1
|
Sviyazov SV, Babenko SV, Skovpin IV, Kovtunova LM, Chukanov NV, Stakheev AY, Burueva DB, Koptyug IV. Manipulating stereoselectivity of parahydrogen addition to acetylene to unravel interconversion of ethylene nuclear spin isomers. Phys Chem Chem Phys 2024; 26:7821-7829. [PMID: 38375632 DOI: 10.1039/d3cp04983c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Symmetric molecules exist as distinct nuclear spin isomers (NSIMs). A deeper understanding of their properties, including interconversion of different NSIMs, requires efficient techniques for NSIM enrichment. In this work, selective hydrogenation of acetylene with parahydrogen (p-H2) was used to achieve the enrichment of ethylene NSIMs and to study their equilibration processes. The effect of the stereoselectivity of H2 addition to acetylene on the imbalance of ethylene NSIMs was experimentally demonstrated by using three different heterogeneous catalysts (an immobilized Ir complex and two supported Pd catalysts). The interconversion of NSIMs with time during ethylene storage was studied using NMR spectroscopy by reacting ethylene with bromine water, which rendered the p-H2-derived protons in the produced 2-bromoethan(2H)ol (BrEtOD) magnetically inequivalent, thereby revealing the non-equilibrium nuclear spin order of ethylene. A thorough analysis of the shape and transformation of the 1H NMR spectra of hyperpolarized BrEtOD allowed us to reveal the initial distribution of produced ethylene NSIMs and their equilibration processes. Comparison of the results obtained with three different catalysts was key to properly attributing the derived characteristic time constants to different ethylene NSIM interconversion processes: ∼3-6 s for interconversion between NSIMs with the same inversion symmetry (i.e., within g or u manifolds) and ∼1700-2200 s between NSIMs with different inversion symmetries (i.e., between g and u manifolds).
Collapse
Affiliation(s)
- Sergey V Sviyazov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Simon V Babenko
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Novosibirsk 630090, Russia
| | - Ivan V Skovpin
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
| | - Larisa M Kovtunova
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
- Boreskov Institute of Catalysis, SB RAS, Novosibirsk 630090, Russia
| | - Nikita V Chukanov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
Lu J, Jerschow A, Korenchan DE. Selective filtration of NMR signals arising from weakly- and strongly-coupled spin systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107529. [PMID: 37572586 DOI: 10.1016/j.jmr.2023.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing chemical and biological systems. However, in complex solutions with similar molecular components, NMR signals can overlap, making it challenging to distinguish and quantify individual species. In this paper, we introduce new spectral editing sequences that exploit the differences in nuclear spin interactions (J-couplings) between weakly- and strongly-coupled two-spin systems. These sequences selectively attenuate or nullify undesired spin magnetization while they preserve the desired signals, resulting in simplified NMR spectra and potentially facilitating single-species imaging applications. We demonstrate the effectiveness of our approach using a 31P spectral filtration method on a model system of nicotinamide dinucleotide (NAD), which exists in oxidized (NAD+) and reduced (NADH) forms. The presented sequences are robust to field inhomogeneity, do not require additional sub-spectra, and retain a significant portion of the original signal.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA
| | - David E Korenchan
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 75 3rd Ave., Room 1400A, Charlestown, 02129, MA, USA.
| |
Collapse
|
3
|
Ellermann F, Sirbu A, Brahms A, Assaf C, Herges R, Hövener JB, Pravdivtsev AN. Spying on parahydrogen-induced polarization transfer using a half-tesla benchtop MRI and hyperpolarized imaging enabled by automation. Nat Commun 2023; 14:4774. [PMID: 37553405 PMCID: PMC10409769 DOI: 10.1038/s41467-023-40539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
Nuclear spin hyperpolarization is a quantum effect that enhances the nuclear magnetic resonance signal by several orders of magnitude and has enabled real-time metabolic imaging in humans. However, the translation of hyperpolarization technology into routine use in laboratories and medical centers is hampered by the lack of portable, cost-effective polarizers that are not commercially available. Here, we present a portable, automated polarizer based on parahydrogen-induced hyperpolarization (PHIP) at an intermediate magnetic field of 0.5 T (achieved by permanent magnets). With a footprint of 1 m2, we demonstrate semi-continuous, fully automated 1H hyperpolarization of ethyl acetate-d6 and ethyl pyruvate-d6 to P = 14.4% and 16.2%, respectively, and a 13C polarization of 1-13C-ethyl pyruvate-d6 of P = 7%. The duty cycle for preparing a dose is no more than 1 min. To reveal the full potential of 1H hyperpolarization in an inhomogeneous magnetic field, we convert the anti-phase PHIP signals into in-phase peaks, thereby increasing the SNR by a factor of 5. Using a spin-echo approach allowed us to observe the evolution of spin order distribution in real time while conserving the expensive reagents for reaction monitoring, imaging and potential in vivo usage. This compact polarizer will allow us to pursue the translation of hyperpolarized MRI towards in vivo applications further.
Collapse
Affiliation(s)
- Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Aidan Sirbu
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Charbel Assaf
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto- Hahn Platz 4, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany.
| |
Collapse
|
4
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
5
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
6
|
Bussandri S, Franzoni MB, Buljubasich L, Acosta RH. Discrimination of PHIP Signals Through their Evolution in Multipulse Sequences. Chemphyschem 2021; 22:1939-1946. [PMID: 34291548 DOI: 10.1002/cphc.202100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/21/2021] [Indexed: 11/11/2022]
Abstract
The antiphase character of the PHIP associated signals after a hydrogenation reaction is particularly sensitive to line broadening introduced by magnetic field inhomogeneities and interferences by the presence of resonance lines steaming from a large amount of thermally polarized spins. These obstacles impose a limitation in the detection of reaction products as well as in the experimental setups. A simple way to overcome these impediments consists of acquiring the signal with a train of refocusing pulses instead of a single r.f. pulse. We present here a number of examples where this multipulse acquisition, denominated PhD-PHIP, displays its potentiality in improving the information related to hyperpolarized spins performed in a sample, where the former parahydrogen nuclei are part of a complex J-coupling network.
Collapse
Affiliation(s)
- S Bussandri
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.,CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - M B Franzoni
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.,CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - L Buljubasich
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.,CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| | - R H Acosta
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Argentina.,CONICET, Instituto de Física Enrique Gaviola (IFEG), Córdoba, Argentina
| |
Collapse
|
7
|
Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov KL, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S. Singlet-Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism*. Angew Chem Int Ed Engl 2021; 60:6791-6798. [PMID: 33340439 PMCID: PMC7986935 DOI: 10.1002/anie.202014933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Indexed: 11/21/2022]
Abstract
Hyperpolarization-enhanced magnetic resonance imaging can be used to study biomolecular processes in the body, but typically requires nuclei such as 13 C, 15 N, or 129 Xe due to their long spin-polarization lifetimes and the absence of a proton-background signal from water and fat in the images. Here we present a novel type of 1 H imaging, in which hyperpolarized spin order is locked in a nonmagnetic long-lived correlated (singlet) state, and is only liberated for imaging by a specific biochemical reaction. In this work we produce hyperpolarized fumarate via chemical reaction of a precursor molecule with para-enriched hydrogen gas, and the proton singlet order in fumarate is released as antiphase NMR signals by enzymatic conversion to malate in D2 O. Using this model system we show two pulse sequences to rephase the NMR signals for imaging and suppress the background signals from water. The hyperpolarization-enhanced 1 H-imaging modality presented here can allow for hyperpolarized imaging without the need for low-abundance, low-sensitivity heteronuclei.
Collapse
Affiliation(s)
- J. Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung64291DarmstadtGermany
- Johannes Gutenberg University55090MainzGermany
| | - E. Cavallari
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - R. Kircher
- Technical University of Kaiserslautern67663KaiserslauternGermany
| | - G. Di Matteo
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - C. Carrera
- Institute of Biostructures and BioimagingNational Research Council of ItalyTorino10126Italy
| | - L. Dagys
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJVereinigtes Königreich
| | - M. H. Levitt
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJVereinigtes Königreich
| | - K. L. Ivanov
- International Tomography CenterSiberian Branch of the Russian Academy of ScienceNovosibirsk630090Russia
- Novosibirsk State UniversityNovosibirsk630090Russia
| | - S. Aime
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - F. Reineri
- Dept. of Molecular Biotechnology and Health SciencesUniversity of TorinoTorino10126Italy
| | - K. Münnemann
- Technical University of Kaiserslautern67663KaiserslauternGermany
| | - D. Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung64291DarmstadtGermany
- Johannes Gutenberg University55090MainzGermany
| | - G. Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, ChemistryTechnical University Darmstadt64287DarmstadtGermany
| | - S. Knecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, ChemistryTechnical University Darmstadt64287DarmstadtGermany
| |
Collapse
|
8
|
Eills J, Cavallari E, Kircher R, Di Matteo G, Carrera C, Dagys L, Levitt MH, Ivanov KL, Aime S, Reineri F, Münnemann K, Budker D, Buntkowsky G, Knecht S. Singulett‐Kontrast‐Magnetresonanztomographie: Freisetzung der Hyperpolarisation durch den Metabolismus**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- J. Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Deutschland
- Johannes Gutenberg University 55090 Mainz Deutschland
| | - E. Cavallari
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - R. Kircher
- Technical University of Kaiserslautern 67663 Kaiserslautern Deutschland
| | - G. Di Matteo
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - C. Carrera
- Institute of Biostructures and Bioimaging National Research Council of Italy Torino 10126 Italien
| | - L. Dagys
- School of Chemistry University of Southampton Southampton SO17 1BJ Vereinigtes Königreich
| | - M. H. Levitt
- School of Chemistry University of Southampton Southampton SO17 1BJ Vereinigtes Königreich
| | - K. L. Ivanov
- International Tomography Center Siberian Branch of the Russian Academy of Science Novosibirsk 630090 Russland
- Novosibirsk State University Novosibirsk 630090 Russland
| | - S. Aime
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - F. Reineri
- Dept. of Molecular Biotechnology and Health Sciences University of Torino Torino 10126 Italien
| | - K. Münnemann
- Technical University of Kaiserslautern 67663 Kaiserslautern Deutschland
| | - D. Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Deutschland
- Johannes Gutenberg University 55090 Mainz Deutschland
| | - G. Buntkowsky
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, Chemistry Technical University Darmstadt 64287 Darmstadt Deutschland
| | - S. Knecht
- Eduard-Zintl-Institute for Inorganic Chemistry and Physical, Chemistry Technical University Darmstadt 64287 Darmstadt Deutschland
| |
Collapse
|
9
|
Pravdivtsev AN, Sönnichsen FD, Hövener JB. In vitro singlet state and zero-quantum encoded magnetic resonance spectroscopy: Illustration with N-acetyl-aspartate. PLoS One 2020; 15:e0239982. [PMID: 33002045 PMCID: PMC7529218 DOI: 10.1371/journal.pone.0239982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) allows the analysis of biochemical processes non-invasively and in vivo. Still, its application in clinical diagnostics is rare. Routine MRS is limited to spatial, chemical and temporal resolutions of cubic centimetres, mM and minutes. In fact, the signal of many metabolites is strong enough for detection, but the resonances significantly overlap, exacerbating identification and quantification. Besides, the signals of water and lipids are much stronger and dominate the entire spectrum. To suppress the background and isolate selected signals, usually, relaxation times, J-coupling and chemical shifts are used. Here, we propose methods to isolate the signals of selected molecular groups within endogenous metabolites by using long-lived spin states (LLS). We exemplify the method by preparing the LLSs of coupled protons in the endogenous molecules N-acetyl-L-aspartic acid (NAA). First, we store polarization in long-lived, double spin states, followed by saturation pulses before the spin order is converted back to observable magnetization or double quantum filters to suppress background signals. We show that LLS and zero-quantum coherences can be used to selectively prepare and measure the signals of chosen metabolites or drugs in the presence of water, inhomogeneous field and highly concentrated fatty solutions. The strong suppression of unwanted signals achieved allowed us to measure pH as a function of chemical shift difference.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| | - Frank D Sönnichsen
- Otto Diels Institute for Organic Chemistry, Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| |
Collapse
|
10
|
Pravdivtsev AN, Hövener JB. Simulating Non-linear Chemical and Physical (CAP) Dynamics of Signal Amplification By Reversible Exchange (SABRE). Chemistry 2019; 25:7659-7668. [PMID: 30689237 DOI: 10.1002/chem.201806133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Indexed: 01/30/2023]
Abstract
The hyperpolarization of nuclear spins by using parahydrogen (pH2 ) is a fascinating technique that allows spin polarization and thus the magnetic resonance signal to be increased by several orders of magnitude. Entirely new applications have become available. Signal amplification by reversible exchange (SABRE) is a relatively new method that is based on the reversible exchange of a substrate, catalyst and parahydrogen. SABRE is particularly interesting for in vivo medical and industrial applications, such as fast and low-cost trace analysis or continuous signal enhancement. Ever since its discovery, many attempts have been made to model and understand SABRE, with various degrees of simplifications. In this work, we reduced the simplifications further, taking into account non-linear chemical and physical (CAP) dynamics of several multi-spin systems. A master equation was derived and realized using the MOIN open-source software. The effects of different parameters (exchange rates, concentrations, spin-spin couplings) on relaxation and the polarization level have been evaluated and the results provide interesting insights into the mechanism of SABRE.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
11
|
Pravdivtsev AN, Sönnichsen F, Hövener JB. OnlyParahydrogen SpectrosopY (OPSY) pulse sequences - One does not fit all. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:86-95. [PMID: 30366223 DOI: 10.1016/j.jmr.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The hyperpolarization of nuclear spins using parahydrogen is an interesting effect that allows to increase the magnetic resonance signal by several orders of magnitude. Known as ParaHydrogen And Synthesis Allow Dramatically Enhanced Nuclear Alignment (PASADENA) and ParaHydrogen Induced Polarization (PHIP), the method was successfully used for in vitro analysis and in vivo imaging. In this contribution, we investigated four known and four new variants of Only Parahydrogen SpectroscopY (OPSY) sequences (Aguilar et al., 2007) with respect to the selective preparation of hyperpolarized NMR signal and background suppression. Depending on the method chosen, either anti-phase, in-phase or a mixture of both signals are obtained: anti-phase signals are beneficial to identify hyperpolarized signals and the structure or J-coupling constants; in-phase signals are useful for imaging applications or when the lines are broad. This comprehensive overview of sequences new and old facilitates selecting the right sequence for the task at hand.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany.
| | - Frank Sönnichsen
- Faculty of Mathematics and Natural Sciences, Chemistry Section, Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Kiel, Germany
| |
Collapse
|