1
|
O'Shea JM, Yun YJ, Jamhawi AM, Peccati F, Jiménez-Osés G, Ayitou AJL. Doublet Spin State Mediated Photoluminescence Upconversion in Organic Radical Donor-Triplet Acceptor Dyads. J Am Chem Soc 2024. [PMID: 39698846 DOI: 10.1021/jacs.4c14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Donor-acceptor dyads are promising materials for improving triplet-sensitized photon upconversion due to faster intramolecular energy transfer (ET), which unfortunately competes with charge transfer (CT) dynamics. To circumvent the issue associated with CT, we propose a novel purely organic donor-acceptor dyad, where the CT character is confined within the donor moiety. In this work, we report the synthesis and characterization of a stable organic radical donor-triplet acceptor dyad (TTM-Cz-Per) consisting of the acceptor perylene (Per) linked to the donor (4-N-carbazolyl-2,6-dichlorophenyl)-bis(2,4,6-trichlorophenyl)methyl radical (TTM-Cz). Upon red-excitation of TTM-Cz-Per, the doublet emission of the donor (TTM-Cz) is significantly quenched, and a recorded delayed emission centered at ca. 490 nm was attributed to the fluorescence emission from the Per acceptor. Time-resolved transient absorption spectroscopy suggests doublet-to-triplet energy transfer (DTET) dynamics from the donor to the acceptor as the time constant τ for the donor transient species decreases from 21.47 ns for the TTM-Cz sensitizer to 8.73 ns for TTM-Cz-Per dyad. This process is accompanied by the appearance of a long-lived component with τ = 97.06 ns, which we ascribe to the triplet transient of the acceptor Per. Furthermore, computational results indicate that the DTET is intramolecular as computed spin densities of the quartet state show unpaired electrons of ρ ≈ 1 on the TTM-Cz donor and of ρ ≈ 2 on the acceptor Per. The present study highlights the possibility to employ doublet chromophoric systems for light-harvesting and energy upconversion, which can be further tailored for several optoelectronic applications.
Collapse
Affiliation(s)
- Joseph M O'Shea
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Young Ju Yun
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Abdelqader M Jamhawi
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | | |
Collapse
|
2
|
Medici F, Puglisi A, Rossi S, Raimondi L, Benaglia M. Stereoselective [2 + 2] photodimerization: a viable strategy for the synthesis of enantiopure cyclobutane derivatives. Org Biomol Chem 2023; 21:2899-2904. [PMID: 36939196 DOI: 10.1039/d3ob00232b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The [2 + 2] photodimerization of cinnamic acid derivatives to afford enantiopure cyclobutanes has been investigated. The use of a chiral auxiliary represents a convenient and straightforward method to exert enantiocontrol on the reaction. By exploiting Evans oxazolidinones, the stereoselective light-driven cyclisation affords a functionalised cyclobutane ring with up to 99% enantiocontrol after removing the chiral auxiliary. In-flow experiments allowed us to improve further the efficiency of the methodology, leading to high conversion and excellent enantioselectivity.
Collapse
Affiliation(s)
- Fabrizio Medici
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Alessandra Puglisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Sergio Rossi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Laura Raimondi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| | - Maurizio Benaglia
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy.
| |
Collapse
|
3
|
Inagaki A. Development of Metal Complexes to Utilize Visible-Light Energy into Molecular Transformation. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akiko Inagaki
- Department of Chemistry, Tokyo Metropolitan University
| |
Collapse
|
4
|
Ohyama R, Mishima M, Inagaki A. Syntheses and structure of dinuclear metal complexes containing naphthyl-Ir bichromophore. Dalton Trans 2021; 50:12716-12722. [PMID: 34545880 DOI: 10.1039/d1dt01853a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel metal complexes were synthesized containing an Ir-cyclometalated bichromophore as a visible-light sensitizer. A new bichromophoric unit containing a naphthyl substituent and methyl substituents on the 2-phenylpyridine chelating ligand was synthesized and characterized for the first time. According to the increased crystallinity of the bichromophoric unit, novel Ir-M metal complexes (M = Pd, Mn, and Ir) were synthesized and fully characterized. The novel Ir-Pd complex maintained photocatalytic activity toward styrenes under visible-light irradiation, and polymerization with p-chlorostyrene, copolymerization with styrene and p-chlorostyrene furnished corresponding polymers.
Collapse
Affiliation(s)
- Ryo Ohyama
- Department of Chemistry, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, 192-0397 Tokyo, Japan.
| | - Masaki Mishima
- Department of Molecular Biophysics, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akiko Inagaki
- Department of Chemistry, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, 192-0397 Tokyo, Japan.
| |
Collapse
|
5
|
Wu Y, Wu J, Wong WY. A new near-infrared phosphorescent iridium(III) complex conjugated to a xanthene dye for mitochondria-targeted photodynamic therapy. Biomater Sci 2021; 9:4843-4853. [PMID: 33998610 DOI: 10.1039/d1bm00128k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iridium(iii) complexes are potent candidates for photodynamic therapy (PDT), but some key drawbacks still hamper clinical translation, such as poor operability in the phototherapeutic window, high dark toxicity, and low reactive oxygen species (ROS) production efficiency. In this work, a near-infrared phosphorescent Ir(iii) complex conjugated to a xanthene dye, NIR-Ir-XE, is reported with highly favourable properties for mitochondria-targeted imaging and cancer phototherapy. The generation of the triplet excited state of a xanthene moiety endows the NIR-Ir-XE to form singlet oxygen (1O2) for use as a photodynamic therapy agent after irradiation with visible light. Compared with the xanthene-free Ir(iii) counterpart (NIR-Ir-bpy), the xanthene-modified cyclometalated Ir(iii) photosensitizer NIR-Ir-XE exhibits higher 1O2 generation efficiency, negligible dark toxicity and a better therapeutic effect. Importantly, a clear correlation between cell death and intracellular generation of 1O2 derived from NIR-Ir-XE after light irradiation was demonstrated. The corresponding in vivo photo-antitumor performance was further demonstrated to be effective in tumor-bearing mice. The observed properties of NIR-Ir-XE qualify it as a promising PDT agent.
Collapse
Affiliation(s)
- Yongquan Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China and Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Shiyuan South Road, Ganzhou 341000, P. R. China
| | - Jie Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Shiyuan South Road, Ganzhou 341000, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. and The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
6
|
Tong Y, Liu Y, Chen Q, Mo Y, Ma Y. Long-Lived Triplet Excited-State Bichromophoric Iridium Photocatalysts for Controlled Photo-Mediated Atom-Transfer Radical Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yujie Tong
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yitian Mo
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Ahmad W, Wang J, Li H, Ouyang Q, Wu W, Chen Q. Strategies for combining triplet–triplet annihilation upconversion sensitizers and acceptors in a host matrix. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Elgar CE, Otaif HY, Zhang X, Zhao J, Horton PN, Coles SJ, Beames JM, Pope SJA. Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA-UC Performance. Chemistry 2021; 27:3427-3439. [PMID: 33242225 DOI: 10.1002/chem.202004146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII , yielding complexes of the form [Ir(C^N)2 (bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2'-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668-693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet-triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6-6.7 %.
Collapse
Affiliation(s)
- Christopher E Elgar
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Haleema Y Otaif
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Joseph M Beames
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Simon J A Pope
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| |
Collapse
|
9
|
Liu S, Wang X, Liu H, Xiao Z, Zhou C, Chen Y, Li X. An Activatable Triplet Sensitizer Based on Triplet Electron Transfer and Its Application for Triplet-Triplet Annihilation Upconversion. J Phys Chem B 2020; 124:6389-6397. [PMID: 32609515 DOI: 10.1021/acs.jpcb.0c05234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activatable triplet photosensitization refers to a photosentization process which can be turned on/off easily by external stimulus. Activatable triplet photosensitizations are normally achieved by interfering with the singlet excited state before the intersystem cross process (ISC), i.e., the formation process of triplet states of sensitizer. To achieve novel activatable triplet photosensitization, a disulfide-bridged porphyrin zinc(II) dyad (ZnPor-S-S-ZnPor) is prepared. Although fast ISC can be conducted in this dyad, an extremely low efficiency is obtained when employing this dyad as a triplet donor in triplet-triplet annihilation upconversion (TTA-UC) for sensitizing perylene. This is because of the presence of electron transfer from the triplet state of the porphyrin zinc(II) unit to the disulfide bond, which quickly quenches the triplet state of the porphyrin zinc(II) unit. This electron transfer process can be stopped by the cleavage of the disulfide bond in the presence of thiol, and TTA-UC efficiency can be enhanced significantly. Our result demonstrates for the first time that the disulfide bond can act as not only an easy cleavage linker but also a triplet electron acceptor. Furthermore, quenching the triplet states of sensitizer by triplet electron transfer provides an alternative protocol for designing activatable triplet sensitizers except controlling the singlet excited state before the ISC process.
Collapse
Affiliation(s)
- Shanshan Liu
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiangyang Wang
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Heyuan Liu
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zuoxu Xiao
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Changjing Zhou
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yanli Chen
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiyou Li
- College of Science, School of Materials Science and Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|