1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Peng K, Rabani E. Polariton-assisted incoherent to coherent excitation energy transfer between colloidal nanocrystal quantum dots. J Chem Phys 2024; 161:154107. [PMID: 39417420 DOI: 10.1063/5.0223369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
We explore the dynamics of energy transfer between two nanocrystal quantum dots placed within an optical microcavity. By adjusting the coupling strength between the cavity photon mode and the quantum dots, we have the capacity to fine-tune the effective coupling between the donor and acceptor. Introducing a non-adiabatic parameter, γ, governed by the coupling to the cavity mode, we demonstrate the system's capability to shift from the overdamped Förster regime (γ ≪ 1) to an underdamped coherent regime (γ ≫ 1). In the latter regime, characterized by swift energy transfer rates, the dynamics are influenced by decoherence time. To illustrate this, we study the exciton energy transfer dynamics between two closely positioned CdSe/CdS core/shell quantum dots with sizes and separations relevant to experimental conditions. Employing an atomistic approach, we calculate the excitonic level arrangement, exciton-phonon interactions, and transition dipole moments of the quantum dots within the microcavity. These parameters are then utilized to define a model Hamiltonian. Subsequently, we apply a generalized non-Markovian quantum Redfield equation to delineate the dynamics within the polaritonic framework.
Collapse
Affiliation(s)
- Kaiyue Peng
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Lyu N, Khazaei P, Geva E, Batista VS. Simulating Cavity-Modified Electron Transfer Dynamics on NISQ Computers. J Phys Chem Lett 2024; 15:9535-9542. [PMID: 39264851 DOI: 10.1021/acs.jpclett.4c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
We present an algorithm based on the quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) method for simulating cavity-modified electron transfer dynamics on noisy intermediate-scale quantum (NISQ) computers. The utility and accuracy of the proposed methodology is demonstrated on a model for the photoinduced intramolecular electron transfer reaction within the carotenoid-porphyrin-C60 molecular triad in tetrahydrofuran (THF) solution. The electron transfer rate is found to increase significantly with increasing coupling strength between the molecular system and the cavity. The rate process is also seen to shift from overdamped monotonic decay to under-damped oscillatory dynamics. The electron transfer rate is seen to be highly sensitive to the cavity frequency, with the emergence of a resonance cavity frequency for which the effect of coupling to the cavity is maximal. Finally, an implementation of the algorithm on the IBM Osaka quantum computer is used to demonstrate how TT-TFD-based electron transfer dynamics can be simulated accurately on NISQ computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 200433, China
| | - Pouya Khazaei
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Sharma SK, Chen HT. Unraveling abnormal collective effects via the non-monotonic number dependence of electron transfer in confined electromagnetic fields. J Chem Phys 2024; 161:104102. [PMID: 39248381 DOI: 10.1063/5.0225434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Strong light-matter coupling within an optical cavity leverages the collective interactions of molecules and confined electromagnetic fields, giving rise to the possibilities of modifying chemical reactivity and molecular properties. While collective optical responses, such as enhanced Rabi splitting, are often observed, the overall effect of the cavity on molecular systems remains ambiguous for a large number of molecules. In this paper, we investigate the non-adiabatic electron transfer process in electron donor-acceptor pairs influenced by collective excitation and local molecular dynamics. Using the timescale difference between reorganization and thermal fluctuations, we derive analytical formulas for the electron transfer rate constant and the polariton relaxation rate. These formulas apply to any number of molecules (N) and account for the collective effect as induced by cavity photon coupling. Our findings reveal a non-monotonic dependence of the rate constant on N, which can be understood by the interplay between electron transfer and polariton relaxation. As a result, the cavity-induced quantum yield increases linearly with N for small N (as predicted by a simple Dicke model) but shows a turnover and suppression for large N. We also interrelate the thermal bath frequency and the number of molecules, suggesting the optimal number for maximizing enhancement. The analysis provides an analytical insight for understanding the collective excitation of light and electron transfer, helping to predict the optimal condition for effective cavity-controlled chemical reactivity.
Collapse
Affiliation(s)
- Shravan Kumar Sharma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsing-Ta Chen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
5
|
Cederbaum LS, Fedyk J. Making molecules in cavity. J Chem Phys 2024; 161:074303. [PMID: 39145554 DOI: 10.1063/5.0222754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Free molecules undergo processes with photons; in particular, they can undergo photoionization and photodissociation, which are relevant processes in nature and laboratory. Recently, it has been shown that in a cavity, the reverse process of photoionization, namely, electron capture becomes highly probable. The underlying mechanism is the formation of a hybrid resonance state. In this work, we demonstrate that the idea of enhanced reverse processes is more general. We discuss the case of the reverse process of photodissociation, namely, making a molecule out of separate atoms in a cavity. For bound electronic states, the interaction of atoms and molecules with quantum light as realized in cavities is known to give rise to the formation of hybrid light-matter states (usually called polaritons). In the scenarios discussed here, the hybrid light-matter states are resonance (metastable) states, which decay into the continuum of either electrons or of the fragments of a molecule. Resonances can substantially enhance the outcome of processes. In addition to the new resonant mechanism of molecule formation, the impact of the hybrid resonances on the scattering cross section of the atoms can be dramatic.
Collapse
Affiliation(s)
- Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Jacqueline Fedyk
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| |
Collapse
|
6
|
Ying W, Mondal ME, Huo P. Theory and quantum dynamics simulations of exciton-polariton motional narrowing. J Chem Phys 2024; 161:064105. [PMID: 39120029 DOI: 10.1063/5.0225387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
The motional narrowing effect has been extensively studied for cavity exciton-polariton systems in recent decades both experimentally and theoretically, which is featured by (1) the subaverage behavior and (2) the asymmetric linewidths for the upper polariton and the lower polariton. However, a minimal theoretical model that is clear and adequate to address all these effects as well as the linewidth scaling relations remains missing. In this work, based on the single mode 1D Holstein-Tavis-Cummings (HTC) model, we studied the motional narrowing effect of the polariton linear absorption spectra via both semi-analytic derivations and numerically exact quantum dynamics simulations using the hierarchical equations of motion approach. The results reveal that under collective light-matter coupling between a cavity mode and N molecules, the polariton linewidth scales as 1/N under the slow limit, while scales as 1/N under the fast limit, due to the polaron decoupling effect. Furthermore, by varying the detunings, the polariton linewidths exhibit significant motional narrowing, covering both characters mentioned above. Our analytic linewidth expressions [Eqs. (34) and (35)] agree well with the numerical exact simulations in all the parameter regimes we explored. These results indicate that the physics of motional narrowing is adequately accounted for by the single-mode 1D HTC model. We envision that both the numerical results and the analytic polariton linewidths expression presented in this work will offer great theoretical value for providing a better understanding of the exciton-polariton motional narrowing based on the HTC model.
Collapse
Affiliation(s)
- Wenxiang Ying
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - M Elious Mondal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
7
|
Liebenthal MD, DePrince AE. The orientation dependence of cavity-modified chemistry. J Chem Phys 2024; 161:064109. [PMID: 39132792 DOI: 10.1063/5.0216993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Recent theoretical studies have explored how ultra-strong light-matter coupling can be used as a handle to control chemical transformations. Ab initio cavity quantum electrodynamics calculations demonstrate that large changes to reaction energies or barrier heights can be realized by coupling electronic degrees of freedom to vacuum fluctuations associated with an optical cavity mode, provided that large enough coupling strengths can be achieved. In many cases, the cavity effects display a pronounced orientational dependence. Here, we highlight the critical role that geometry relaxation can play in such studies. As an example, we consider a recent work [Pavošević et al., Nat. Commun. 14, 2766 (2023)] that explored the influence of an optical cavity on Diels-Alder cycloaddition reactions and reported large changes to reaction enthalpies and barrier heights, as well as the observation that changes in orientation can inhibit the reaction or select for one reaction product or another. Those calculations used fixed molecular geometries optimized in the absence of the cavity and fixed relative orientations of the molecules and the cavity mode polarization axis. Here, we show that when given a chance to relax in the presence of the cavity, the molecular species reorient in a way that eliminates the orientational dependence. Moreover, in this case, we find that qualitatively different conclusions regarding the impact of the cavity on the thermodynamics of the reaction can be drawn from calculations that consider relaxed vs unrelaxed molecular structures.
Collapse
Affiliation(s)
- Marcus Dante Liebenthal
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
8
|
Amin M, Koessler ER, Morshed O, Awan F, Cogan NMB, Collison R, Tumiel TM, Girten W, Leiter C, Vamivakas AN, Huo P, Krauss TD. Cavity Controlled Upconversion in CdSe Nanoplatelet Polaritons. ACS NANO 2024; 18:21388-21398. [PMID: 39078943 PMCID: PMC11328175 DOI: 10.1021/acsnano.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Exciton-polaritons provide a versatile platform for investigating quantum electrodynamics effects in chemical systems, such as polariton-altered chemical reactivity. However, using polaritons in chemical contexts will require a better understanding of their photophysical properties under ambient conditions, where chemistry is typically performed. Here, we used cavity quality factor to control strong light-matter interactions and in particular the excited state dynamics of colloidal CdSe nanoplatelets (NPLs) coupled to a Fabry-Pérot optical cavity. With increasing cavity quality factor, we observe significant population of the upper polariton (UP) state, exemplified by the rare observation of substantial UP photoluminescence (PL). Excitation of the lower polariton (LP) states results in upconverted PL emission from the UP branch due to efficient exchange of population between the LP, UP and the reservoir of dark states present in collectively coupled polaritonic systems. In addition, we measure time scales for polariton dynamics ∼100 ps, implying great potential for NPL based polariton systems to affect photochemical reaction rates. State-of-the-art quantum dynamical simulations show outstanding quantitative agreement with experiments, and thus provide important insight into polariton photophysical dynamics of collectively coupled nanocrystal-based systems. These findings represent a significant step toward the development of practical polariton photochemistry platforms.
Collapse
Affiliation(s)
- Mitesh Amin
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Eric R Koessler
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ovishek Morshed
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Nicole M B Cogan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Robert Collison
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Trevor M Tumiel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William Girten
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Christopher Leiter
- Department of Chemistry, Regis University, Denver, Colorado 80221, United States
| | - A Nickolas Vamivakas
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
9
|
Morshed O, Amin M, Cogan NMB, Koessler ER, Collison R, Tumiel TM, Girten W, Awan F, Mathis L, Huo P, Vamivakas AN, Odom TW, Krauss TD. Room-temperature strong coupling between CdSe nanoplatelets and a metal-DBR Fabry-Pérot cavity. J Chem Phys 2024; 161:014710. [PMID: 38953450 DOI: 10.1063/5.0210700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The generation of exciton-polaritons through strong light-matter interactions represents an emerging platform for exploring quantum phenomena. A significant challenge in colloidal nanocrystal-based polaritonic systems is the ability to operate at room temperature with high fidelity. Here, we demonstrate the generation of room-temperature exciton-polaritons through the coupling of CdSe nanoplatelets (NPLs) with a Fabry-Pérot optical cavity, leading to a Rabi splitting of 74.6 meV. Quantum-classical calculations accurately predict the complex dynamics between the many dark state excitons and the optically allowed polariton states, including the experimentally observed lower polariton photoluminescence emission, and the concentration of photoluminescence intensities at higher in-plane momenta as the cavity becomes more negatively detuned. The Rabi splitting measured at 5 K is similar to that at 300 K, validating the feasibility of the temperature-independent operation of this polaritonic system. Overall, these results show that CdSe NPLs are an excellent material to facilitate the development of room-temperature quantum technologies.
Collapse
Affiliation(s)
- Ovishek Morshed
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Mitesh Amin
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Nicole M B Cogan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Eric R Koessler
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Robert Collison
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Trevor M Tumiel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - William Girten
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Lele Mathis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Pengfei Huo
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - A Nickolas Vamivakas
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Teri W Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Todd D Krauss
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
10
|
Fábri C, Császár AG, Halász GJ, Cederbaum LS, Vibók Á. Coupling polyatomic molecules to lossy nanocavities: Lindblad vs Schrödinger description. J Chem Phys 2024; 160:214308. [PMID: 38836455 DOI: 10.1063/5.0205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The use of cavities to impact molecular structure and dynamics has become popular. As cavities, in particular plasmonic nanocavities, are lossy and the lifetime of their modes can be very short, their lossy nature must be incorporated into the calculations. The Lindblad master equation is commonly considered an appropriate tool to describe this lossy nature. This approach requires the dynamics of the density operator and is thus substantially more costly than approaches employing the Schrödinger equation for the quantum wave function when several or many nuclear degrees of freedom are involved. In this work, we compare numerically the Lindblad and Schrödinger descriptions discussed in the literature for a molecular example where the cavity is pumped by a laser. The laser and cavity properties are varied over a range of parameters. It is found that the Schrödinger description adequately describes the dynamics of the polaritons and emission signal as long as the laser intensity is moderate and the pump time is not much longer than the lifetime of the cavity mode. Otherwise, it is demonstrated that the Schrödinger description gradually fails. We also show that the failure of the Schrödinger description can often be remedied by renormalizing the wave function at every step of time propagation. The results are discussed and analyzed.
Collapse
Affiliation(s)
- Csaba Fábri
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Attila G Császár
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
11
|
de Jong LMA, Berghuis AM, Abdelkhalik MS, van der Pol TPA, Wienk MM, Janssen RAJ, Gómez Rivas J. Enhancement of the internal quantum efficiency in strongly coupled P3HT-C 60 organic photovoltaic cells using Fabry-Perot cavities with varied cavity confinement. NANOPHOTONICS 2024; 13:2531-2540. [PMID: 38836103 PMCID: PMC11147493 DOI: 10.1515/nanoph-2023-0613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 06/06/2024]
Abstract
The short exciton diffusion length in organic semiconductors results in a strong dependence of the conversion efficiency of organic photovoltaic (OPV) cells on the morphology of the donor-acceptor bulk-heterojunction blend. Strong light-matter coupling provides a way to circumvent this dependence by combining the favorable properties of light and matter via the formation of hybrid exciton-polaritons. By strongly coupling excitons in P3HT-C60 OPV cells to Fabry-Perot optical cavity modes, exciton-polaritons are formed with increased propagation lengths. We exploit these exciton-polaritons to enhance the internal quantum efficiency of the cells, determined from the external quantum efficiency and the absorptance. Additionally, we find a consistent decrease in the Urbach energy for the strongly coupled cells, which indicates the reduction of energetic disorder due to the delocalization of exciton-polaritons in the optical cavity.
Collapse
Affiliation(s)
- Lianne M. A. de Jong
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Anton Matthijs Berghuis
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Mohamed S. Abdelkhalik
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Tom P. A. van der Pol
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Martijn M. Wienk
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Rene A. J. Janssen
- Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MBEindhoven, The Netherlands
| |
Collapse
|
12
|
Fábri C, Halász GJ, Cederbaum LS, Vibók Á. Impact of Cavity on Molecular Ionization Spectra. J Phys Chem Lett 2024; 15:4655-4661. [PMID: 38647546 DOI: 10.1021/acs.jpclett.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ionization phenomena have been widely studied for decades. With the advent of cavity technology, the question arises how quantum light affects molecular ionization. As the ionization spectrum is recorded from the neutral ground state, it is usually possible to choose cavities which exert negligible effect on the neutral ground state, but have significant impact on the ion and the ionization spectrum. Particularly interesting are cases where the ion exhibits conical intersections between close-lying electronic states, which gives rise to substantial nonadiabatic effects. Assuming single-molecule strong coupling, we demonstrate that vibrational modes irrelevant in the absence of a cavity play a decisive role when the molecule is in the cavity. Here, dynamical symmetry breaking is responsible for the ion-cavity coupling and high symmetry enables control of the coupling via molecular orientation relative to the cavity field polarization. Significant impact on the spectrum by the cavity is found and shown to even substantially increase for less symmetric molecules.
Collapse
Affiliation(s)
- Csaba Fábri
- HUN-REN-ELTE Complex Chemical Systems Research Group, H-1518 Budapest 112, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd, Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
13
|
Cui ZH, Mandal A, Reichman DR. Variational Lang-Firsov Approach Plus Møller-Plesset Perturbation Theory with Applications to Ab Initio Polariton Chemistry. J Chem Theory Comput 2024. [PMID: 38300885 DOI: 10.1021/acs.jctc.3c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
We apply the Lang-Firsov (LF) transformation to electron-boson coupled Hamiltonians and variationally optimize the transformation parameters and molecular orbital coefficients to determine the ground state. Møller-Plesset (MP-n, with n = 2 and 4) perturbation theory is then applied on top of the optimized LF mean-field state to improve the description of electron-electron and electron-boson correlations. The method (LF-MP) is applied to several electron-boson coupled systems, including the Hubbard-Holstein model, diatomic molecule dissociation (H2, HF), and the modification of proton transfer reactions (malonaldehyde and aminopropenal) via the formation of polaritons in an optical cavity. We show that with a correction for the electron-electron correlation, the method gives quantitatively accurate energies comparable to that by exact diagonalization or coupled-cluster theory. The effects of multiple photon modes, spin polarization, and the comparison to the coherent state MP theory are also discussed.
Collapse
Affiliation(s)
- Zhi-Hao Cui
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
14
|
Li X, Lubbers N, Tretiak S, Barros K, Zhang Y. Machine Learning Framework for Modeling Exciton Polaritons in Molecular Materials. J Chem Theory Comput 2024; 20:891-901. [PMID: 38168674 DOI: 10.1021/acs.jctc.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A light-matter hybrid quasiparticle, called a polariton, is formed when molecules are strongly coupled to an optical cavity. Recent experiments have shown that polariton chemistry can manipulate chemical reactions. Polariton chemistry is a collective phenomenon, and its effects increase with the number of molecules in a cavity. However, simulating an ensemble of molecules in the excited state coupled to a cavity mode is theoretically and computationally challenging. Recent advances in machine learning (ML) techniques have shown promising capabilities in modeling ground-state chemical systems. This work presents a general protocol to predict excited-state properties, such as energies, transition dipoles, and nonadiabatic coupling vectors with the hierarchically interacting particle neural network. ML predictions are then applied to compute the potential energy surfaces and electronic spectra of a prototype azomethane molecule in the collective coupling scenario. These computational tools provide a much-needed framework to model and understand many molecules' emerging excited-state polariton chemistry.
Collapse
Affiliation(s)
- Xinyang Li
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Information Sciences, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kipton Barros
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Hu D, Ying W, Huo P. Resonance Enhancement of Vibrational Polariton Chemistry Obtained from the Mixed Quantum-Classical Dynamics Simulations. J Phys Chem Lett 2023; 14:11208-11216. [PMID: 38055902 PMCID: PMC10726371 DOI: 10.1021/acs.jpclett.3c02985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
We applied a variety of mixed quantum-classical (MQC) approaches to simulate the VSC-influenced reaction rate constant. All of these MQC simulations treat the key vibrational levels associated with the reaction coordinate in the quantum subsystem (as quantum states), whereas all other degrees of freedom (DOFs) are treated inside the classical subsystem. We find that, as long as we have the quantum state descriptions for the vibrational DOFs, one can correctly describe the VSC resonance condition when the cavity frequency matches the bond vibrational frequency. This correct resonance behavior can be obtained regardless of the detailed MQC methods that one uses. The results suggest that the MQC approaches can generate semiquantitative agreement with the exact results for rate constant changes when changing the cavity frequency, the light-matter coupling strength, or the cavity lifetime. The finding of this work suggests that one can use computationally economic MQC approaches to explore the collective coupling scenario when many molecules are collectively coupled to many cavity modes in the future.
Collapse
Affiliation(s)
- Deping Hu
- Center
for Advanced Materials Research, Beijing
Normal University, Zhuhai 519087, China
| | - Wenxiang Ying
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Institute
of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
16
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
17
|
Peng K, Rabani E. Polaritonic Bottleneck in Colloidal Quantum Dots. NANO LETTERS 2023; 23:10587-10593. [PMID: 37910671 DOI: 10.1021/acs.nanolett.3c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Controlling the relaxation dynamics of excitons is key to improving the efficiencies of semiconductor-based applications. Confined semiconductor nanocrystals (NCs) offer additional handles to control the properties of excitons, for example, by changing their size or shape, resulting in a mismatch between excitonic gaps and phonon frequencies. This has led to the hypothesis of a significant slowing-down of exciton relaxation in strongly confined NCs, but in practice due to increasing exciton-phonon coupling and rapid multiphonon relaxation channels, the exciton relaxation depends only weakly on the size or shape. Here, we focus on elucidating the nonradiative relaxation of excitons in NCs placed in an optical cavity. We find that multiphonon emission of carrier governs the decay, resulting in a polariton-induced phonon bottleneck with relaxation time scales that are slower by orders of magnitude compared to the cavity-free case, while the photon fraction plays a secondary role.
Collapse
Affiliation(s)
- Kaiyue Peng
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Gudem M, Kowalewski M. Cavity-Modified Chemiluminescent Reaction of Dioxetane. J Phys Chem A 2023; 127:9483-9494. [PMID: 37845803 PMCID: PMC10658626 DOI: 10.1021/acs.jpca.3c05664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Chemiluminescence is a thermally activated chemical process that emits a photon of light by forming a fraction of products in the electronic excited state. A well-known example of this spectacular phenomenon is the emission of light in the firefly beetle, where the formation of a four-membered cyclic peroxide compound and subsequent dissociation produce a light-emitting product. The smallest cyclic peroxide, dioxetane, also exhibits chemiluminescence but with a low quantum yield as compared to that of firefly dioxetane. Employing the strong light-matter coupling has recently been found to be an alternative strategy to modify the chemical reactivity. In the presence of an optical cavity, the molecular degrees of freedom greatly mix with the cavity mode to form hybrid cavity-matter states called polaritons. These newly generated hybrid light-matter states manipulate the potential energy surfaces and significantly change the reaction dynamics. Here, we theoretically investigate the effects of a strong light-matter interaction on the chemiluminescent reaction of dioxetane using the extended Jaynes-Cummings model. The cavity couplings corresponding to the electronic and vibrational degrees of freedom have been included in the interaction Hamiltonian. We explore how the cavity alters the ground- and excited-state path energy barriers and reaction rates. Our results demonstrate that the formation of excited-state products in the dioxetane decomposition process can be either accelerated or suppressed, depending on the molecular orientation with respect to the cavity polarization.
Collapse
Affiliation(s)
- Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106
91 Stockholm, Sweden
| |
Collapse
|
19
|
Fischer EW, Saalfrank P. Beyond Cavity Born-Oppenheimer: On Nonadiabatic Coupling and Effective Ground State Hamiltonians in Vibro-Polaritonic Chemistry. J Chem Theory Comput 2023; 19:7215-7229. [PMID: 37793029 DOI: 10.1021/acs.jctc.3c00708] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The emerging field of vibro-polaritonic chemistry studies the impact of light-matter hybrid states known as vibrational polaritons on chemical reactivity and molecular properties. Here, we discuss vibro-polaritonic chemistry from a quantum chemical perspective beyond the cavity Born-Oppenheimer (CBO) approximation and examine the role of electron-photon correlation in effective ground state Hamiltonians. We first quantitatively review ab initio vibro-polaritonic chemistry based on the molecular Pauli-Fierz Hamiltonian in dipole approximation and a vibrational strong coupling (VSC) Born-Huang expansion. We then derive nonadiabatic coupling elements arising from both "slow" nuclei and cavity modes compared to "fast" electrons via the generalized Hellmann-Feynman theorem, discuss their properties, and reevaluate the CBO approximation. In the second part, we introduce a crude VSC Born-Huang expansion based on adiabatic electronic states, which provides a foundation for widely employed effective Pauli-Fierz Hamiltonians in ground state vibro-polaritonic chemistry. Those do not strictly respect the CBO approximation but an alternative scheme, which we name crude CBO approximation. We argue that the crude CBO ground state misses electron-photon correlation relative to the CBO ground state due to neglected cavity-induced nonadiabatic transition dipole couplings to excited states. A perturbative connection between both ground state approximations is proposed, which identifies the crude CBO ground state as a first-order approximation to its CBO counterpart. We provide an illustrative numerical analysis of the cavity Shin-Metiu model with a focus on nonadiabatic coupling under VSC and electron-photon correlation effects on classical activation barriers. We finally discuss the potential shortcomings of the electron-polariton Hamiltonian when employed in the VSC regime.
Collapse
Affiliation(s)
- Eric W Fischer
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Peter Saalfrank
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
20
|
Gu B, Gu Y, Chernyak VY, Mukamel S. Cavity Control of Molecular Spectroscopy and Photophysics. Acc Chem Res 2023; 56:2753-2762. [PMID: 37782841 DOI: 10.1021/acs.accounts.3c00280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
ConspectusOptical cavities have been established as a powerful platform for manipulating the spectroscopy and photophysics of molecules. Molecules placed inside an optical cavity will interact with the cavity field, even if the cavity is in the vacuum state with no photons. When the coupling strength between matter excitations, either electronic or vibrational, and a cavity photon mode surpasses all decay rates in the system, hybrid light-matter excitations known as cavity polaritons emerge. Originally studied in atomic systems, there has been growing interest in studying polaritons in molecules. Numerous studies, both experimental and theoretical, have demonstrated that the formation of molecular polaritons can significantly alter the optical, electronic, and chemical properties of molecules in a noninvasive manner.This Account focuses on novel studies that reveal how optical cavities can be employed to control electronic excitations, both valence and core, in molecules and the spectroscopic signatures of molecular polaritons. We first discuss the capacity of optical cavities to manipulate and control the intrinsic conical intersection dynamics in polyatomic molecules. Since conical intersections are responsible for a wide range of photochemical and photophysical processes such as internal conversion, photoisomerization, and singlet fission, this provides a practical strategy to control molecular photodynamics. Two examples are given for the internal conversion in pyrazine and singlet fission in a pentacene dimer. We further show how X-ray cavities can be exploited to control the core-level excitations of molecules. Core polaritons can be created from inequivalent core orbitals by exchanging X-ray cavity photons. The core polaritons can also alter the selection rules in nonlinear spectroscopy.Polaritonic states and dynamics can be monitored by nonlinear spectroscopy. Quantum light spectroscopy is a frontier in nonlinear spectroscopy that exploits the quantum-mechanical properties of light, such as entanglement and squeezing, to extract matter information inaccessible by classical light. We discuss how quantum spectroscopic techniques can be employed for probing polaritonic systems. In multimolecule polaritonic systems, there exist two-polariton states that are dark in the two-photon absorption spectrum due to destructive interference between transition pathways. We show that a time-frequency entangled photon pair can manipulate the interference between transition pathways in the two-photon absorption signal and thus capture classically dark two-polariton states. Finally, we discuss cooperative effects among molecules in spectroscopy and possibly in chemistry. When many molecules are involved in forming the polaritons, while the cooperative effects clearly manifest in the dependence of the Rabi splitting on the number of molecules, whether they can show up in chemical reactivity, which is intrinsically local, is an open question. We explore the cooperative nature of the charge migration process in a cavity and show that, unlike spectroscopy, polaritonic charge dynamics is intrinsically local and does not show collective many-molecule effects.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics, School of Science, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yonghao Gu
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Vladimir Y Chernyak
- Department of Chemistry and Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
21
|
Severi M, Zerbetto F. Polaritonic Chemistry: Hindering and Easing Ground State Polyenic Isomerization via Breakdown of σ-π Separation. J Phys Chem Lett 2023; 14:9145-9149. [PMID: 37796008 PMCID: PMC10577679 DOI: 10.1021/acs.jpclett.3c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
The ground state conformational isomerization in polyenes is a symmetry allowed process. Its low energy barrier is governed by electron density transfer from the formal single bond that is rotated to the nearby formal double bonds. Along the reaction pathway, the transition state is therefore destabilized. The rules of polaritonic chemistry, i.e., chemistry in a nanocavity with reflecting windows, are barely beginning to be laid out. The standing electric field of the nanocavity couples strongly with the molecular wave function and modifies the potential energy curve in unexpected ways. A quantum electrodynamics approach, applied to the torsional degree of freedom of the central bond of butadiene, shows that formation of the polariton mixes the σ-π frameworks thereby stabilizing/destabilizing the planar, reactant-like conformations. The values of the fundamental mode of the cavity field used in the absence of the cavity do not trigger this mechanism.
Collapse
Affiliation(s)
- Marco Severi
- Department
of Chemistry G. Ciamician, University of
Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Department
of Chemistry G. Ciamician, University of
Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
22
|
Ruggenthaler M, Sidler D, Rubio A. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem Rev 2023; 123:11191-11229. [PMID: 37729114 PMCID: PMC10571044 DOI: 10.1021/acs.chemrev.2c00788] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 09/22/2023]
Abstract
In this review, we present the theoretical foundations and first-principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental physical and mathematical principles, we first review in great detail ab initio nonrelativistic QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of (in principle exact but in practice) approximate computational methods such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and, at the same time, have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key ideas behind those ab initio QED methods, we highlight their benefits for understanding photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods, we identify open theoretical questions and how a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first-principles QED.
Collapse
Affiliation(s)
- Michael Ruggenthaler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Sidler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
23
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
24
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
25
|
Mandal A, Taylor MAD, Huo P. Theory for Cavity-Modified Ground-State Reactivities via Electron-Photon Interactions. J Phys Chem A 2023; 127:6830-6841. [PMID: 37499090 PMCID: PMC10440810 DOI: 10.1021/acs.jpca.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Indexed: 07/29/2023]
Abstract
We provide a simple and intuitive theory to explain how coupling a molecule to an optical cavity can modify ground-state chemical reactivity by exploiting intrinsic quantum behaviors of light-matter interactions. Using the recently developed polarized Fock states representation, we demonstrate that the change of the ground-state potential is achieved due to the scaling of diabatic electronic couplings with the overlap of the polarized Fock states. Our theory predicts that for a proton-transfer model system, the ground-state barrier height can be modified through light-matter interactions when the cavity frequency is in the electronic excitation range. Our simple theory explains several recent computational investigations that discovered the same effect. We further demonstrate that under the deep strong coupling limit of the light and matter, the polaritonic ground and first excited eigenstates become the Mulliken-Hush diabatic states, which are the eigenstates of the dipole operator. This work provides a simple but powerful theoretical framework to understand how strong coupling between the molecule and the cavity can modify ground-state reactivities.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A. D. Taylor
- Institute
of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Institute
of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
26
|
Koner A, Du M, Pannir-Sivajothi S, Goldsmith RH, Yuen-Zhou J. A path towards single molecule vibrational strong coupling in a Fabry-Pérot microcavity. Chem Sci 2023; 14:7753-7761. [PMID: 37476723 PMCID: PMC10355109 DOI: 10.1039/d3sc01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Interaction between light and molecular vibrations leads to hybrid light-matter states called vibrational polaritons. Even though many intriguing phenomena have been predicted for single-molecule vibrational strong coupling (VSC), several studies suggest that these effects tend to be diminished in the many-molecule regime due to the presence of dark states. Achieving single or few-molecule vibrational polaritons has been constrained by the need for fabricating extremely small mode volume infrared cavities. In this theoretical work, we propose an alternative strategy to achieve single-molecule VSC in a cavity-enhanced Raman spectroscopy (CERS) setup, based on the physics of cavity optomechanics. We then present a scheme harnessing few-molecule VSC to thermodynamically couple two reactions, such that a spontaneous electron transfer can now fuel a thermodynamically uphill reaction that was non-spontaneous outside the cavity.
Collapse
Affiliation(s)
- Arghadip Koner
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Matthew Du
- Department of Chemistry, University of Chicago 5735 S Ellis Ave Chicago Illinois 60637 USA
| | - Sindhana Pannir-Sivajothi
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706-1322 USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
27
|
Weight BM, Krauss TD, Huo P. Investigating Molecular Exciton Polaritons Using Ab Initio Cavity Quantum Electrodynamics. J Phys Chem Lett 2023; 14:5901-5913. [PMID: 37343178 PMCID: PMC10316409 DOI: 10.1021/acs.jpclett.3c01294] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Coupling molecules to the quantized radiation field inside an optical cavity creates a set of new photon-matter hybrid states called polariton states. We combine electronic structure theory with quantum electrodynamics (QED) to investigate molecular polaritons using ab initio simulations. This framework joins unperturbed electronic adiabatic states with the Fock state basis to compute the eigenstates of the QED Hamiltonian. The key feature of this "parametrized QED" approach is that it provides the exact molecule-cavity interactions, limited by only approximations made in the electronic structure. Using time-dependent density functional theory, we demonstrated comparable accuracy with QED coupled cluster benchmark results for predicting potential energy surfaces in the ground and excited states and showed selected applications to light-harvesting and light-emitting materials. We anticipate that this framework will provide a set of general and powerful tools that enable direct ab initio simulation of exciton polaritons in molecule-cavity hybrid systems.
Collapse
Affiliation(s)
- Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| | - Todd D. Krauss
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
28
|
Cederbaum LS, Fedyk J. Activating cavity by electrons. COMMUNICATIONS PHYSICS 2023; 6:111. [PMID: 38665403 PMCID: PMC11041782 DOI: 10.1038/s42005-023-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/27/2023] [Indexed: 04/28/2024]
Abstract
The interaction of atoms and molecules with quantum light as realized in cavities has become a highly topical and fast growing research field. This interaction leads to hybrid light-matter states giving rise to new phenomena and opening up pathways to control and manipulate properties of the matter. Here, we substantially extend the scope of the interaction by allowing free electrons to enter the cavity and merge and unify the two active fields of electron scattering and quantum-light-matter interaction. In the presence of matter, hybrid metastable states are formed at electron energies of choice. The properties of these states depend strongly on the frequency and on the light-matter coupling of the cavity. The incoming electrons can be captured by the matter inside the cavity solely due to the presence of the cavity. The findings are substantiated by an explicit example and general consequences are discussed.
Collapse
Affiliation(s)
- Lorenz S. Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Jacqueline Fedyk
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
29
|
Lindoy LP, Mandal A, Reichman DR. Quantum dynamical effects of vibrational strong coupling in chemical reactivity. Nat Commun 2023; 14:2733. [PMID: 37173299 PMCID: PMC10182063 DOI: 10.1038/s41467-023-38368-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Recent experiments suggest that ground state chemical reactivity can be modified when placing molecular systems inside infrared cavities where molecular vibrations are strongly coupled to electromagnetic radiation. This phenomenon lacks a firm theoretical explanation. Here, we employ an exact quantum dynamics approach to investigate a model of cavity-modified chemical reactions in the condensed phase. The model contains the coupling of the reaction coordinate to a generic solvent, cavity coupling to either the reaction coordinate or a non-reactive mode, and the coupling of the cavity to lossy modes. Thus, many of the most important features needed for realistic modeling of the cavity modification of chemical reactions are included. We find that when a molecule is coupled to an optical cavity it is essential to treat the problem quantum mechanically to obtain a quantitative account of alterations to reactivity. We find sizable and sharp changes in the rate constant that are associated with quantum mechanical state splittings and resonances. The features that emerge from our simulations are closer to those observed in experiments than are previous calculations, even for realistically small values of coupling and cavity loss. This work highlights the importance of a fully quantum treatment of vibrational polariton chemistry.
Collapse
Affiliation(s)
- Lachlan P Lindoy
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA.
| |
Collapse
|
30
|
Mandal A, Xu D, Mahajan A, Lee J, Delor M, Reichman DR. Microscopic Theory of Multimode Polariton Dispersion in Multilayered Materials. NANO LETTERS 2023; 23:4082-4089. [PMID: 37103998 DOI: 10.1021/acs.nanolett.3c01017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We develop a microscopic theory for the multimode polariton dispersion in materials coupled to cavity radiation modes. Starting from a microscopic light-matter Hamiltonian, we devise a general strategy for obtaining simple matrix models of polariton dispersion curves based on the structure and spatial location of multilayered 2D materials inside the optical cavity. Our theory exposes the connections between seemingly distinct models that have been employed in the literature and resolves an ambiguity that has arisen concerning the experimental description of the polaritonic band structure. We demonstrate the applicability of our theoretical formalism by fabricating various geometries of multilayered perovskite materials coupled to cavities and demonstrating that our theoretical predictions agree with the experimental results presented here.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
31
|
Hu D, Huo P. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. J Chem Theory Comput 2023; 19:2353-2368. [PMID: 37000936 PMCID: PMC10134431 DOI: 10.1021/acs.jctc.3c00137] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 04/03/2023]
Abstract
We present a mixed quantum-classical simulation of polariton dynamics for molecule-cavity hybrid systems. In particular, we treat the coupled electronic-photonic degrees of freedom (DOFs) as the quantum subsystem and the nuclear DOFs as the classical subsystem and use the trajectory surface hopping approach to simulate non-adiabatic dynamics among the polariton states due to the coupled motion of nuclei. We use the accurate nuclear gradient expression derived from the Pauli-Fierz quantum electrodynamics Hamiltonian without making further approximations. The energies, gradients, and derivative couplings of the molecular systems are obtained from the on-the-fly simulations at the level of complete active space self-consistent field (CASSCF), which are used to compute the polariton energies and nuclear gradients. The derivatives of dipoles are also necessary ingredients in the polariton nuclear gradient expression but are often not readily available in electronic structure methods. To address this challenge, we use a machine learning model with the Kernel ridge regression method to construct the dipoles and further obtain their derivatives, at the same level as the CASSCF theory. The cavity loss process is modeled with the Lindblad jump superoperator on the reduced density of the electronic-photonic quantum subsystem. We investigate the azomethane molecule and its photoinduced isomerization dynamics inside the cavity. Our results show the accuracy of the machine-learned dipoles and their usage in simulating polariton dynamics. Our polariton dynamics results also demonstrate the isomerization reaction of azomethane can be effectively tuned by coupling to an optical cavity and by changing the light-matter coupling strength and the cavity loss rate.
Collapse
Affiliation(s)
- Deping Hu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
32
|
Sukharev M, Subotnik J, Nitzan A. Dissociation slowdown by collective optical response under strong coupling conditions. J Chem Phys 2023; 158:084104. [PMID: 36859100 DOI: 10.1063/5.0133972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We consider an ensemble of diatomic molecules resonantly coupled to an optical cavity under strong coupling conditions at normal incidence. Photodissociation dynamics is examined via direct numerical integration of the coupled Maxwell-Schrödinger equations with molecular rovibrational degrees of freedom explicitly taken into account. It is shown that the dissociation is significantly affected (slowed down) when the system is driven at its polaritonic frequencies. The observed effect is demonstrated to be of transient nature and has no classical analog. An intuitive explanation of the dissociation slowdown at polaritonic frequencies is proposed.
Collapse
Affiliation(s)
- Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, USA
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Cheng CY, Krainova N, Brigeman AN, Khanna A, Shedge S, Isborn C, Yuen-Zhou J, Giebink NC. Molecular polariton electroabsorption. Nat Commun 2022; 13:7937. [PMID: 36566224 DOI: 10.1038/s41467-022-35589-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
We investigate electroabsorption (EA) in organic semiconductor microcavities to understand whether strong light-matter coupling non-trivially alters their nonlinear optical [[Formula: see text]] response. Focusing on strongly-absorbing squaraine (SQ) molecules dispersed in a wide-gap host matrix, we find that classical transfer matrix modeling accurately captures the EA response of low concentration SQ microcavities with a vacuum Rabi splitting of [Formula: see text] meV, but fails for high concentration cavities with [Formula: see text] meV. Rather than new physics in the ultrastrong coupling regime, however, we attribute the discrepancy at high SQ concentration to a nearly dark H-aggregate state below the SQ exciton transition, which goes undetected in the optical constant dispersion on which the transfer matrix model is based, but nonetheless interacts with and enhances the EA response of the lower polariton mode. These results indicate that strong coupling can be used to manipulate EA (and presumably other optical nonlinearities) from organic microcavities by controlling the energy of polariton modes relative to other states in the system, but it does not alter the intrinsic optical nonlinearity of the organic semiconductor inside the cavity.
Collapse
Affiliation(s)
- Chiao-Yu Cheng
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nina Krainova
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alyssa N Brigeman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ajay Khanna
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, 95343, USA
| | - Sapana Shedge
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, 95343, USA
| | - Christine Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, CA, 95343, USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
34
|
Wu W, Sifain AE, Delpo CA, Scholes GD. Polariton enhanced free charge carrier generation in donor-acceptor cavity systems by a second-hybridization mechanism. J Chem Phys 2022; 157:161102. [PMID: 36319424 DOI: 10.1063/5.0122497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023] Open
Abstract
Cavity quantum electrodynamics has been studied as a potential approach to modify free charge carrier generation in donor-acceptor heterojunctions because of the delocalization and controllable energy level properties of hybridized light-matter states known as polaritons. However, in many experimental systems, cavity coupling decreases charge separation. Here, we theoretically study the quantum dynamics of a coherent and dissipative donor-acceptor cavity system, to investigate the dynamical mechanism and further discover the conditions under which polaritons may enhance free charge carrier generation. We use open quantum system methods based on single-pulse pumping to find that polaritons have the potential to connect excitonic states and charge separated states, further enhancing free charge generation on an ultrafast timescale of several hundred femtoseconds. The mechanism involves polaritons with optimal energy levels that allow the exciton to overcome the high Coulomb barrier induced by electron-hole attraction. Moreover, we propose that a second-hybridization between a polariton state and dark states with similar energy enables the formation of the hybrid charge separated states that are optically active. These two mechanisms lead to a maximum of 50% enhancement of free charge carrier generation on a short timescale. However, our simulation reveals that on the longer timescale of picoseconds, internal conversion and cavity loss dominate and suppress free charge carrier generation, reproducing the experimental results. Thus, our work shows that polaritons can affect the charge separation mechanism and promote free charge carrier generation efficiency, but predominantly on a short timescale after photoexcitation.
Collapse
Affiliation(s)
- Weijun Wu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| | - Andrew E Sifain
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| | - Courtney A Delpo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
35
|
Chowdhury SN, Zhang P, Beratan DN. Interference between Molecular and Photon Field-Mediated Electron Transfer Coupling Pathways in Cavities. J Phys Chem Lett 2022; 13:9822-9828. [PMID: 36240481 DOI: 10.1021/acs.jpclett.2c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cavity polaritonics creates novel opportunities to direct chemical reactions. Electron transfer (ET) reactions are among the simplest reactions, and they underpin energy conversion. New strategies to manipulate and direct electron flow at the nanoscale are of particular interest in biochemistry, energy science, bioinspired materials science, and chemistry. We show that optical cavities can modulate electron transfer pathway interferences and ET rates in donor-bridge-acceptor (DBA) systems. We derive the rate for DBA electron transfer when the molecules are coupled to cavity modes, emphasizing novel cavity-induced pathway interferences with the molecular electronic coupling pathways, as these interferences allow a new kind of ET rate tuning. The interference between the cavity-induced coupling pathways and the intrinsic molecular coupling pathway is dependent on the cavity properties. Thus, manipulating the interference between the cavity-induced DA coupling and the bridge-mediated coupling offers an approach to direct and manipulate charge flow at the nanoscale.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - David N Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina27710, United States
| |
Collapse
|
36
|
Couto RC, Kowalewski M. Suppressing non-radiative decay of photochromic organic molecular systems in the strong coupling regime. Phys Chem Chem Phys 2022; 24:19199-19208. [PMID: 35861014 PMCID: PMC9382694 DOI: 10.1039/d2cp00774f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/10/2022] [Indexed: 11/21/2022]
Abstract
The lifetimes of electronic excited states have a strong influence on the efficiency of organic solar cells. However, in some molecular systems a given excited state lifetime is reduced due to the non-radiative decay through conical intersections. Several strategies may be used to suppress this decay channel. The use of the strong light-matter coupling provided in optical nano-cavities is the focus of this paper. Here, we consider the meso-tert-butyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene molecule (meso-tert-butyl-BODIPY) as a showcase of how strong and ultrastrong coupling might help in the development of organic solar cells. The meso-tert-butyl-BODIPY is known for its low fluorescence yield caused by the non-radiative decay through a conical intersection. However, we show here that, by considering this system within a cavity, the strong coupling can lead to significant changes in the multidimensional landscape of the potential energy surfaces of meso-tert-butyl-BODIPY, suppressing almost completely the decay of the excited state wave packet back to the ground state. By means of multi configuration electronic structure calculations and nuclear wave packet dynamics, the coupling with the cavity is analyzed in-depth to provide further insight of the interaction. By fine-tuning the cavity field strength and resonance frequency, we show that one can change the nuclear dynamics in the excited state, and control the non-radiative decay. This may lead to a faster and more efficient population transfer or the suppression of it.
Collapse
Affiliation(s)
- Rafael C Couto
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden.
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
37
|
Zhou W, Hu D, Mandal A, Huo P. Nuclear Gradient Expressions for Molecular Cavity Quantum ElectrodynamicsSimulations using Mixed Quantum-Classical Methods. J Chem Phys 2022; 157:104118. [DOI: 10.1063/5.0109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a rigorous nuclear gradient for a molecule-cavity hybrid system using the Quantum Electrodynamics Hamiltonian. We treat the electronic-photonic DOFs as the quantum subsystem, and the nuclei as the classical subsystem. Using the adiabatic basis for the electronic DOF and the Fock basis for the photonic DOF, and requiring the total energy conservation of this mixed quantum-classical system, we derived the rigorous nuclear gradient for the molecule-cavity hybrid system, which is naturally connected to the approximate gradient under the Jaynes-Cummings approximation. The nuclear gradient expression can be readily used in any mixed quantum-classical simulations and will allow one to perform the non-adiabatic on-the-fly simulation of polariton quantum dynamics. The theoretical developments in this work could significantly benefit the polariton quantum dynamics community with a rigorous nuclear gradient of the molecule-cavity hybrid system and have a broad impact on the future non-adiabatic simulations of polariton quantum dynamics.
Collapse
Affiliation(s)
| | - Deping Hu
- University of Rochester, United States of America
| | | | - Pengfei Huo
- Department of Chemsitry, University of Rochester Department of Chemistry, United States of America
| |
Collapse
|
38
|
Cui B, Nitzan A. Collective response in light-matter interactions: The interplay between strong coupling and local dynamics. J Chem Phys 2022; 157:114108. [DOI: 10.1063/5.0101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Strong molecule-radiation field coupling is often reached when a large number N of molecules respond collectively to the radiation field. In electronic strong coupling, molecular nuclear dynamics following polariton excitation reflects (a) the timescale separation between the fast electronic and photonic dynamics and the slow nuclear motion on one hand, and (b) the interplay between the collective nature of the molecule-field coupling and the local nature of the molecules nuclear response on the other. The first implies that the electronic excitation takes place, in the spirit of the Born approximation, at an approximately fixed nuclear configuration. The second can be rephrased as the intriguing question, can the collective nature of the optical excitation lead to collective nuclear motion following polariton formation, resulting in so-called polaron decoupled dynamics. We address this issue by studying the dynamical properties of a simplified Holstein-Tavis-Cummings type model, in which boson modes representing molecular vibrations are replaced by two-level systems while the boson frequency and the vibronic coupling are represented by the coupling between these levels (that induces Rabi oscillations between them) and electronic state dependence of this coupling. We investigate the short-time behavior of this model following polariton excitation as well as its response to CW driving and its density of states spectrum. We find that, while some aspects of the dynamical behavior appear to adhere to the polaron decoupling picture, the observed dynamics mostly reflect the local nature of the nuclear configuration of the electronic polariton rather than this picture.
Collapse
Affiliation(s)
- Bingyu Cui
- University of Pennsylvania, United States of America
| | - Abraham Nitzan
- University of Pennsylvania Department of Chemistry, United States of America
| |
Collapse
|
39
|
Lindoy LP, Mandal A, Reichman DR. Resonant Cavity Modification of Ground-State Chemical Kinetics. J Phys Chem Lett 2022; 13:6580-6586. [PMID: 35833754 DOI: 10.1021/acs.jpclett.2c01521] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent experiments have suggested that ground-state chemical kinetics can be suppressed or enhanced by coupling molecular vibrations with a cavity radiation mode. Here, we develop an analytical rate theory for cavity-modified chemical kinetics based on the Pollak-Grabert-Hänggi theory. Unlike previous work, our theory covers the complete range of solvent friction values, from the energy-diffusion-limited to the spatial-diffusion-limited regimes. We show that chemical kinetics is enhanced when bath friction is weak and suppressed when bath friction is strong. For weak bath friction, the resonant photon frequency (at which the maximum modification of the chemical rate is achieved) is close to the reactant well. In the strong friction limit, the resonant photon frequency is instead close to the barrier frequency. Finally, we observe that rate changes as a function of the photon frequency are much sharper and more sizable in the weak friction limit than in the strong friction limit.
Collapse
Affiliation(s)
- Lachlan P Lindoy
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
40
|
Mondal M, Ochoa MA, Sukharev M, Nitzan A. Coupling, lifetimes, and "strong coupling" maps for single molecules at plasmonic interfaces. J Chem Phys 2022; 156:154303. [PMID: 35459293 DOI: 10.1063/5.0077739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The interaction between excited states of a molecule and excited states of a metal nanostructure (e.g., plasmons) leads to hybrid states with modified optical properties. When plasmon resonance is swept through molecular transition frequency, an avoided crossing may be observed, which is often regarded as a signature of strong coupling between plasmons and molecules. Such strong coupling is expected to be realized when 2|⟨U⟩|/ℏΓ > 1, where ⟨U⟩ and Γ are the molecule-plasmon coupling and the spectral width of the optical transition, respectively. Because both ⟨U⟩ and Γ strongly increase with decreasing distance between a molecule and a plasmonic structure, it is not obvious that this condition can be satisfied for any molecule-metal surface distance. In this work, we investigate the behavior of ⟨U⟩ and Γ for several geometries. Surprisingly, we find that if the only contributions to Γ are lifetime broadenings associated with the radiative and nonradiative relaxation of a single molecular vibronic transition, including effects on molecular radiative and nonradiative lifetimes induced by the metal, the criterion 2|⟨U⟩|/ℏΓ > 1 is easily satisfied by many configurations irrespective of the metal-molecule distance. This implies that the Rabi splitting can be observed in such structures if other sources of broadening are suppressed. Additionally, when the molecule-metal surface distance is varied keeping all other molecular and metal parameters constant, this behavior is mitigated due to the spectral shift associated with the same molecule-plasmon interaction, making the observation of Rabi splitting more challenging.
Collapse
Affiliation(s)
- Monosij Mondal
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maicol A Ochoa
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
41
|
Cederbaum LS. Cooperative molecular structure in polaritonic and dark states. J Chem Phys 2022; 156:184102. [DOI: 10.1063/5.0090047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The interaction of quantum light with matter is known to give rise to mixed light-matter states. An ensemble of identical molecules is discussed. The resulting hybrid light-matter states exhibit complex structure even if only a single vibrational coordinate per molecule is considered. Starting from the uniform situation where all molecules possess the same value of this coordinate, polaritons and dark states follow like in atoms, but are functions of this coordinate. It is proven that any point on a resulting polariton energy curve is a (local) minimum or maximum for distorting molecules perpendicular to this curve. It is shown how to explicitly compute the impact of distortion solely based on the data of a free molecule. The structure of the dark states and their behavior upon distortion is analyzed as well. Useful techniques are introduced and general results on, for example, minimum energy path, symmetry breaking and restoration, are obtained. The developed strategy is transferred to include several or even many nuclear degrees of freedom per molecule and it is demonstrated that the interplay of several vibrational degrees of freedom in a single molecule of the ensemble is expected to lead to qualitatively different physics. General consequences are discussed.
Collapse
|
42
|
McTague J, Foley J. Non-Hermitian Cavity Quantum Electrodynamics - Configuration Interaction Singles Approach for Polaritonic Structure with ab initio Molecular Hamiltonians. J Chem Phys 2022; 156:154103. [DOI: 10.1063/5.0091953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We combine ab initio molecular electronic Hamiltonians with a cavity quantum electrodynamics model for dissipative photonic modes and apply mean-field theories to the ground- and excited-states of resulting polaritonic systems. In particular, we develop a non-Hermitian configuration interaction singles theory for mean-field ground- and excited-states of the molecular system strongly interacting with a photonic mode, and apply these methods to elucidating the phenomenology of paradigmatic polaritonic systems. We leverage the Psi4Numpy framework to yield open-source and accessible reference implementations of these methods.
Collapse
Affiliation(s)
- Jonathan McTague
- William Paterson University College of Science and Health, United States of America
| | - Jonathan Foley
- Chemistry, William Paterson University College of Science and Health, United States of America
| |
Collapse
|
43
|
Yang J, Pei Z, Leon EC, Wickizer C, Weng B, Mao Y, Ou Q, Shao Y. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. J Chem Phys 2022; 156:124104. [DOI: 10.1063/5.0082386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Following the formulation of cavity quantum-electrodynamical time-dependent density functional theory (cQED-TDDFT) models [Flick et al., ACS Photonics 6, 2757–2778 (2019) and Yang et al., J. Chem. Phys. 155, 064107 (2021)], here, we report the derivation and implementation of the analytic energy gradient for polaritonic states of a single photochrome within the cQED-TDDFT models. Such gradient evaluation is also applicable to a complex of explicitly specified photochromes or, with proper scaling, a set of parallel-oriented, identical-geometry, and non-interacting molecules in the microcavity.
Collapse
Affiliation(s)
- Junjie Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Erick Calderon Leon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Carly Wickizer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Binbin Weng
- Microfabrication Research and Education Center and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Qi Ou
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- AI for Science Institute, Beijing 100080, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
44
|
Saller MAC, Lai Y, Geva E. An Accurate Linearized Semiclassical Approach for Calculating Cavity-Modified Charge Transfer Rate Constants. J Phys Chem Lett 2022; 13:2330-2337. [PMID: 35245071 DOI: 10.1021/acs.jpclett.2c00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We show that combining the linearized semiclasscial approximation with Fermi's golden rule (FGR) rate theory gives rise to a general-purpose cost-effective and scalable computational framework that can accurately capture the cavity-induced rate enhancement of charge transfer reactions that occurs when the molecular system is placed inside a microcavity. Both partial linearization with respect to the nuclear and photonic degrees of freedom and full linerization with respect to nuclear, photonic, and electronic degrees of freedom (the latter within the mapping Hamiltonian approach) are shown to be highly accurate, provided that the Wigner transforms of the product (WoP) of operators at the initial time is not replaced by the product of their Wigner transforms. We also show that the partial linearization method yields the quantum-mechanically exact cavity-modified FGR rate constant for a model system in which the donor and acceptor potential energy surfaces are harmonic and identical except for a shift in the equilibrium energy and geometry, if WoP is applied.
Collapse
Affiliation(s)
- Maximilian A C Saller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
45
|
Taylor MAD, Mandal A, Huo P. Resolving ambiguities of the mode truncation in cavity quantum electrodynamics. OPTICS LETTERS 2022; 47:1446-1449. [PMID: 35290335 DOI: 10.1364/ol.450228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
This work provides the fundamental theoretical framework for few-mode cavity quantum electrodynamics by resolving the gauge ambiguities between the Coulomb gauge and the dipole gauge Hamiltonians under the photonic mode truncation. We first propose a general framework to resolve ambiguities for an arbitrary truncation in a given gauge. Then, we specifically consider the case of mode truncation, deriving gauge invariant expressions for both the Coulomb and dipole gauge Hamiltonians that naturally reduce to the commonly used single-mode Hamiltonians when considering a single-mode truncation. We finally provide the analytical and numerical results of both atomic and molecular model systems coupled to the cavity to demonstrate the validity of our theory.
Collapse
|
46
|
Fábri C, Halász GJ, Vibók Á. Probing Light-Induced Conical Intersections by Monitoring Multidimensional Polaritonic Surfaces. J Phys Chem Lett 2022; 13:1172-1179. [PMID: 35084197 DOI: 10.1021/acs.jpclett.1c03465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interaction of a molecule with the quantized electromagnetic field of a nanocavity gives rise to light-induced conical intersections between polaritonic potential energy surfaces. We demonstrate for a realistic model of a polyatomic molecule that the time-resolved ultrafast radiative emission of the cavity enables following both nuclear wavepacket dynamics on, and nonadiabatic population transfer between, polaritonic surfaces without applying a probe pulse. The latter provides an unambiguous (and in principle experimentally accessible) dynamical fingerprint of light-induced conical intersections.
Collapse
Affiliation(s)
- Csaba Fábri
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112, H-1518, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen, H-4002, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, Debrecen, H-4002, Hungary
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen, H-4002, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, Szeged, H-6720, Hungary
| |
Collapse
|
47
|
Liebenthal M, Vu NH, DePrince E. Equation-of-motion cavity quantum electrodynamics coupled-cluster theory for electron attachment. J Chem Phys 2022; 156:054105. [DOI: 10.1063/5.0078795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Nam Hoang Vu
- Chemistry & Biochemistry, Florida State University, United States of America
| | - Eugene DePrince
- Chemistry and Biochemistry, Florida State University, United States of America
| |
Collapse
|
48
|
Ahrens A, Huang C, Beutel M, Covington C, Varga K. Stochastic Variational Approach to Small Atoms and Molecules Coupled to Quantum Field Modes in Cavity QED. PHYSICAL REVIEW LETTERS 2021; 127:273601. [PMID: 35061426 DOI: 10.1103/physrevlett.127.273601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
In this work, we present a stochastic variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED. The spatial wave function and the photon spaces are optimized by a random selection process. Using correlated basis functions, the SVM approach solves the problem accurately and opens the way to the same precision that is reached the nonlight coupled quantum systems. Examples for a two-dimensional trion and confined electrons as well as for the He atom and the H_{2} molecule are presented showing that the light-matter coupling drastically changes the electronic states.
Collapse
Affiliation(s)
- Alexander Ahrens
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chenhang Huang
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Matt Beutel
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Cody Covington
- Department of Chemistry, Austin Peay State University, Clarksville, Tennessee 37044, USA
| | - Kálmán Varga
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
49
|
Beutel M, Ahrens A, Huang C, Suzuki Y, Varga K. Deformed explicitly correlated Gaussians. J Chem Phys 2021; 155:214103. [PMID: 34879658 DOI: 10.1063/5.0066427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deformed explicitly correlated Gaussian (DECG) basis functions are introduced, and their matrix elements are calculated. All matrix elements can be calculated analytically in a closed form, except the Coulomb one, which has to be approximated by a Gaussian expansion. The DECG basis functions can be used to solve problems with nonspherical potentials. One example of such potential is the dipole self-interaction term in the Pauli-Fierz Hamiltonian. Examples are presented showing the accuracy and necessity of deformed Gaussian basis functions to accurately solve light-matter coupled systems in cavity QED.
Collapse
Affiliation(s)
- Matthew Beutel
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Alexander Ahrens
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chenhang Huang
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | - Kálmán Varga
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
50
|
Li TE, Cui B, Subotnik JE, Nitzan A. Molecular Polaritonics: Chemical Dynamics Under Strong Light-Matter Coupling. Annu Rev Phys Chem 2021; 73:43-71. [PMID: 34871038 DOI: 10.1146/annurev-physchem-090519-042621] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemical manifestations of strong light-matter coupling have recently been a subject of intense experimental and theoretical studies. Here we review the present status of this field. Section 1 is an introduction to molecular polaritonics and to collective response aspects of light-matter interactions. Section 2 provides an overview of the key experimental observations of these effects, while Section 3 describes our current theoretical understanding of the effect of strong light-matter coupling on chemical dynamics. A brief outline of applications to energy conversion processes is given in Section 4. Pending technical issues in the construction of theoretical approaches are briefly described in Section 5. Finally, the summary in Section 6 outlines the paths ahead in this exciting endeavor. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Bingyu Cui
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|