1
|
Kim SJ, Ryu G, Chang J, Kim DG, Park YH, Kim YJ, Kim S. Field-Assisted Efficient Capturing and Analysis of Airborne Nanoparticulate Matter Using a Multifunctional Nanoporous Membrane. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44261-44269. [PMID: 39134960 DOI: 10.1021/acsami.4c08516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
As the potential adverse health and environmental effects of nanoscale pollutants have garnered significant attention, the demand for monitoring and capturing ultrafine particulate matter has been growing. With the rise in ultrafine dust emissions, this issue has become increasingly important. However, submicron particles require advanced strategies to be captured because of their limited inertial effect. For example, electrostatic air filters have been investigated for their improved performance in the fine particle regime. On the other hand, Raman spectroscopy was proposed as a promising analytical strategy for aerosol particles because it can be used to conveniently detect analytes in a label-free manner. Thus, the synergistic integration of these strategies can open new applications for addressing environment-related challenges. This study presents a multifunctional approach for achieving both air filtration and surface-enhanced Raman scattering (SERS) for analyte identification. We propose a nanoporous membrane composed of a thin gold layer, copper, and copper oxide to provide the desired functions. The structures are produced by performing scalable electrodeposition and subsequent electron-beam evaporation, attaining an excellent filtration efficiency of 95.9% with an applied voltage of 5 kV for 300 nm KCl particles and a pressure drop of 121 Pa. Raman intensity measurements confirm that the nanodendritic surface of the membrane intensifies the Raman signals and allows for the detection of 10 μL of nanoplastic particle dispersion with a concentration of 50 μg/mL. Rhodamine 6G aerosol stream with an approximate particle deposition rate of 0.040 × 106 mm-2·min-1 is also identified in a minimum detectable time of 50 s. The membrane is shown to be recyclable owing to its structural robustness in organic solvents. In addition, the fatigue resistance of the structure is evaluated through 22,000 iterative loading cycles at a pressure of 177 kPa. No performance degradation is observed after the fatigue loading.
Collapse
Affiliation(s)
- Seong Jae Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gaabhin Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jihae Chang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Geun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Ho Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Jin Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Lei Z, Chen B, Brooks SD. Effect of Acidity on Ice Nucleation by Inorganic-Organic Mixed Droplets. ACS EARTH & SPACE CHEMISTRY 2023; 7:2562-2573. [PMID: 38148991 PMCID: PMC10749479 DOI: 10.1021/acsearthspacechem.3c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Aerosol acidity significantly influences heterogeneous chemical reactions and human health. Additionally, acidity may play a role in cloud formation by modifying the ice nucleation properties of inorganic and organic aerosols. In this work, we combined our well-established ice nucleation technique with Raman microspectroscopy to study ice nucleation in representative inorganic and organic aerosols across a range of pH conditions (pH -0.1 to 5.5). Homogeneous nucleation was observed in systems containing ammonium sulfate, sulfuric acid, and sucrose. In contrast, droplets containing ammonium sulfate mixed with diethyl sebacate, poly(ethylene glycol) 400, and 1,2,6-hexanetriol were found to undergo liquid-liquid phase separation, exhibiting core-shell morphologies with observed initiation of heterogeneous freezing in the cores. Our experimental findings demonstrate that an increased acidity reduces the ice nucleation ability of droplets. Changes in the ratio of bisulfate to sulfate coincided with shifts in ice nucleation temperatures, suggesting that the presence of bisulfate may decrease the ice nucleation efficiency. We also report on how the morphology and viscosity impact ice nucleation properties. This study aims to enhance our fundamental understanding of acidity's effect on ice nucleation ability, providing context for the role of acidity in atmospheric ice cloud formation.
Collapse
Affiliation(s)
- Ziying Lei
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| | - Bo Chen
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Chen B, Mirrielees JA, Chen Y, Onasch TB, Zhang Z, Gold A, Surratt JD, Zhang Y, Brooks SD. Glass Transition Temperatures of Organic Mixtures from Isoprene Epoxydiol-Derived Secondary Organic Aerosol. J Phys Chem A 2023; 127:4125-4136. [PMID: 37129903 PMCID: PMC10863072 DOI: 10.1021/acs.jpca.2c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The phase states and glass transition temperatures (Tg) of secondary organic aerosol (SOA) particles are important to resolve for understanding the formation, growth, and fate of SOA as well as their cloud formation properties. Currently, there is a limited understanding of how Tg changes with the composition of organic and inorganic components of atmospheric aerosol. Using broadband dielectric spectroscopy, we measured the Tg of organic mixtures containing isoprene epoxydiol (IEPOX)-derived SOA components, including 2-methyltetrols (2-MT), 2-methyltetrol-sulfate (2-MTS), and 3-methyltetrol-sulfate (3-MTS). The results demonstrate that the Tg of mixtures depends on their composition. The Kwei equation, a modified Gordon-Taylor equation with an added quadratic term and a fitting parameter representing strong intermolecular interactions, provides a good fit for the Tg-composition relationship of complex mixtures. By combining Raman spectroscopy with geometry optimization simulations obtained using density functional theory, we demonstrate that the non-linear deviation of Tg as a function of composition may be caused by changes in the extent of hydrogen bonding in the mixture.
Collapse
Affiliation(s)
- Bo Chen
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| | - Jessica A. Mirrielees
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48104, United States
| | - Yuzhi Chen
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Timothy B. Onasch
- Aerodyne
Research, Inc, 45 Manning
Road, Billerica, Massachusetts 01821, United States
| | - Zhenfa Zhang
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
- College
of Arts and Sciences, Department of Chemistry, University of North Carolina at Chapel Hill, Campus Box #3290, 125 South Road, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Wu Z, Yi Y, Hai F, Tian X, Zheng S, Guo J, Tang W, Hua W, Li M. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22065-22074. [PMID: 37122124 DOI: 10.1021/acsami.3c00988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Solid-state lithium metal batteries are promising next-generation rechargeable energy storage systems. However, the poor compatibility of the electrode/electrolyte interface and the low lithium ion conductivity of solid-state electrolytes are key issues hindering the practicality of solid-state electrolytes. Herein, rational designed metal-organic frameworks (MOFs) with the incorporation of two types of ionic liquids (ILs) are fabricated as quasi-solid electrolytes. The obtained MOF-IL electrolytes offer continuous ion transport channels with the functional sulfonic acid groups serving as lithium ion hopping sites, which accelerate the Li+ transport both in the bulk and at the interfaces. The quasi-solid MOF-IL electrolytes exhibit competitive ionic conductivities of over 3.0 × 10-4 S cm-1 at room temperature, wide electrochemical windows over 5.2 V, and good interfacial compatibility, together with greatly enhanced Li+ transference numbers compared to the bare IL electrolyte. Consequently, the assembled quasi-solid Li metal batteries show either superior stability at low C rates or improved rate performance, related to the species of ILs. Overall, the quasi-solid MOF-IL electrolytes possess great application potential in high-safety and high-energy-density lithium metal batteries.
Collapse
Affiliation(s)
- Zhendi Wu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Yikun Yi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Hai
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Xiaolu Tian
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Shentuo Zheng
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Jingyu Guo
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Wei Tang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Weibo Hua
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Mingtao Li
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
5
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
6
|
Hettiarachchi E, Grassian VH. Heterogeneous Formation of Organonitrates (ON) and Nitroxy-Organosulfates (NOS) from Adsorbed α-Pinene-Derived Organosulfates (OS) on Mineral Surfaces. ACS EARTH & SPACE CHEMISTRY 2022; 6:3017-3030. [PMID: 36561194 PMCID: PMC9762235 DOI: 10.1021/acsearthspacechem.2c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Organonitrates (ON) and nitroxy-organosulfates (NOS) are important components of secondary organic aerosols (SOAs). Gas-phase reactions of α-pinene (C10H16), a primary precursor for several ON compounds, are fairly well understood although formation pathways for NOS largely remain unknown. NOS formation may occur via reactions of ON and organic peroxides with sulfates as well as through radical-initiated photochemical processes. Despite the fact that organosulfates (OS) represent a significant portion of the organic aerosol mass, ON and NOS formation from OS is less understood, especially through nighttime heterogeneous and multiphase chemistry pathways. In the current study, surface reactions of adsorbed α-pinene-derived OS with nitrogen oxides on hematite and kaolinite surfaces, common components of mineral dust, have been investigated. α-Pinene reacts with sulfated mineral surfaces, forming a range of OS compounds on the surface. These OS compounds when adsorbed on mineral surfaces can further react with HNO3 and NO2, producing several ON and NOS compounds as well as several oxidation products. Overall, this study reveals the complexity of reactions of prevalent organic compounds leading to the formation of OS, ON, and NOS via heterogeneous and multiphase reaction pathways on mineral surfaces. It is also shown that this chemistry is mineralogy-specific.
Collapse
|
7
|
Tran LN, Abellar KA, Cope JD, Nguyen TB. Second-Order Kinetic Rate Coefficients for the Aqueous-Phase Sulfate Radical (SO 4•-) Oxidation of Some Atmospherically Relevant Organic Compounds. J Phys Chem A 2022; 126:6517-6525. [PMID: 36069746 PMCID: PMC9511566 DOI: 10.1021/acs.jpca.2c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The sulfate anion radical (SO4•–) is a reactive oxidant formed in the autoxidation chain of sulfur
dioxide, among other sources. Recently, new formation pathways toward
SO4•– and other reactive sulfur
species have been reported. This work investigated the second-order
rate coefficients for the aqueous SO4•– oxidation of the following important organic aerosol compounds (kSO4): 2-methyltetrol, 2-methyl-1,2,3-trihydroxy-4-sulfate,
2-methyl-1,2-dihydroxy-3-sulfate, 1,2-dihydroxyisoprene, 2-methyl-2,3-dihydroxy-1,4-dinitrate,
2-methyl-1,2,4-trihydroxy-3-nitrate, 2-methylglyceric acid, 2-methylglycerate,
lactic acid, lactate, pyruvic acid, pyruvate. The rate coefficients
of the unknowns were determined against that of a reference in pure
water in a temperature range of 298–322 K. The decays of each
reagent were measured with nuclear magnetic resonance (NMR) and high-performance
liquid chromatography–high-resolution mass spectrometry (HPLC-HRMS).
Incorporating additional SO4•– reactions into models may aid in the understanding of organosulfate
formation, radical propagation, and aerosol mass sinks.
Collapse
Affiliation(s)
- Lillian N Tran
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Karizza A Abellar
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - James D Cope
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
8
|
Fankhauser AM, Lei Z, Daley KR, Xiao Y, Zhang Z, Gold A, Ault BS, Surratt JD, Ault AP. Acidity-Dependent Atmospheric Organosulfate Structures and Spectra: Exploration of Protonation State Effects via Raman and Infrared Spectroscopies Combined with Density Functional Theory. J Phys Chem A 2022; 126:5974-5984. [PMID: 36017944 DOI: 10.1021/acs.jpca.2c04548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organosulfates formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions can account for >15% of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. However, fundamental understanding of organosulfate molecular structures is limited, particularly at atmospherically relevant acidities (pH = 0-6). Herein, for 2-methyltetrol sulfates (2-MTSs), an important group of isoprene-derived organosulfates, protonation state and vibrational modes were studied using Raman and infrared spectroscopy, as well as density functional theory (DFT) calculations of vibrational spectra for neutral (RO-SO3H) and anionic/deprotonated (RO-SO3-) structures. The calculated sulfate group vibrations differ for the two protonation states due to their different sulfur-oxygen bond orders (1 or 2 versus 12/3 for the neutral and deprotonated forms, respectively). Only vibrations at 1060 and 1041 cm-1, which are associated with symmetric S-O stretches of the 2-MTS anion, were observed experimentally with Raman, while sulfate group vibrations for the neutral form (∼900, 1200, and 1400 cm-1) were not observed. Additional calculations of organosulfates formed from other SOA-precursor gases (α-pinene, β-caryophyllene, and toluene) identified similar symmetric vibrations between 1000 and 1100 cm-1 for RO-SO3-, consistent with corresponding organosulfates formed during laboratory experiments. These results suggest that organosulfates are primarily deprotonated at atmospheric pH values, which have further implications for aerosol acidity, heterogeneous reactions, and continuing chemistry in atmospheric aerosols.
Collapse
Affiliation(s)
- Alison M Fankhauser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kimberly R Daley
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yao Xiao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhenfa Zhang
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Avram Gold
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Bruce S Ault
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jason D Surratt
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 United States.,Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Lei Z, Chen Y, Zhang Y, Cooke ME, Ledsky IR, Armstrong NC, Olson NE, Zhang Z, Gold A, Surratt JD, Ault AP. Initial pH Governs Secondary Organic Aerosol Phase State and Morphology after Uptake of Isoprene Epoxydiols (IEPOX). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10596-10607. [PMID: 35834796 DOI: 10.1021/acs.est.2c01579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.
Collapse
Affiliation(s)
- Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Madeline E Cooke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isabel R Ledsky
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - N Cazimir Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Lackey HE, Colburn HA, Olarte MV, Lemmon T, Felmy HM, Bryan SA, Lines AM. On-Line Raman Measurement of the Radiation-Enhanced Reaction of Cellobiose with Hydrogen Peroxide. ACS OMEGA 2021; 6:35457-35466. [PMID: 34984277 PMCID: PMC8717536 DOI: 10.1021/acsomega.1c04852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Production of a chemical feedstock as a secondary product from a commercial nuclear reactor can increase the economic viability of the reactor and enable the deployment of nuclear energy as part of the low-carbon energy grid. Currently, commercial nuclear reactors produce underutilized energy in the form of neutrons and gamma photons. This excess energy can be exploited to drive chemical reactions, increasing the fraction of utilized energy in reactors and providing a valuable secondary product from the reactor. Gamma degradation of cellulosic biomass has been studied previously. However, real-time, on-line monitoring of the breakdown of biomass materials under gamma radiation has not been demonstrated. Here, we demonstrate on-line monitoring of the reaction of cellobiose with hydrogen peroxide under gamma radiation using Raman spectroscopy, providing in situ quantification of organic and inorganic system components.
Collapse
Affiliation(s)
- Hope E. Lackey
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Heather A. Colburn
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mariefel V. Olarte
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Heather M. Felmy
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samuel A. Bryan
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Amanda M. Lines
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Abellar KA, Cope JD, Nguyen TB. Second-Order Kinetic Rate Coefficients for the Aqueous-Phase Hydroxyl Radical (OH) Oxidation of Isoprene-Derived Secondary Organic Aerosol Compounds at 298 K. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13728-13736. [PMID: 34587441 DOI: 10.1021/acs.est.1c04606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hydroxyl radical (OH) oxidation of the most abundant nonmethane volatile organic compound emitted to the atmosphere, isoprene (C5H8), produces a number of chemical species that partition to the condensed phase via gas-particle partitioning or form condensed-phase compounds via multiphase/heterogeneous chemistry to generate secondary organic aerosols (SOA). The SOA species in aerosol water or cloud/fog droplets may oxidize further via aqueous reaction with OH radicals, among other fates. Rate coefficients for compounds in isoprene's photochemical cascade are well constrained in the gas phase; however, a gap of information exists for the aqueous OH rate coefficients of the condensed-phased products, precluding the atmospheric modeling of the oxidative fate of isoprene-derived SOA. This work investigated the OH-initiated oxidation kinetic rate coefficients (kOH) for six major SOA compounds formed from the high-NO and low-NO channels of isoprene's atmospheric oxidation and one analog, most of which were synthesized and purified for study: (k1) 2-methyltetrol [MT: 1.14 (±0.17) × 109 M-1 s-1], (k2) 2-methyl-1,2,3-trihydroxy-4-sulfate [MT-4-S: 1.52 (±0.25) × 109 M-1 s-1], (k3) 2-methyl-1,2-dihydroxy-3-sulfate [MD-3-S: 0.56 (±0.15) × 109 M-1 s-1], (k4) 2-methyl-1,2-dihydroxy-but-3-ene [MDE: 4.35 (±1.16) × 109 M-1 s-1], (k5) 2-methyl-2,3-dihydroxy-1,4-dinitrate [MD-1,4-DN: 0.24 (±0.04) × 109 M-1 s-1], (k6) 2-methyl-1,2,4-trihydroxy-3-nitrate [MT-3-N: 1.12 (±0.15) × 109 M-1 s-1], and (k7) 2-methylglyceric acid [MGA: pH 2:1.41 (±0.49) × 109 M-1 s-1; pH 5:0.97 (±0.42) × 109 M-1 s-1]. The second-order rate coefficients are determined against the known kOH of erythritol in pure water. The decays of each reagent were measured with nuclear magnetic resonance (NMR) and high-performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). The aqueous photooxidation fates of isoprene-derived SOA compounds are substantial and may impact the SOA budget when implemented into global models.
Collapse
Affiliation(s)
- Karizza A Abellar
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - James D Cope
- Department of Environmental Toxicology, University of California-Davis, Davis, California 95616, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California-Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Gao K, Zhu T. Analytical methods for organosulfate detection in aerosol particles: Current status and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147244. [PMID: 34088066 DOI: 10.1016/j.scitotenv.2021.147244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Organosulfates (OSs) are well-known water-soluble constituents of atmospheric aerosol particles. They are formed from multiphase reactions between volatile organic compounds (VOCs) and their photooxidation products, and acidic sulfate originating from biogenic and anthropogenic sources in the atmosphere. Although the analytical procedures used to measure OSs, including sampling, pre-treatment, and instrumental detection, have advanced substantially in the last decade, there is still a need for accurate and standardized analysis procedures for the identification, quantification, and comparison of OSs in different regions. Additionally, there has no study focused on the health effects of OSs. This review outlines the analytical methods developed for OS detection during the last decade, highlighting both improvements and drawbacks. It also considers the future development of analytical methods for OS detection, and proposes the establishment of OSs screening method from the perspective of health effects to solve the problem of unknown health related OSs identification.
Collapse
Affiliation(s)
- Ke Gao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
13
|
Secondary Organic Aerosol Formation from Isoprene: Selected Research, Historic Account and State of the Art. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review, we cover selected research on secondary organic aerosol (SOA) formation from isoprene, from the beginning of research, about two decades ago, to today. The review begins with the first observations of isoprene SOA markers, i.e., 2-methyltetrols, in ambient fine aerosol and focuses on studies dealing with molecular characterization, speciation, formation mechanisms, and source apportionment. A historic account is given on how research on isoprene SOA has developed. The isoprene SOA system is rather complex, with different pathways being followed in pristine and polluted conditions. For SOA formation from isoprene, acid-catalyzed hydrolysis is necessary, and sulfuric acid enhances SOA by forming additional nonvolatile products such as organosulfates. Certain results reported in early papers have been re-interpreted in the light of recent results; for example, the formation of C5-alkene triols. Attention is given to mass spectrometric and separation techniques, which played a crucial role in molecular characterization. The unambiguous structural characterization of isoprene SOA markers has been achieved, owing to the preparation of reference compounds. Efforts have also been made to use air quality data to estimate the influence of biogenic and pollution aerosol sources. This review examines the use of an organic marker-based method and positive matrix factorization to apportion SOA from different sources, including isoprene SOA.
Collapse
|
14
|
Sequential SEM-EDS, PLM, and MRS Microanalysis of Individual Atmospheric Particles: A Useful Tool for Assigning Emission Sources. TOXICS 2021; 9:toxics9020037. [PMID: 33670617 PMCID: PMC7922855 DOI: 10.3390/toxics9020037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022]
Abstract
In this work, the particulate matter (PM) from three different monitoring stations in the Monterrey Metropolitan Area in Mexico were investigated for their compositional, morphological, and optical properties. The main aim of the research was to decipher the different sources of the particles. The methodology involved the ex situ sequential analysis of individual particles by three analytical techniques: scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), polarized light microscopy (PLM), and micro-Raman spectroscopy (MRS). The microanalysis was performed on samples of total suspended particles. Different morphologies were observed for particles rich in the same element, including prismatic, spherical, spheroidal, and irregular morphologies. The sequential microanalysis by SEM-EDS/PLM/MRS revealed that Fe-rich particles with spherical and irregular morphologies were derived from anthopogenic sources, such as emissions from the metallurgical industry and the wear of automobile parts, respectively. In contrast, Fe-rich particles with prismatic morphologies were associated with natural sources. In relation to carbon (C), the methodology was able to distinguish between the C-rich particles that came from different anthopogenic sources—such as the burning of fossil fuels, biomass, or charcoal—and the metallurgical industry. The optical properties of the Si-rich particles depended, to a greater extent, on their chemical composition than on their morphology, which made it possible to quickly and accurately differentiate aluminosilicates from quartz. The methodology demonstrated in this study was useful for performing the speciation of the particles rich in different elements. This differentiation helped to assign their possible emission sources.
Collapse
|
15
|
Wolf MJ, Zhang Y, Zawadowicz MA, Goodell M, Froyd K, Freney E, Sellegri K, Rösch M, Cui T, Winter M, Lacher L, Axisa D, DeMott PJ, Levin EJT, Gute E, Abbatt J, Koss A, Kroll JH, Surratt JD, Cziczo DJ. A biogenic secondary organic aerosol source of cirrus ice nucleating particles. Nat Commun 2020; 11:4834. [PMID: 33004794 PMCID: PMC7529764 DOI: 10.1038/s41467-020-18424-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/20/2020] [Indexed: 11/12/2022] Open
Abstract
Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at -46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L-1. Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.
Collapse
Affiliation(s)
- Martin J Wolf
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, MA, 02139, USA
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA
- Aerodyne Research Incorporated, Center for Aerosol and Cloud Chemistry, 45 Manning Road,, Billerica, MA, 01821, USA
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
- Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, Texas, 77843, USA
| | - Maria A Zawadowicz
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, MA, 02139, USA
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Megan Goodell
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, MA, 02139, USA
| | - Karl Froyd
- NOAA Earth System Research Laboratory (ESRL), Chemical Sciences Division, Boulder, CO, 80305, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Evelyn Freney
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), F-63000, Clermont-Ferrand, France
| | - Karine Sellegri
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), F-63000, Clermont-Ferrand, France
| | - Michael Rösch
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, MA, 02139, USA
- Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, Villigen, Switzerland
| | - Margaux Winter
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Larissa Lacher
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-AAF), Eggenstein-Leopoldshafen, Germany
| | - Duncan Axisa
- Droplet Measurement Technologies, Longmont, CO, 80503, USA
| | - Paul J DeMott
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ezra J T Levin
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
- Handix Scientific, Boulder, CO, 20854, USA
| | - Ellen Gute
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jonathan Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Abigail Koss
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, MA, 02139, USA
- Tofwerk USA, 2760 29th St., Boulder, CO, 80301, USA
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA, 02139, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina, 27599, USA
| | - Daniel J Cziczo
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA, 02139, USA.
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Ault AP. Aerosol Acidity: Novel Measurements and Implications for Atmospheric Chemistry. Acc Chem Res 2020; 53:1703-1714. [PMID: 32786333 DOI: 10.1021/acs.accounts.0c00303] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pH of a solution is one of its most fundamental chemical properties, impacting reaction pathways and kinetics across every area of chemistry. The atmosphere is no different, with the pH of the condensed phase driving key chemical reactions that ultimately impact global climate in numerous ways. The condensed phase in the atmosphere is comprised of suspended liquid or solid particles, known as the atmospheric aerosol, which are differentiated from cloud droplets by their much smaller size (primarily <10 μm). The pH of the atmospheric aerosol can enhance certain chemical reactions leading to the formation of additional condensed phase mass from lower volatility species (secondary aerosol), alter the optical and water uptake properties of particles, and solubilize metals that can act as key nutrients in nutrient-limited ecosystems or cause oxidative stress after inhalation. However, despite the importance of aerosol acidity for climate and health, our fundamental understanding of pH has been limited due to aerosol size (by number >99% of particles are <1 μm) and complexity. Within a single atmospheric particle, there can be hundreds to thousands of distinct chemical species, varying water content, high ionic strengths, and different phases (liquid, semisolid, and solid). Making aerosol analysis even more challenging, atmospheric particles are constantly evolving through heterogeneous reactions with gases and multiphase chemistry within the condensed phase. Based on these challenges, traditional pH measurements are not feasible, and, for years, indirect and proxy methods were the most common way to estimate aerosol pH, with mixed results. However, aerosol pH needs to be incorporated into climate models to accurately determine which chemical reactions are dominant in the atmosphere. Consequently, experimental measurements that probe pH in atmospherically relevant particles are sorely needed to advance our understanding of aerosol acidity.This Account describes recent advances in measurements of aerosol particle acidity, specifically three distinct methods we developed for experimentally determining particle pH. Our acid-conjugate base method uses Raman microspectroscopy to probe an acid (e.g., HSO4-) and its conjugate base (e.g., SO42-) in individual micrometer-sized particles. Our second approach is a field-deployable colorimetric method based on pH indicators (e.g., thymol blue) and cell phone imaging to provide a simple, low-cost approach to ensemble average (or bulk) pH for particles in distinct size ranges down to a few hundred nanometers in diameter. In our third method, we monitor acid-catalyzed polymer degradation of a thin film (∼23 nm) of poly(ε-caprolactone) (PCL) on silicon by individual particles with atomic force microscopy (AFM) after inertially impacting particles of different pH. These measurements are improving our understanding of aerosol pH from a fundamental physical chemistry perspective and have led to initial atmospheric measurements. The impact of aerosol pH on key atmospheric processes, such as secondary organic aerosol (SOA) formation, is discussed. Some unique findings, such as an unexpected size dependence to aerosol pH and kinetic limitations, illustrate that particles are not always in thermodynamic equilibrium with the surrounding gas. The implications of our limited, but improving, understanding of the fundamental chemical concept of pH in the atmospheric aerosol are critical for connecting chemistry and climate.
Collapse
Affiliation(s)
- Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Schmedding R, Rasool QZ, Zhang Y, Pye HOT, Zhang H, Chen Y, Surratt JD, Lopez-Hilfiker FD, Thornton JA, Goldstein AH, Vizuete W. Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:8201-8225. [PMID: 32983235 PMCID: PMC7510956 DOI: 10.5194/acp-20-8201-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase separation based on their glass transition temperature (T g), oxygen to carbon (O : C) ratio and organic mass to sulfate ratio, and meteorological conditions was implemented into the Community Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 and was used to simulate the conditions in the continental United States for the summer of 2013. SOA formed at the ground/surface level was predicted to be phase separated with core-shell morphology, i.e., aqueous inorganic core surrounded by organic coating 65.4 % of the time during the 2013 Southern Oxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeastern United States. Our estimate is in proximity to the previously reported ~ 70 % in literature. The phase states of organic coatings switched between semi-solid and liquid states, depending on the environmental conditions. The semi-solid shell occurring with lower aerosol liquid water content (western United States and at higher altitudes) has a viscosity that was predicted to be 102-1012 Pa s, which resulted in organic mass being decreased due to diffusion limitation. Organic aerosol was primarily liquid where aerosol liquid water was dominant (eastern United States and at the surface), with a viscosity < 102 Pa s. Phase separation while in a liquid phase state, i.e., liquid-liquid phase separation (LLPS), also reduces reactive uptake rates relative to homogeneous internally mixed liquid morphology but was lower than aerosols with a thick viscous organic shell. The sensitivity cases performed with different phase-separation parameterization and dissolution rate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can have varying impact on fine particulate matter (PM2.5) organic mass, in terms of bias and error compared to field data collected during the 2013 SOAS. This highlights the need to better constrain the parameters that govern phase state and morphology of SOA, as well as expand mechanistic representation of multiphase chemistry for non-IEPOX SOA formation in models aided by novel experimental insights.
Collapse
Affiliation(s)
- Ryan Schmedding
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Quazi Z. Rasool
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Yue Zhang
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
- Aerodyne Research, Inc., Billerica, MA 01821, USA
| | - Havala O. T. Pye
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
- Office of Research and Development, Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA
| | - Haofei Zhang
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Yuzhi Chen
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Jason D. Surratt
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | | | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - Allen H. Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - William Vizuete
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
18
|
Shi W, Shen J, Shen L, Hu W, Xu P, Baucom JA, Ma S, Yang S, Chen XM, Lu Y. Electrolyte Membranes with Biomimetic Lithium-Ion Channels. NANO LETTERS 2020; 20:5435-5442. [PMID: 32491862 DOI: 10.1021/acs.nanolett.0c01910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance lithium-ion batteries (LIBs) demand efficient and selective transport of lithium ions. Inspired by ion channels in biology systems, lithium-ion channels are constructed by chemically modifying the nanoporous channels of metal-organic frameworks (MOFs) with negatively charged sulfonate groups. Analogous to the biological ion channels, such pendant anionic moieties repel free anions while allowing efficient transport of cations through the pore channels. Implementing such MOFs as an electrolyte membrane doubly enhances the lithium-ion transference number, alleviates concentration polarization, and affords striking durability of high-rate LIBs. This work demonstrates an ion-selective material design that effectively tunes the ion-transport behavior and could assist with more efficient operation of LIBs.
Collapse
Affiliation(s)
- Wenyue Shi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jianqiang Shen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Li Shen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Wei Hu
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P.R. China
| | - Pengcheng Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jesse A Baucom
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Shengxiang Ma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Shuxing Yang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Xiao-Ming Chen
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
19
|
Olson NE, Xiao Y, Lei Z, Ault AP. Simultaneous Optical Photothermal Infrared (O-PTIR) and Raman Spectroscopy of Submicrometer Atmospheric Particles. Anal Chem 2020; 92:9932-9939. [PMID: 32519841 DOI: 10.1021/acs.analchem.0c01495] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physicochemical analysis of individual atmospheric aerosols at the most abundant sizes in the atmosphere (<1 μm) is analytically challenging, as hundreds to thousands of species are often present in femtoliter volumes. Vibrational spectroscopies, such as infrared (IR) and Raman, have great potential for probing functional groups in single particles at ambient pressure and temperature. However, the diffraction limit of IR radiation limits traditional IR microscopy to particles > ∼10 μm, which have less relevance to aerosol health and climate impacts. Optical photothermal infrared (O-PTIR) spectroscopy is a contactless method that circumvents diffraction limitations by using changes in the scattering intensity of a continuous wave visible laser (532 nm) to detect the photothermal expansion when a vibrational mode is excited by a tunable IR laser (QCL: 800-1800 cm-1 or OPO: 2600-3600 cm-1). Herein, we simultaneously collect O-PTIR spectra with Raman spectra at a single point for individual particles with aerodynamic diameters <400 nm (prior to impaction and spreading) at ambient temperature and pressure, by also collecting the inelastically scattered visible photons for Raman spectra. O-PTIR and Raman spectra were collected for submicrometer particles with different substrates, particle chemical compositions, and morphologies (i.e., core-shell), as well as IR mapping with submicron spatial resolution. Initial O-PTIR analysis of ambient atmospheric particles identified both inorganic and organic modes in individual sub- and supermicrometer particles. The simultaneous IR and Raman microscopy with submicrometer spatial resolution described herein has considerable potential both in atmospheric chemistry and numerous others fields (e.g., materials and biological research).
Collapse
Affiliation(s)
- Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yao Xiao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Lei Z, Bliesner SE, Mattson CN, Cooke ME, Olson NE, Chibwe K, Albert JNL, Ault AP. Aerosol Acidity Sensing via Polymer Degradation. Anal Chem 2020; 92:6502-6511. [PMID: 32227877 DOI: 10.1021/acs.analchem.9b05766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The acidity of atmospheric aerosols is a critical property that affects the chemistry and composition of the atmosphere. Many key multiphase chemical reactions are pH-dependent, impacting processes like secondary organic aerosol formation, and need to be understood at a single particle level due to differences in particle-to-particle composition that impact both climate and health. However, the analytical challenge of measuring aerosol acidity in individual particles has limited pH measurements for fine (<2.5 μm) and coarse (2.5-10 μm) particles. This has led to a reliance on indirect methods or thermodynamic modeling, which focus on average, not individual, particle pH. Thus, new approaches are needed to probe single particle pH. In this study, a novel method for pH measurement was explored using degradation of a pH-sensitive polymer, poly(ε-caprolactone), to determine the acidity of individual submicron particles. Submicron particles of known pH (0 or 6) were deposited on a polymer film (21-25 nm thick) and allowed to react. Particles were then rinsed off, and the degradation of the polymer was characterized using atomic force microscopy and Raman microspectroscopy. After degradation, holes in the PCL films exposed to pH 0 were observed, and the loss of the carbonyl stretch was monitored at 1723 cm-1. As particle size decreased, polymer degradation increased, indicating an increase in aerosol acidity at smaller particle diameters. This study describes a new approach to determine individual particle acidity and is a step toward addressing a key measurement gap related to our understanding of atmospheric aerosol impacts on climate and health.
Collapse
Affiliation(s)
- Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samuel E Bliesner
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Claire N Mattson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeline E Cooke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaseba Chibwe
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Julie N L Albert
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Pye HOT, Nenes A, Alexander B, Ault AP, Barth MC, Clegg SL, Collett JL, Fahey KM, Hennigan CJ, Herrmann H, Kanakidou M, Kelly JT, Ku IT, McNeill VF, Riemer N, Schaefer T, Shi G, Tilgner A, Walker JT, Wang T, Weber R, Xing J, Zaveri RA, Zuend A. The Acidity of Atmospheric Particles and Clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:4809-4888. [PMID: 33424953 PMCID: PMC7791434 DOI: 10.5194/acp-20-4809-2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
Collapse
Affiliation(s)
- Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mary C. Barth
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Simon L. Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Christopher J. Hennigan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Maria Kanakidou
- Department of Chemistry, University of Crete, Voutes, Heraklion Crete, 71003, Greece
| | - James T. Kelly
- Office of Air Quality Planning & Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - I-Ting Ku
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicole Riemer
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, 61801, USA
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Nankai University, Tianjin, 300071, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - John T. Walker
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rodney Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jia Xing
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rahul A. Zaveri
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada
| |
Collapse
|
22
|
Lackey HE, Nelson GL, Lines AM, Bryan SA. Reimagining pH Measurement: Utilizing Raman Spectroscopy for Enhanced Accuracy in Phosphoric Acid Systems. Anal Chem 2020; 92:5882-5889. [PMID: 32223185 DOI: 10.1021/acs.analchem.9b05708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Measurement of pH is an integral component of chemical studies and process control; however, traditional pH probes are difficult to utilize in harsh or complex chemical systems. Optical spectroscopy-based online monitoring offers a powerful and novel route for characterizing system parameters, such as pH, and is well adapted to deployment in harsh environments or chemically complex systems. Specifically, Raman spectroscopy combined with chemometric analysis can provide an improved method of online p[H+] measurement. Multivariate curve resolution (MCR) analysis of Raman spectra can be utilized to determine speciation as a function of p[H+], and the MCR scores assigned to each species can be used to calculate p[H+]. Subsequent chemometric modeling can be used to correlate spectral response to p[H+]. This was demonstrated with phosphoric acid, a chemical system known to challenge traditional pH probes. Raman spectra exhibit clear changes with pH due to changing speciation, and chemometric modeling can be successfully utilized to correlate those fingerprints to p[H+]. With the use of this approach, p[H+] of the phosphoric acid system can be accurately measured without foreknowledge of system conditions such as ionic strength.
Collapse
Affiliation(s)
- Hope E Lackey
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gilbert L Nelson
- Department of Chemistry, College of Idaho, 2112 Cleveland Boulevard, Caldwell, Idaho 83605, United States
| | - Amanda M Lines
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Samuel A Bryan
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
23
|
Dissolution of a surfactant-water lamellar phase investigated by combining time-lapse polarized light microscopy and confocal Raman spectroscopy. J Colloid Interface Sci 2020; 561:136-146. [PMID: 31812860 DOI: 10.1016/j.jcis.2019.11.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/31/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS While the phase behavior of aqueous surfactant solutions is usually described in term of the equilibrium microstructures of lyotropic liquid crystals, the transformations which take place when a phase turns into another one, either by changing the concentration or the temperature, are still to be elucidated. A simultaneous determination of concentration and microstructure is at order to elucidate the phase behavior under changing conditions, such as in a dissolution experiment. EXPERIMENTS Confocal Raman micro-spectroscopy and time-lapse polarized light microscopy are combined to study the phase transitions taking place in the dissolution of a common anionic surfactant (sodium laurylethersulfate) in water. FINDINGS By comparing Raman concentration profiles and polarized light images, it is found that the aqueous solution, with initial surfactant concentration of 72 wt%, undergoes a sequence of complex microstructural transformations including distortion of the initial lamellar phase, formation of an intermediate striated texture, which can be considered as a precursor of a cubic phase, and a heterogeneous hexagonal phase going through a transition region before turning into a micellar phase. The effects of the sodium counter-ion and of water confinement are also investigated by analyzing the OH-stretching bands.
Collapse
|
24
|
Slade JH, Ault AP, Bui AT, Ditto JC, Lei Z, Bondy AL, Olson NE, Cook RD, Desrochers SJ, Harvey RM, Erickson MH, Wallace HW, Alvarez SL, Flynn JH, Boor BE, Petrucci GA, Gentner DR, Griffin RJ, Shepson PB. Bouncier Particles at Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive Diel Variations in the Aerosol Phase in a Mixed Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4977-4987. [PMID: 31002496 DOI: 10.1021/acs.est.8b07319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas-particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.
Collapse
Affiliation(s)
- Jonathan H Slade
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Andrew P Ault
- Department of Environmental Health Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Alexander T Bui
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
| | - Jenna C Ditto
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Ziying Lei
- Department of Environmental Health Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Amy L Bondy
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Nicole E Olson
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Ryan D Cook
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Sarah J Desrochers
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Rebecca M Harvey
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Matthew H Erickson
- Department of Earth and Atmospheric Sciences , University of Houston , Houston , Texas 77204 , United States
| | - Henry W Wallace
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
| | - Sergio L Alvarez
- Department of Earth and Atmospheric Sciences , University of Houston , Houston , Texas 77204 , United States
| | - James H Flynn
- Department of Earth and Atmospheric Sciences , University of Houston , Houston , Texas 77204 , United States
| | - Brandon E Boor
- Lyles School of Civil Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Giuseppe A Petrucci
- Department of Chemistry , University of Vermont , Burlington , Vermont 05405 , United States
| | - Drew R Gentner
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Robert J Griffin
- Department of Civil and Environmental Engineering , Rice University , Houston , Texas 77005 , United States
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Paul B Shepson
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
- Department of Earth, Atmospheric and Planetary Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
- Purdue Climate Change Research Center , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
25
|
Schmedding R, Ma M, Zhang Y, Farrell S, Pye HOT, Chen Y, Wang CT, Rasool QZ, Budisulistiorini SH, Ault AP, Surratt JD, Vizuete W. α-Pinene-Derived Organic Coatings on Acidic Sulfate Aerosol Impacts Secondary Organic Aerosol Formation from Isoprene in a Box Model. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2019; 213:456-462. [PMID: 31320832 PMCID: PMC6638570 DOI: 10.1016/j.atmosenv.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fine particulate matter (PM2.5) is known to have an adverse impact on public health and is an important climate forcer. Secondary organic aerosol (SOA) contributes up to 80% of PM2.5 worldwide and multiphase reactions are an important pathway to form SOA. Aerosol-phase state is thought to influence the reactive uptake of gas-phase precursors to aerosol particles by altering diffusion rates within particles. Current air quality models do not include the impact of diffusion-limiting organic coatings on SOA formation. This work examines how α-pinene-derived organic coatings change the predicted formation of SOA from the acid-catalyzed multiphase reactions of isoprene epoxydiols (IEPOX). A box model, with inputs provided from field measurements taken at the Look Rock (LRK) site in Great Smokey Mountains National Park during the 2013 Southern Oxidant and Aerosol Study (SOAS), was modified to incorporate the latest laboratory-based kinetic data accounting for organic coating influences. Including an organic coating influence reduced the modeled reactive uptake when relative humidity was in the 55-80% range, with predicted IEPOX-derived SOA being reduced by up to 33%. Only sensitivity cases with a large increase in Henry's Law values of an order of magnitude or more or in particle reaction rates resulted in the large statistically significant differences form base model performance. These results suggest an organic coating layer could have an impact on IEPOX-derived SOA formation and warrant consideration in regional and global scale models.
Collapse
Affiliation(s)
- Ryan Schmedding
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Mutian Ma
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Yue Zhang
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Sara Farrell
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Havala O T Pye
- Environmental Protection Agency at Research Triangle Park, Research Triangle Park, North Carolina 27711, United States
| | - Yuzhi Chen
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Chi-Tsan Wang
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Quazi Z Rasool
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | | | - Andrew P Ault
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason D Surratt
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - William Vizuete
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
26
|
Tirella PN, Craig RL, Tubbs DB, Olson NE, Lei Z, Ault AP. Extending surface enhanced Raman spectroscopy (SERS) of atmospheric aerosol particles to the accumulation mode (150-800 nm). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1570-1580. [PMID: 30124713 DOI: 10.1039/c8em00276b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Due to their small size, measurements of the complex composition of atmospheric aerosol particles and their surfaces are analytically challenging. This is particularly true for microspectroscopic methods, where it can be difficult to optically identify individual particles smaller than the diffraction limit of visible light (∼350 nm) and measure their vibrational modes. Recently, surface enhanced Raman spectroscopy (SERS) has been applied to the study of aerosol particles, allowing for detection and characterization of previously undistinguishable vibrational modes. However, atmospheric particles analyzed via SERS have primarily been >1 μm to date, much larger than the diameter of the most abundant atmospheric aerosols (∼100 nm). To push SERS towards more relevant particle sizes, a simplified approach involving Ag foil substrates was developed. Both ambient particles and several laboratory-generated model aerosol systems (polystyrene latex spheres (PSLs), ammonium sulfate, and sodium nitrate) were investigated to determine SERS enhancements. SERS spectra of monodisperse, model aerosols between 400-800 nm were compared with non-SERS enhanced spectra, yielding average enhancement factors of 102 for both inorganic and organic vibrational modes. Additionally, SERS-enabled detection of 150 nm size-selected ambient particles represent the smallest individual aerosol particles analyzed by Raman microspectroscopy to date, and the first time atmospheric particles have been measured at sizes approaching the atmospheric number size distribution mode. SERS-enabled detection and identification of vibrational modes in smaller, more atmospherically-relevant particles has the potential to improve understanding of aerosol composition and surface properties, as well as their impact on heterogeneous and multiphase reactions involving aerosol surfaces.
Collapse
Affiliation(s)
- Peter N Tirella
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Cui T, Zeng Z, Dos Santos EO, Zhang Z, Chen Y, Zhang Y, Rose CA, Budisulistiorini SH, Collins LB, Bodnar WM, de Souza RAF, Martin ST, Machado CMD, Turpin BJ, Gold A, Ault AP, Surratt JD. Development of a hydrophilic interaction liquid chromatography (HILIC) method for the chemical characterization of water-soluble isoprene epoxydiol (IEPOX)-derived secondary organic aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1524-1536. [PMID: 30259953 PMCID: PMC10537084 DOI: 10.1039/c8em00308d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acid-catalyzed multiphase chemistry of isoprene epoxydiols (IEPOX) on sulfate aerosol produces substantial amounts of water-soluble secondary organic aerosol (SOA) constituents, including 2-methyltetrols, methyltetrol sulfates, and oligomers thereof in atmospheric fine particulate matter (PM2.5). These constituents have commonly been measured by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) with prior derivatization or by reverse-phase liquid chromatography interfaced to electrospray ionization high-resolution mass spectrometry (RPLC/ESI-HR-MS). However, both techniques have limitations in explicitly resolving and quantifying polar SOA constituents due either to thermal degradation or poor separation. With authentic 2-methyltetrol and methyltetrol sulfate standards synthesized in-house, we developed a hydrophilic interaction liquid chromatography (HILIC)/ESI-HR-quadrupole time-of-flight mass spectrometry (QTOFMS) protocol that can chromatographically resolve and accurately measure the major IEPOX-derived SOA constituents in both laboratory-generated SOA and atmospheric PM2.5. 2-Methyltetrols were simultaneously resolved along with 4-6 diastereomers of methyltetrol sulfate, allowing efficient quantification of both major classes of SOA constituents by a single non-thermal analytical method. The sum of 2-methyltetrols and methyltetrol sulfates accounted for approximately 92%, 62%, and 21% of the laboratory-generated β-IEPOX aerosol mass, laboratory-generated δ-IEPOX aerosol mass, and organic aerosol mass in the southeastern U.S., respectively, where the mass concentration of methyltetrol sulfates was 171-271% the mass concentration of methyltetrol. Mass concentrations of methyltetrol sulfates were 0.39 and 2.33 μg m-3 in a PM2.5 sample collected from central Amazonia and the southeastern U.S., respectively. The improved resolution clearly reveals isomeric patterns specific to methyltetrol sulfates from acid-catalyzed multiphase chemistry of β- and δ-IEPOX. We also demonstrate that conventional GC/EI-MS analyses overestimate 2-methyltetrols by up to 188%, resulting (in part) from the thermal degradation of methyltetrol sulfates. Lastly, C5-alkene triols and 3-methyltetrahydrofuran-3,4-diols are found to be largely GC/EI-MS artifacts formed from thermal degradation of 2-methyltetrol sulfates and 3-methyletrol sulfates, respectively, and are not detected with HILIC/ESI-HR-QTOFMS.
Collapse
Affiliation(s)
- Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Craig RL, Peterson PK, Nandy L, Lei Z, Hossain MA, Camarena S, Dodson RA, Cook RD, Dutcher CS, Ault AP. Direct Determination of Aerosol pH: Size-Resolved Measurements of Submicrometer and Supermicrometer Aqueous Particles. Anal Chem 2018; 90:11232-11239. [DOI: 10.1021/acs.analchem.8b00586] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Lucy Nandy
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | - Cari S. Dutcher
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|