni-MA and Ni-G-MA films were successfully grafted on the copper metal. The Ni-G-MA film possessed higher chemical stability and mechanical abrasion resistance than Ni-MA. The Ni-MA and Ni-G-MA films exhibit long-term durability in the outdoor environment for more than four months. The potentiodynamic polarization and electrochemical impedance spectroscopy results demonstrated that the SHP films on the copper substrate exhibit remarkable corrosion resistance in 0.5 M NaCl.
Collapse
Affiliation(s)
- D. M. Ragheb
- grid.7155.60000 0001 2260 6941Materials Science Department, Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt
| | - A. M. Abdel-Gaber
- grid.7155.60000 0001 2260 6941Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - F. M. Mahgoub
- grid.7155.60000 0001 2260 6941Materials Science Department, Institute of Graduate Studies & Research, Alexandria University, Alexandria, Egypt
| | - M. E. Mohamed
- grid.7155.60000 0001 2260 6941Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Li C, Wang P, Zhang D, Wang S. Near-Infrared Responsive Smart Superhydrophobic Coating with Self-Healing and Robustness Enhanced by Disulfide-Bonded Polyurethane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45988-46000. [PMID: 36135324 DOI: 10.1021/acsami.2c08496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Synergistic self-healing materials and inorganic particles to create self-healing superhydrophobic surfaces for improving their robustness is a common technique, but the suitability between the two is rarely mentioned. In this work, we developed a multifunctional superhydrophobic coating with room-temperature stability, mechanical stability, self-healing, and NIR stimuli response, in which self-healing polyurethane (PU) serves as the interface reinforcement layer and poly(dopamine) (PDA)-coated flower-like ZnO composite particles serve as the hydrophobic layer. A series of temperature-dependent self-healing PU materials were designed and synthesized by regulating the ratio of hard and soft chain segments in PU, and the relationship between the healing temperature of PU and the hydrophobic stability of the composite coatings was investigated. Based on dynamic hydrogen and disulfide bonds, PUs displayed excellent self-healing performance. Thanks to the self-healing and interfacial strengthening effect of PU and the photothermal properties of PDA, the composite coating exhibits not only excellent mechanical stability but also rapid self-healing ability in response to NIR stimuli. Furthermore, the smart coating demonstrated superior self-cleaning and corrosion resistance. This work provides a reference for developing strong and stable water-repellent reversible superhydrophobic coatings with great potential and promising future.
Collapse
Affiliation(s)
- Changyang Li
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100039, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenhai Middle Road, Qingdao 266237, China
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenhai Middle Road, Qingdao 266237, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 168 Wenhai Middle Road, Qingdao 266237, China
| | - Sai Wang
- Qingdao Product Quality Testing Research Institute, Qingdao 266061, China
| |
Collapse
|
12
|
Chen YC, Liu YJ, Lee CL, Pham KY, Manoharan D, Thangudu S, Su CH, Yeh CS. Engineering H 2 O 2 and O 2 Self-Supplying Nanoreactor to Conduct Synergistic Chemiexcited Photodynamic and Calcium-Overloaded Therapy in Orthotopic Hepatic Tumors. Adv Healthc Mater 2022; 11:e2201613. [PMID: 35879269 DOI: 10.1002/adhm.202201613] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Photodynamic therapy (PDT) is traditionally ineffective for deeply embedded tumors due to the poor penetration depth of the excitation light. Chemiluminescence resonance energy transfer (CRET) has emerged as a promising mode of PDT without external light. To date, related research has frequently used endogenous hydrogen peroxide (H2 O2 ) and oxygen (O2 ) inside the solid tumor microenvironment to trigger CRET-mediated PDT. Unfortunately, this significantly restricts treatment efficacy and the development of further biomedical applications because of the limited amounts of endogenous H2 O2 and O2 . Herein, a nanohybrid (mSiO2 /CaO2 /CPPO/Ce6: mSCCC) nanoparticle (NP) is designed to achieve synergistic CRET-mediated PDT and calcium (Ca2+ )-overload-mediated therapy. The calcium peroxide (CaO2 ) formed inside mesoporous SiO2 (mSC) with the inclusion of the chemiluminescent agent (CPPO) and photosensitizer (Ce6) self-supplies H2 O2 , O2 , and Ca2+ allowing for the subsequent treatments. The Ce6 in mSCCC NPs is excited by chemical energy in situ following the supply of H2 O2 and O2 to produce singlet oxygen (1 O2 ). The nanohybrid NPs are coated with stearic acid to avoid decomposition during blood circulation through contact with aqueous environment. This nanohybrid shows promising performance in the generation of 1 O2 for external light-free PDT and the release of Ca2+ ions for Ca2+ -overloaded therapy against orthotopic hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Ju Liu
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chin-Lai Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Khang-Yen Pham
- Department of Chemistry, University of Education, Hue University, Hue City, 530000, Vietnam
| | - Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
13
|
Mohamed ME, Abd-El-Nabey BA. Superhydrophobic Cobalt–Graphene Composite for the Corrosion Protection of Copper Bipolar Plates in Proton Exchange Membrane Fuel Cells. JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE 2022; 19. [DOI: 10.1115/1.4053782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Superhydrophobic cobalt and cobalt–graphene films were fabricated on copper bipolar plates (BPPs) using potentiostatic electrodeposition to improve their corrosion resistance and surface conductivity. A scanning electron microscope (SEM) was used to study the surface morphology of the prepared superhydrophobic films. The results show that the cobalt film modified by stearic acid (Co-SA) and cobalt–graphene composite modified by stearic acid (Co–G-SA) exhibit micro–nano structures. The results of the Fourier transforming infrared (FTIR) spectrophotometer confirm that the copper substrate was coated by Co-SA and Co–G-SA films. The wettability results of the prepared superhydrophobic films demonstrate that the films display superhydrophobicity, where the fabricated Co-SA and Co–G-SA films have contact angles (CAs) of 159 deg and 165 deg, respectively. Chemical stability, mechanical abrasion resistance, surface conductivity, and corrosion resistance in a simulated proton exchange membrane fuel cells (PEMFCs) environment are significantly higher for copper coated by Co–G-SA film. Because the copper coated with Co–G-SA has a low interfacial contact resistance (ICR) value and a high corrosion resistance, it is thought to be a good choice for PEMFC bipolar plates.
Collapse
Affiliation(s)
- Mohamed E. Mohamed
- Faculty of Science, Department of Chemistry, Alexandria University, P. O. Box 426, Alexandria 21321, Egypt
| | - Beshier A. Abd-El-Nabey
- Faculty of Science, Department of Chemistry, Alexandria University, P. O. Box 426, Alexandria 21321, Egypt
| |
Collapse
|
14
|
Mohamed ME, Ezzat A, Abdel-Gaber AM. Fabrication of eco-friendly graphene-based superhydrophobic coating on steel substrate and its corrosion resistance, chemical and mechanical stability. Sci Rep 2022; 12:10530. [PMID: 35732683 PMCID: PMC9217961 DOI: 10.1038/s41598-022-14353-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Superhydrophobic coatings were successfully fabricated on steel substrates using potentiostatic electrodeposition of Ni and Ni-graphene, Ni-G, coatings followed by immersion in an ethanolic solution of stearic acid, SA. Rice straw, an environmentally friendly biomass resource, was used to synthesize high-quality graphene. The Raman spectra proved the high quality of the produced graphene. The Fourier transform infrared spectroscopy, FTIR, results showed that the Ni coating grafted with stearic acid, Ni-SA, and the Ni-G composite grafted with stearic acid, Ni-G-SA, were successfully deposited on the steel substrate. The scanning electron microscope, SEM, results showed that the prepared superhydrophobic coatings exhibit micro-nano structures. The wettability results revealed that the values of contact angles, CAs, for Ni-SA and Ni-G-SA coatings are 155.7° and 161.4°, while the values of sliding angles, SAs, for both coatings are 4.0° and 1.0°, respectively. The corrosion resistance, chemical stability, and mechanical abrasion resistance of the Ni-G-SA coating were found to be greater than those of the Ni-SA coating.
Collapse
Affiliation(s)
- M E Mohamed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - A Ezzat
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - A M Abdel-Gaber
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Superhydrophobic polycarbonate blend monolith with micro/nano porous structure for selective oil/water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Nongnual T, Kaewpirom S, Damnong N, Srimongkol S, Benjalersyarnon T. A Simple and Precise Estimation of Water Sliding Angle by Monitoring Image Brightness: A Case Study of the Fluid Repellency of Commercial Face Masks. ACS OMEGA 2022; 7:13178-13188. [PMID: 35474827 PMCID: PMC9026028 DOI: 10.1021/acsomega.2c00628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 05/10/2023]
Abstract
Fluid repellency of a hydrophobic surface has been typically demonstrated in terms of water sliding angle. A drop shape analysis method with a written computer algorithm monitoring the image brightness was proposed to precisely estimate the sliding angle. A hydrophobic surface coated with silanized silicon dioxide or polytetrafluoroethylene was selected as a known sample for the method validation. Average pixel brightness in an 8-bit grayscale unit rapidly increased after a water drop rolled off the surface, thus removing its black pixels. The resulting sliding angle was then determined as the tilt angle of the sample stage related to the sliding time at the brightness leap. The optimized angular speed of the rotor at 0.1 degrees per frame was chosen to avoid an overestimation of the sliding angle due to the deceleration. The proposed method yielded accurate sliding angles with an error of less than 0.2 degrees. It was then applied to study the fluid resistance of commercial face masks including disposable surgical masks and reusable fabric masks. It was found that the outermost layer of the single-use surgical masks can moderately repel a water drop with a sliding angle of 49.4 degrees. Meanwhile, the pre-coated fabric masks retained high protection efficiency at a sliding angle of less than 45 degrees after about 20 wash cycles. In addition, a raw muslin fabric coated with a commercial water-repellent spray could be a promising and affordable alternative to the surgical mask during the pandemic with high water repellency even after a few washes. The results suggested that, besides the hydrophobicity indicated by the typical contact angle, the precise sliding angle estimated by the proposed alternative method could additionally provide crucial information that might lead to a detailed discussion of the fluid repellency of rough materials.
Collapse
Affiliation(s)
- Teeranan Nongnual
- Department
of Chemistry, Faculty of Science, Burapha
University, 169 Longhad Bangsaen Rd., Saensuk, Chonburi, 20131 Thailand
| | - Supranee Kaewpirom
- Department
of Chemistry, Faculty of Science, Burapha
University, 169 Longhad Bangsaen Rd., Saensuk, Chonburi, 20131 Thailand
| | - Nontakorn Damnong
- Department
of Adult Nursing, Faculty of Nursing, Burapha
University, 169 Longhad Bangsaen Rd., Saensuk, Chonburi 20131 Thailand
| | - Sineenart Srimongkol
- Department
of Mathematics, Faculty of Science, Burapha
University, 169 Longhad
Bangsaen Rd., Saensuk, Chonburi, 20131 Thailand
| | - Takat Benjalersyarnon
- Department
of Mechanical Engineering, Faculty of Engineering, Rajamangala University of Technology Rattanakosin, 96 Moo 3, Phutthamonthon Sai 5 Rd.,
Salaya, Phutthamonthon, Nakhon Pathom 73170 Thailand
| |
Collapse
|
17
|
Pharmacoengineered Lipid Core–Shell Nanoarchitectonics to Influence Human Alveolar Macrophages Uptake for Drug Targeting Against Tuberculosis. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Improvement in Luminescence Intensity of β-NaYF4: 18%Yb3+, 2%Er3+@β-NaYF4 Nanoparticles as a Result of Synthesis in the Presence of Stearic Acid. NANOMATERIALS 2022; 12:nano12030319. [PMID: 35159663 PMCID: PMC8837928 DOI: 10.3390/nano12030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
The synthesis of upconverting nanoparticles (NPs) is crucial for their spectroscopic properties and further applications. Reducing the size of materials to nano-dimensions usually decreases emission intensity. Therefore, scientists around the world are trying to improve the methods of obtaining NPs to approach levels of emission intensity similar to their bulk counterparts. In this article, the effects of stearic acid on the synthesis of core@shell β-NaYF4: 18%Yb3+, 2%Er3+@β-NaYF4 upconverting NPs were thoroughly investigated and presented. Using a mixture of stearic acid (SA) with oleic acid and 1-octadecene as components of the reaction medium leads to the obtaining of monodispersed NPs with enhanced emission intensity when irradiated with 975 nm laser wavelength, as compared with NPs prepared analogously but without SA. This article also reports how the addition of SA influences the structural properties of core@shell NPs and reaction time. The presence of SA in the reaction medium accelerates the growth of NPs in comparison with the analogic reaction but without SA. In addition, transmission electron microscopy studies reveal an additional effect of the presence of SA on the surface of NPs, which is to cause their self-organization due to steric effects.
Collapse
|
19
|
Pal S, Mondal S, Pal P, Das A, Maity J. Fabrication of AgNPs/Silane coated mechanical and washing durable hydrophobic cotton textile for self-cleaning and oil-water separation application. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Van Eyssen SR, Kavaz D. An evaluative in vitro investigation of the delivery of cytarabine with RGD decorated solid lipid nanoparticles. J Microencapsul 2021; 38:546-558. [PMID: 34632926 DOI: 10.1080/02652048.2021.1992028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM To synthesise cytarabine-loaded SLNs modified with the RGD peptide as a ligand, suitable for effective cancer therapy. METHODS SLNs were synthesised by the high shear, hot homogenisation technique. A 2 level 3 factor analysis was used in optimisation. Particle size, zeta potential, poly-dispersion index and surface morphology were measured. Drug encapsulation, drug release, release kinetics, nanoparticle stability and chemical structure were determined. LIVE/DEAD® Fluorescence Assay was used to qualify cytotoxicity and Tryphan Blue assay to quantify. RESULTS Cyt-SLNs exhibited a size of 161 ± 2.25 nm, a PDI of 0.49 ± 0.15 and a zeta potential of -19.8 mV. Entrapment fell at 88.87 ± 0.02% and release at 83.5 ± 0.95%. The in vitro release kinetics pointed towards a diffusion-based drug release mechanism. SLNs remained stable for 60 d. Cytotoxicity studies revealed that conjugation of the ligand with the RDG peptide resulted in a significant decrease in cell viability in both cell lines. CONCLUSION Overall, the study suggests that RGD-SLN-cyt can be used for effective cancer therapy.
Collapse
Affiliation(s)
| | - Doga Kavaz
- Bioengineering Department, Faculty of Engineering, Cyprus International University, Cyprus, Turkey
| |
Collapse
|
21
|
Jounaki K, Makhmalzadeh BS, Feghhi M, Heidarian A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur J Pharm Sci 2021; 167:105991. [PMID: 34517103 DOI: 10.1016/j.ejps.2021.105991] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Vancomycin (VCM) is a drug of choice for treating infections caused by Staphylococcus species, reported being the most causative agent of bacterial endophthalmitis. However, the ocular bioavailability of topically applied VCM is low due to its high molecular weight and hydrophilicity. The current study sought to explore whether the nanostructured lipid carriers (NLCs) fabricated via cold homogenization technique could improve ocular penetration and prolong the ophthalmic residence of VCM. A 23 full factorial design was adopted to evaluate the influence of different process and formulation variables on VCM-loaded NLC formulae. The optimized formula with the particle size of 96.4 ± 0.71 nm and narrow size distribution showed spherical morphology obtained by AFM and represented sustained drug release up to 67% in 48 h fitted to the Korsmeyer-Peppas model with probably non-Fickian diffusion kinetic. FTIR studies visualized the drug-carrier interactions in great detail. High encapsulation of VCM (74.8 ± 4.3% w/w) in NLC has been established in DSC and PXRD analysis. The optimal positively charged (+ 29.7 ± 0.47 mV) colloidal dispersion was also stable for 12 weeks at both 4 °C and 25 °C. According to in vivo studies, incorporation of VCM in NLC resulted in a nearly 3-fold increase in the intravitreal concentration of VCM after eye-drop instillation over control groups. Besides, microbiological evaluation admitted its therapeutic effect within five days is comparable to intravitreal injection of VCM. Further, the optimized formula was found to be nonirritant and safe for ophthalmic administration in RBC hemolytic assay. Also, fluorescent tracking of NLCs on rabbit's cornea showed an increase in corneal penetration of nanoparticles. Thus, it is possible to infer that the evolved NLCs are promising drug delivery systems with superior attainments for enhanced Vancomycin ophthalmic delivery to the eye's posterior segment and improved bacterial endophthalmitis management.
Collapse
Affiliation(s)
- Kamyar Jounaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Sharif Makhmalzadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mostafa Feghhi
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asghar Heidarian
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Nawaz S, Rashid EU, Bagheri AR, Aramesh N, Bhatt P, Ali N, Nguyen TA, Bilal M. Mitigation of environmentally hazardous pollutants by magnetically responsive composite materials. CHEMOSPHERE 2021; 276:130241. [PMID: 34088101 DOI: 10.1016/j.chemosphere.2021.130241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
At present, environmental contamination has become an emerging issue among researchers. These facts are due to the adverse impacts of an alarming number of recalcitrant contaminants that can affect both humans and animals. There is an urgent need to develop eco-friendly approaches to mitigate the effects of toxic pollutants from the environment. Magnetically responsive composite-based sorbents are very interesting and popular materials for pollutant abatement owing to the high specific surface area, superior adsorption capacity, and magnetic properties, which make their easy separation from sample solution/media. In this review article, we discuss various synthesis approaches, key physicochemical properties, and applications of magnetic composites for pollutant removal. Current gaps for coping with contamination are identified, and a comprehensive outlook in pollutant treatment using magnetic composites is outlined. This study unveils new horizons to researches for better understanding the properties of magnetically-composite-based sorbents and their application in environmental remediation.
Collapse
Affiliation(s)
- Shahid Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | | | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Tuan Anh Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
23
|
Luo Q, Xu R, Wang K, He J, Liu C, Wu P, Jiang W. Continuous separation of oil/water mixture by a double-layer corrugated channel structure with superhydrophobicity and superoleophilicity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Tamsilian Y, Ansari-Asl Z, Maghsoudian A, Abadshapoori AK, Agirre A, Tomovska R. Superhydrophobic ZIF8/PDMS-coated polyurethane nanocomposite sponge: Synthesis, characterization and evaluation of organic pollutants continuous separation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Quantification and Classification of Diclofenac Sodium Content in Dispersed Commercially Available Tablets by Attenuated Total Reflection Infrared Spectroscopy and Multivariate Data Analysis. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050440. [PMID: 34067002 PMCID: PMC8151404 DOI: 10.3390/ph14050440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022]
Abstract
A new methodology, based on Fourier transform infrared spectroscopy equipped with an attenuated total reflectance accessory (ATR FT-IR), was developed for the determination of diclofenac sodium (DS) in dispersed commercially available tablets using chemometric tools such as partial least squares (PLS) coupled with discriminant analysis (PLS-DA). The results of PLS-DA depicted a perfect classification of the tablets into three different groups based on their DS concentrations, while the developed model with PLS had a sufficiently low root mean square error (RMSE) for the prediction of the samples’ concentration (~5%) and therefore can be practically used for any tablet with an unknown concentration of DS. Comparison with ultraviolet/visible (UV/Vis) spectrophotometry as the reference method revealed no significant difference between the two methods. The proposed methodology exhibited satisfactory results in terms of both accuracy and precision while being rapid, simple and of low cost.
Collapse
|
26
|
Ybañez MG, Camacho DH. Designing hydrophobic bacterial cellulose film composites assisted by sound waves. RSC Adv 2021; 11:32873-32883. [PMID: 35493555 PMCID: PMC9042217 DOI: 10.1039/d1ra02908h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
Bacterial cellulose (BC) is a promising material for new technologies, but the range of application is limited due to its hydrophilicity. This work aims to design a hydrophobic material derived from BC, which may find use in a broad range of applications such as packaging, sensing, construction, and electronics. We report that ultrasonic treatment of BC increased the degree of material impregnation into the fiber network that altered the hydrophobic properties of the BC-based composite films. Measurements in XTM revealed that sonication enhanced the porosity of BC films from 5.77% to 22.54%. Materials such as magnesium hydroxide (MH), graphene oxide (GO), and stearic acid (SA) were impregnated into the BC films. FTIR analysis and SEM-EDS confirmed the absorption of these molecules into the BC fibers. The water contact angle (WCA) of BC films impregnated with these functional materials showed a three to four-fold increase in hydrophobicity. The incorporation of 0.3% GO in sonicated BC afforded WCA at 137.20°, which is way better than the commercial water repellant (114.90°). The sonicated BC film afforded better tensile strength and Young's modulus, up to 229.67 MPa and 6.85 GPa, respectively. This work has shown that ultrasonic treatment improved the absorption capability of BC towards hydrophobic functionalization. Ultrasonic treatment of bacterial cellulose increased the degree of material impregnation such as graphene oxide into the fiber network that altered the hydrophobic properties of the BC-based composite films.![]()
Collapse
Affiliation(s)
- Manolito G. Ybañez
- Chemistry Department, De La Salle University, 2401 Taft, Avenue, Manila 0922, Philippines
| | - Drexel H. Camacho
- Chemistry Department, De La Salle University, 2401 Taft, Avenue, Manila 0922, Philippines
- Central Instrumentation Facility, De La Salle University, Laguna Campus, LTI Spine Road, Barangays Biñan and Malamig, Biñan City, Laguna 4024, Philippines
- Organic Materials and Interfaces Unit, CENSER, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
| |
Collapse
|
27
|
Li L, Zhu J, Zeng Z. New Approach for Recycling Office Waste Paper: An Efficient and Recyclable Material for Oily Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55894-55902. [PMID: 33231071 DOI: 10.1021/acsami.0c16595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recycling has attracted great attention in academia, because of the economic and environmental benefits to industry. An eco-friendly strategy for recycling office waste paper (WP) was used to sustainedly separate oil-water mixtures. The hydroxyl groups of cellulose endow WP with superlipophilic and superhydrophilic properties in air and superoleophobic features under water. WP could separate various oils from oil-water mixtures, with separation efficiencies exceeding 99%. Importantly, the superhydrophilic WP could separate oil-water mixtures containing HCl, NaOH, and NaCl with separation efficiency above 98.9% for at least 30 cycles. The superoleophobicity of WP was maintained in solutions of different pH values for at least 24 h, suggesting good durability and stability. This green method is renewable, clean, cost-effective, and environmentally friendly. More importantly, the recycled office waste paper not only removes oil from oily wastewater (such as in oil spills) but also realizes the recycling of WP. This method could provide new insights into resource recycling.
Collapse
Affiliation(s)
- Longyang Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingfang Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, P. R. China
| | - Zhixiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Birjega R, Matei A, Marascu V, Vlad A, Ionita MD, Dinescu M, Zăvoianu R, Corobea MC. Stearic Acid/Layered Double Hydroxides Composite Thin Films Deposited by Combined Laser Techniques. Molecules 2020; 25:E4097. [PMID: 32911637 PMCID: PMC7571018 DOI: 10.3390/molecules25184097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 11/21/2022] Open
Abstract
We report on the investigation of stearic acid-layered double hydroxide (LDH) composite films, with controlled wettability capabilities, deposited by a combined pulsed laser deposition (PLD)-matrix-assisted pulsed laser evaporation (MAPLE) system. Two pulsed lasers working in IR or UV were used for experiments, allowing the use of proper deposition parameters (wavelength, laser fluence, repetition rate) for each organic and inorganic component material. We have studied the time stability and wettability properties of the films and we have seen that the morphology of the surface has a low effect on the wettability of the surfaces. The obtained composite films consist in stearic acid aggregates in LDH structure, exhibiting a shift to hydrophobicity after 36 months of storage.
Collapse
Affiliation(s)
- Ruxandra Birjega
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG-16, 077125 Magurele-Bucharest, Romania; (R.B.); (V.M.); (A.V.); (M.D.I.); (M.D.)
| | - Andreea Matei
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG-16, 077125 Magurele-Bucharest, Romania; (R.B.); (V.M.); (A.V.); (M.D.I.); (M.D.)
| | - Valentina Marascu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG-16, 077125 Magurele-Bucharest, Romania; (R.B.); (V.M.); (A.V.); (M.D.I.); (M.D.)
| | - Angela Vlad
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG-16, 077125 Magurele-Bucharest, Romania; (R.B.); (V.M.); (A.V.); (M.D.I.); (M.D.)
| | - Maria Daniela Ionita
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG-16, 077125 Magurele-Bucharest, Romania; (R.B.); (V.M.); (A.V.); (M.D.I.); (M.D.)
| | - Maria Dinescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG-16, 077125 Magurele-Bucharest, Romania; (R.B.); (V.M.); (A.V.); (M.D.I.); (M.D.)
| | - Rodica Zăvoianu
- Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, 4-12 Regina Elisabeta Av., S3, 030018 Bucharest, Romania;
| | - Mihai Cosmin Corobea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl.Independentei, 060021 Bucharest, Romania;
| |
Collapse
|
29
|
Song K, Shim J, Jung JY, Lee C, Nam Y. Endowing antifouling properties on metal substrata by creating an artificial barrier layer based on scalable metal oxide nanostructures. BIOFOULING 2020; 36:766-782. [PMID: 32842788 DOI: 10.1080/08927014.2020.1811238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Here, by creating different types of artificial barrier layer against bacterial attachment, anti-biofouling properties were endowed on three metallic surfaces - aluminum, stainless steel and titanium. To each metallic surface, a tailored chemical oxidation process was applied to grow scalable oxide structures with an additional appropriate coating, resulting in three different types of anti-biofouling barrier, a thin water film, an air layer and an oil layer. Fluorescence images of the attached bacteria showed that the water layer improved the anti-biofouling performance up to 8-12 h and the air layer up to 12-24 h, comparable with the lifetime of the air layer. In comparison, the oil layer exhibited the best anti-biofouling performance by suppressing the fouled area by < 10% up to 72 h regardless of the substratum type. The present work provides simple, low-cost, scalable strategies to enhance the anti-biofouling performance of industrially important metallic surfaces. [Formula: see text].
Collapse
Affiliation(s)
- Kyounghwan Song
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Jaehwan Shim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Jung-Yeul Jung
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships & Ocean Engineering, Daejeon, Republic of Korea
| | - Choongyeop Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| | - Youngsuk Nam
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
30
|
Zhang X, Wang B, Qin X, Ye S, Shi Y, Feng Y, Han W, Liu C, Shen C. Cellulose acetate monolith with hierarchical micro/nano-porous structure showing superior hydrophobicity for oil/water separation. Carbohydr Polym 2020; 241:116361. [PMID: 32507171 DOI: 10.1016/j.carbpol.2020.116361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Eco-friendly cellulose acetate (CA) monolith with novel hierarchical micro/nano-porous structure was successfully fabricated via a simple thermally impacted nonsolvent induced phase separation (TINIPS) method. Based on the unique three-dimensional (3D) hierarchical porous structure, CA monolith revealed a high porosity (92.1%), excellent hydrophobicity (water contact angle of 147°) and superoleophilicity (oil contact angle of 0°). As a result, the porous monolith could selectively and efficiently adsorb various oils and organic solvents from oil/water mixtures with high saturation adsorption capacity (Qm) of 6.59-15.03 g g-1. Besides, the monolith exhibited outstanding environmental stability in different pH (1-14), temperature (0-70 °C) and turbulent environments with almost unchanged hydrophobicity and Qm. Besides, CA monolith also showed a continuous oil/water separation ability to purify the polluted water by using a pump-assisted system, revealing a great potential for controlling ocean oil pollution.
Collapse
Affiliation(s)
- Xin Zhang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bo Wang
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Xiuming Qin
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shihang Ye
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yutao Shi
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuezhan Feng
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Wenjuan Han
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chuntai Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Changyu Shen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
31
|
Deng X, Zhang J, Zhang L, Cheng G, Chen B, Zhang Y, Gao G. Poly(ionic liquid)-Coated Meshes with Opposite Wettability for Continuous Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xi Deng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jingshun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Liren Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Guiren Cheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Bihua Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yongya Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Guohua Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
32
|
Magnetic and Hydrophobic Composite Polyurethane Sponge for Oil–Water Separation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Crude oil spills from offshore oil fields will cause serious pollution to the marine ecological environment. Many 3D porous materials have been used for oil–water separation, but they cannot be widely used due to complex preparation processes and expensive preparation costs. Here, a facile and cheap approach to disperse expanded graphite (EG), stearic acid, and Fe3O4 magnetic nanoparticles on the skeleton surface of polyurethane (PU) sponge to prepare the magnetic and hydrophobic composite polyurethane sponge for oil–water separation. The results show that the composite PU sponge had a strong oil absorption capacity for various oils, the oil adsorption capacities has reached 32–40 g/g, and it has become more hydrophobic. The addition of Fe3O4 magnetic nanoparticles endowed the sponge with magnetic responsivity, and the composite PU sponge still had a strong oil adsorption capacity after several adsorbing-squeezing cycles. The magnetic and hydrophobic composite polyurethane sponge is a very promising material for practical oil adsorption and oil–water separation.
Collapse
|
33
|
Buoyant and durable oil/water separation mesh for continuous and efficient collection of both oil slick and underwater oil leakage. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115795] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Jaseela PK, Shamsheera KO, Joseph A. HMDS–GPTMS Modified Titania Silica Nanocomposite: A New Material for Oil–Water Separation. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01405-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Yang L, Zhao Z, Wang H, Dong J, Wang L, Zhou Q, Wan X, Zhao R, Cai Z. Synthesis of ZnO/ZnS core/shell microsphere and its photocatalytic activity for methylene blue and eosin dyes degradation. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1653768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Liqin Yang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, China
| | - Zhiju Zhao
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | | | - Junfang Dong
- College of Marxism, Xingtai University, Xingtai, China
| | - Lili Wang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, China
| | - Qian Zhou
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, China
| | - Xiang Wan
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, China
| | - Ru Zhao
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, China
| | | |
Collapse
|
36
|
Xie J, Yang Y, Gao B, Wan Y, Li YC, Cheng D, Xiao T, Li K, Fu Y, Xu J, Zhao Q, Zhang Y, Tang Y, Yao Y, Wang Z, Liu L. Magnetic-Sensitive Nanoparticle Self-Assembled Superhydrophobic Biopolymer-Coated Slow-Release Fertilizer: Fabrication, Enhanced Performance, and Mechanism. ACS NANO 2019; 13:3320-3333. [PMID: 30817124 DOI: 10.1021/acsnano.8b09197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although commercialized slow-release fertilizers coated with petrochemical polymers have revolutionarily promoted agricultural production, more research should be devoted to developing superhydrophobic biopolymer coatings with superb slow-release ability from sustainable and ecofriendly biomaterials. To inform the development of the superhydrophobic biopolymer-coated slow-release fertilizers (SBSF), the slow-release mechanism of SBSF needs to be clarified. Here, the SBSF with superior slow-release performance, water tolerance, and good feasibility for large-scale production was self-assembly fabricated using a simple, solvent-free process. The superhydrophobic surfaces of SBSF with uniformly dispersed Fe3O4 superhydrophobic magnetic-sensitive nanoparticles (SMNs) were self-assembly constructed with the spontaneous migration of Fe3O4 SMNs toward the outermost surface of the liquid coating materials ( i.e., pig fat based polyol and polymethylene polyphenylene isocyanate in a mass ratio 1.2:1) in a magnetic field during the reaction-curing process. The results revealed that SBSF showed longer slow-release longevity (more than 100 days) than those of unmodified biopolymer-coated slow-release fertilizers and excellent durable properties under various external environment conditions. The governing slow-release mechanism of SBSF was clarified by directly observing the atmosphere cushion on the superhydrophobic biopolymer coating using the synchrotron radiation-based X-ray phase-contrast imaging technique. Liquid water only contacts the top of the bulges of the solid surface (10.9%), and air pockets are trapped underneath the liquid (89.1%). The atmosphere cushion allows the slow diffusion of water vapor into the internal urea core of SBSF, which can decrease the nutrient release and enhance the slow-release ability. This self-assembly synthesis of SBSF through the magnetic interaction provides a strategy to fabricate not only ecofriendly biobased slow-release fertilizers but also other superhydrophobic materials for various applications.
Collapse
Affiliation(s)
- Jiazhuo Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS , University of Florida , Homestead , Florida 33031 , United States
| | - Bin Gao
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32611-0570 , United States
| | - Yongshan Wan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yuncong C Li
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS , University of Florida , Homestead , Florida 33031 , United States
| | - Dongdong Cheng
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Tiqiao Xiao
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ke Li
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanan Fu
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Jing Xu
- College of Chemistry and Materials Science , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Qinghua Zhao
- College of Chemistry and Materials Science , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yanfei Zhang
- College of Chemistry and Materials Science , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yafu Tang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yuanyuan Yao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Zhonghua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Lu Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| |
Collapse
|
37
|
Superhydrophilic nickel-coated meshes with controllable pore size prepared by electrodeposition from deep eutectic solvent for efficient oil/water separation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Wen Q, Guo F, Peng Y, Guo Z. Superwetting meshes with grass-like structures in the pores for highly efficient separation of oil-in-water emulsion. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Wang J, Wang H. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation. MARINE POLLUTION BULLETIN 2017; 119:64-71. [PMID: 28341295 DOI: 10.1016/j.marpolbul.2017.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water.
Collapse
Affiliation(s)
- Jintao Wang
- College of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021, P.R. China.
| | - Hongfei Wang
- Suzhou Wuwei Environmental Technology Co., Ltd., Suzhou 215100, P.R. China
| |
Collapse
|
40
|
Singh AK, Singh JK. Fabrication of durable superhydrophobic coatings on cotton fabrics with photocatalytic activity by fluorine-free chemical modification for dual-functional water purification. NEW J CHEM 2017. [DOI: 10.1039/c7nj01042g] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine-free superhydrophobic coatings on cotton fabrics with photocatalytic activity.
Collapse
Affiliation(s)
- Arun K. Singh
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Jayant K. Singh
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
41
|
Zhu J, Wu L, Li J, Liu B, Zeng Z. A robust duplex Cu/PDMS-coated mesh with superhydrophobic surface for applications in cleaning of spilled oil. RSC Adv 2017. [DOI: 10.1039/c7ra00150a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this study, we created a robust nanostructure coated on the surface of a mesh via the electrodeposition and chemical modification to enhance the mechanical durability of the mesh surface with superhydrophobic performance.
Collapse
Affiliation(s)
- Jingfang Zhu
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Liyun Wu
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Jingjing Li
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Bin Liu
- School of Materials Science and Engineering
- North University of China
- Taiyuan 030051
- People's Republic of China
| | - Zhixiang Zeng
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
42
|
Singh AK, Singh JK. Fabrication of zirconia based durable superhydrophobic–superoleophilic fabrics using non fluorinated materials for oil–water separation and water purification. RSC Adv 2016. [DOI: 10.1039/c6ra24460b] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fluorine free superhydrophobic coating on cotton fabric by inexpensive dip coating method. The coated fabric exhibited high oil–water separation efficiency.
Collapse
Affiliation(s)
- Arun K. Singh
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Jayant K. Singh
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|