• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4665478)   Today's Articles (1045)   Subscriber (51662)
For: Wang Z, Han Y, Li J, He X. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy. J Phys Chem B 2020;124:3027-3035. [PMID: 32208716 DOI: 10.1021/acs.jpcb.0c01370] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Number Cited by Other Article(s)
1
Vornweg J, Jacob CR. Protein-Ligand Interaction Energies from Quantum-Chemical Fragmentation Methods: Upgrading the MFCC-Scheme with Many-Body Contributions. J Phys Chem B 2024;128:11597-11606. [PMID: 39550698 PMCID: PMC11613497 DOI: 10.1021/acs.jpcb.4c05645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
2
Wang Y, Teng C, Begin E, Bussiere M, Bao JL. PW-SMD: A Plane-Wave Implicit Solvation Model Based on Electron Density for Surface Chemistry and Crystalline Systems in Aqueous Solution. J Chem Theory Comput 2024. [PMID: 39024317 DOI: 10.1021/acs.jctc.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
3
Wen M, Chang X, Xu Y, Chen D, Chu Q. Determining the mechanical and decomposition properties of high energetic materials (α-RDX, β-HMX, and ε-CL-20) using a neural network potential. Phys Chem Chem Phys 2024;26:9984-9997. [PMID: 38477375 DOI: 10.1039/d4cp00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
4
Wang Z, Chen A, Tao K, Han Y, Li J. MatGPT: A Vane of Materials Informatics from Past, Present, to Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2306733. [PMID: 37813548 DOI: 10.1002/adma.202306733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Indexed: 10/17/2023]
5
Lima Costa AH, Bezerra KS, de Lima Neto JX, Oliveira JIN, Galvão DS, Fulco UL. Deciphering Interactions between Potential Inhibitors and the Plasmodium falciparum DHODH Enzyme: A Computational Perspective. J Phys Chem B 2023;127:9461-9475. [PMID: 37897437 DOI: 10.1021/acs.jpcb.3c05738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
6
Tu H, Han Y, Wang Z, Chen A, Tao K, Ye S, Wang S, Wei Z, Li J. RotNet: A Rotationally Invariant Graph Neural Network for Quantum Mechanical Calculations. SMALL METHODS 2023:e2300534. [PMID: 37727096 DOI: 10.1002/smtd.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/28/2023] [Indexed: 09/21/2023]
7
Zeng J, Zhang D, Lu D, Mo P, Li Z, Chen Y, Rynik M, Huang L, Li Z, Shi S, Wang Y, Ye H, Tuo P, Yang J, Ding Y, Li Y, Tisi D, Zeng Q, Bao H, Xia Y, Huang J, Muraoka K, Wang Y, Chang J, Yuan F, Bore SL, Cai C, Lin Y, Wang B, Xu J, Zhu JX, Luo C, Zhang Y, Goodall REA, Liang W, Singh AK, Yao S, Zhang J, Wentzcovitch R, Han J, Liu J, Jia W, York DM, E W, Car R, Zhang L, Wang H. DeePMD-kit v2: A software package for deep potential models. J Chem Phys 2023;159:054801. [PMID: 37526163 PMCID: PMC10445636 DOI: 10.1063/5.0155600] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]  Open
8
Sahu N, Khire SS, Gadre SR. Combining fragmentation method and high-performance computing: Geometry optimization and vibrational spectra of proteins. J Chem Phys 2023;159:044309. [PMID: 37522406 DOI: 10.1063/5.0149572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]  Open
9
Zhang P, Yang W. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein. J Chem Phys 2023;159:024118. [PMID: 37431910 PMCID: PMC10481389 DOI: 10.1063/5.0142280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]  Open
10
Vornweg JR, Wolter M, Jacob CR. A simple and consistent quantum-chemical fragmentation scheme for proteins that includes two-body contributions. J Comput Chem 2023;44:1634-1644. [PMID: 37171574 DOI: 10.1002/jcc.27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
11
Zhu Q, Ge Y, Li W, Ma J. Treating Polarization Effects in Charged and Polar Bio-Molecules Through Variable Electrostatic Parameters. J Chem Theory Comput 2023;19:396-411. [PMID: 36592097 DOI: 10.1021/acs.jctc.2c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
12
Liu J, He X. Recent advances in quantum fragmentation approaches to complex molecular and condensed‐phase systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
13
Liao K, Dong S, Cheng Z, Li W, Li S. Combined fragment-based machine learning force field with classical force field and its application in the NMR calculations of macromolecules in solutions. Phys Chem Chem Phys 2022;24:18559-18567. [PMID: 35916054 DOI: 10.1039/d2cp02192g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Tzeli D, Xantheas SS. Breaking covalent bonds in the context of the many-body expansion (MBE). I. The purported "first row anomaly" in XHn (X = C, Si, Ge, Sn; n = 1-4). J Chem Phys 2022;156:244303. [PMID: 35778077 DOI: 10.1063/5.0095329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
15
Chen J, Geng W, Wei GW. MLIMC: Machine Learning-Based Implicit-Solvent Monte Carlo. CHINESE J CHEM PHYS 2021;34:683-694. [PMID: 35024043 PMCID: PMC8752096 DOI: 10.1063/1674-0068/cjcp2109150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
16
Cheng Z, Du J, Zhang L, Ma J, Li W, Li S. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning. Phys Chem Chem Phys 2021;24:1326-1337. [PMID: 34718360 DOI: 10.1039/d1cp03934b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
17
Shen C, Jin X, Glover WJ, He X. Accurate Prediction of Absorption Spectral Shifts of Proteorhodopsin Using a Fragment-Based Quantum Mechanical Method. Molecules 2021;26:4486. [PMID: 34361639 PMCID: PMC8347797 DOI: 10.3390/molecules26154486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]  Open
18
Morawietz T, Artrith N. Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications. J Comput Aided Mol Des 2021;35:557-586. [PMID: 33034008 PMCID: PMC8018928 DOI: 10.1007/s10822-020-00346-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/26/2020] [Indexed: 01/13/2023]
19
Ma S, Ma Y, Zhang B, Tian Y, Jin Z. Forecasting System of Computational Time of DFT/TDDFT Calculations under the Multiverse Ansatz via Machine Learning and Cheminformatics. ACS OMEGA 2021;6:2001-2024. [PMID: 33521440 PMCID: PMC7841786 DOI: 10.1021/acsomega.0c04981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
20
Han Y, Wang Z, Li J. Neural Networks Accelerate the Ab Initio Prediction of Solid-Solid Phase Transitions at High Pressures. J Phys Chem Lett 2021;12:132-137. [PMID: 33314933 DOI: 10.1021/acs.jpclett.0c03101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
21
Gao W, Mahajan SP, Sulam J, Gray JJ. Deep Learning in Protein Structural Modeling and Design. PATTERNS (NEW YORK, N.Y.) 2020;1:100142. [PMID: 33336200 PMCID: PMC7733882 DOI: 10.1016/j.patter.2020.100142] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
22
Barry MC, Wise KE, Kalidindi SR, Kumar S. Voxelized Atomic Structure Potentials: Predicting Atomic Forces with the Accuracy of Quantum Mechanics Using Convolutional Neural Networks. J Phys Chem Lett 2020;11:9093-9099. [PMID: 32985196 DOI: 10.1021/acs.jpclett.0c02271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
23
Reinholdt P, Jørgensen FK, Kongsted J, Olsen JMH. Polarizable Density Embedding for Large Biomolecular Systems. J Chem Theory Comput 2020;16:5999-6006. [PMID: 32991163 DOI: 10.1021/acs.jctc.0c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
24
Cheng Z, Zhao D, Ma J, Li W, Li S. An On-the-Fly Approach to Construct Generalized Energy-Based Fragmentation Machine Learning Force Fields of Complex Systems. J Phys Chem A 2020;124:5007-5014. [DOI: 10.1021/acs.jpca.0c04526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA